
A simulation-based comparative analysis of PID and LQG 
control for closed-loop anesthesia delivery

Sourish Chakravarty1,*,**, Ayan S. Waite1,*,**, John H. Abel*,**, Emery N. Brown*,**,***

*Picower Institute for Learning and Memory, Massachusetts Institute of Technology (MIT), 
Cambridge, MA

**Department of Anesthesia, Critical Care and Pain Medicine at Massachusetts General Hospital, 
Boston, MA

***Institute for Medical Engineering and Science, MIT, Cambridge, MA

Abstract

Closed loop anesthesia delivery (CLAD) systems can help anesthesiologists efficiently achieve 

and maintain desired anesthetic depth over an extended period of time. A typical CLAD 

system would use an anesthetic marker, calculated from physiological signals, as real-time 

feedback to adjust anesthetic dosage towards achieving a desired set-point of the marker. Since 

control strategies for CLAD vary across the systems reported in recent literature, a comparative 

analysis of common control strategies can be useful. For a nonlinear plant model based on well-

established models of compartmental pharmacokinetics and sigmoid-Emax pharmacodynamics, 

we numerically analyze the set-point tracking performance of three output-feedback linear control 

strategies: proportional-integral-derivative (PID) control, linear quadratic Gaussian (LQG) control, 

and an LQG with integral action (ILQG). Specifically, we numerically simulate multiple CLAD 

sessions for the scenario where the plant model parameters are unavailable for a patient and the 

controller is designed based on a nominal model and controller gains are held constant throughout 

a session. Based on the numerical analyses performed here, conditioned on our choice of model 

and controllers, we infer that in terms of accuracy and bias PID control performs better than ILQG 

which in turn performs better than LQG. In the case of noisy observations, ILQG can be tuned to 

provide a smoother infusion rate while achieving comparable steady state response with respect to 

PID. The numerical analysis framework and findings reported here can help CLAD developers in 

their choice of control strategies. This paper may also serve as a tutorial paper for teaching control 

theory for CLAD.
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1. INTRODUCTION

More than 230 million patients undergo major surgeries world-wide under anesthesia 

(Weiser et al. (2008)). During major surgeries performed under general anesthesia 

(GA) (Brown et al. (2010)), conventionally, an anesthesiologist would monitor relevant 

physiological signals that are known to be associated with anesthetic depth, and 

manually adjust the drug dose. For example, changes in oscillatory patterns in the scalp 

electroencephalogram (EEG) has been shown to be correlated with behaviorally-defined 

changes in unconsciousness levels during GA (Purdon et al. (2013)). Such structured drug-

dependent changes in the EEG signals have allowed developments of automated EEG-based 

closed-loop anesthesia delivery (CLAD) systems that can provide precise control of brain 

states under anesthesia (Bickford (1950); Schwilden et al. (1989); Absalom et al. (2002); 

Dumont et al. (2009); Shanechi et al. (2013); Puri et al. (2016); Yang et al. (2019)). 

Analogous systems are also available for blood pressure (BP)-based CLAD (Ngan Kee et al. 

(2007)).

A typical CLAD system works in a cyclic mode at a fast rate (~ 0.1 s−1) where in each cycle 

a computer calculates a scalar anesthetic marker from real-time physiological signals (say, 

EEG or BP) and uses a feedback control strategy to determine the adjustment of drug-dosage 

for the next cycle. As this iterative procedure continues over time, the anesthetic marker 

ideally would approach the user-prescribed set-point. The utility of such autopilot systems 

are in personalized medicine as they can aid anesthesiologists achieve patient-specific 

precise drug-dosing efficiently, even under resource constrained environments (Dumont and 

Ansermino (2013); Absalom et al. (2011)).

The CLAD systems reported in prior research, vary with respect to different features, 

e.g., regime of anesthesia, anesthetic drug, signal modality, marker definition, control 

strategy, and plant model, just to name a few. For example, the classical output-feedback 

proportional-integral-derivative (PID) control strategy and its variants have been found to 

be useful in CLAD applications in human studies (Dumont et al. (2009); Puri et al. (2016); 

Westover et al. (2015)). The more recent development of using an estimated-state feedback-

based optimal control strategy via linear quadratic Gaussian (LQG) regulation have yielded 

promising results for maintenance of medically-induced coma in animal models (Shanechi 

et al. (2013)). The success of both PID and LQG, as general control paradigms for CLAD, 

motivated us to compare them through a numerical experiment in this work.

In this numerical study of CLAD, we consider a specific nonlinear state-space model as 

the plant model. Here the state dynamics, driven by the drug infusion, is described by a 

four-compartment linear pharmacokinetic (PK) model. The observation dynamics, relating 

the anesthetic marker and the dynamic state in the effect compartment, is assumed to be 

described by a sigmoid-Emax pharmacodynamic (PD) model (Meibohm and Derendorf 

(1997)). We choose realistic values of model parameters based on a pair of well-established 

models in literature for propofol-based PK and corresponding EEG-based PD (Schnider 

et al. (1998, 1999)). We linearize this nonlinear plant model around a steady state value 

and use the resulting linear state-space model to determine control parameters. Since 

LQG is known to have robustness issues (Doyle (1978)) and model-misspecification can 
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lead to steady state errors during set-point tracking, we also consider LQG with an 

additional integral action (ILQG) on the output error. To address practical constraints, we 

impose actuator saturation and zero-order holds explicitly. We consider different operating 

conditions characterized by observation noise and pump-update rates, as well as control 

parameters. For fixed target trajectory and a given operating condition, we simulate CLAD 

for multiple subjects to mimic a practical scenario when only a nominal plant model, instead 

of the true one, is available for controller design.

In the ensuing discussion, Sec. 2 presents the core equations for the plant and the 

control strategies. Sec. 3 presents our numerical simulation design, results and associated 

discussion. Finally, Sec. 4 summarizes our work.

2. METHODS

2.1 Nonlinear plant model

We model the pharmacokinetics (PK) using a first-order ordinary differential equation as,

ẋ(t) = Ax(t) + Bu(t)

(1)

where, ẋ indicates dx/dt. Transition matrix, A, and input scaling matrix, B, are prescribed 

based on a four compartment mammillary model assumption as proposed by Shafer 

and Gregg (1992), where the effect site is augmented to a three-compartment model 

as an additional fourth compartment (much smaller in volume relative to the central 

compartment). The mass of drug in all the compartments at any instant of time, t, is 

indicated by x(t) = [x1(t), x2(t), x3(t), x4(t)]T, u(t) denotes scalar infusion rate function, B = 

[1, 0, 0, 0]T and transition matrix is given by,

A =

− k10 + k12 + k13 + k14 k21 k31 k41

k12 −k21 0 0
k13 0 −k31 0
k14 0 0 −k41

(2)

Note, that u(t) ≥ 0 and xi(t) ≥ 0 ∀ i ∈ {1, 2, 3, 4} and ∀ t ≥ 0. The PK model described 

above is illustrated in Fig. 1. We model the pharmacodynamic (PD)3 relationship between 

a scalar-valued dose-dependent function, say y(t), of the physiological signal of interest and 

the effect site amount, x4(t), using the following sigmoid-Emax model,

y(t) = E0 + Emax
x4(t)/x50

γ

1 + x4(t)/x50
γ

(3)

3Conventionally, k14 and k41 are treated as PD parameters (Schnider et al. (1999)), but here, for convenience, we consider them as 
PK model parameters so as to maintain separate parameter sets for the state and the observation equations.
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where, E0, Emax > 0, x50 > 0, and γ > 0 are scalar parameters. In the ensuing discussion, 

the symbol ‘(t)’, in the notations indicating dynamic variables, will be omitted for brevity. 

In the computational simulation studies that we perform here, the core plant model taking 

input u(t) and generating output y(t) is given by Eqs. (1) and (3). The nonlinear plant model 

is characterized by the subject-specific PK-PD parameters ΘP = {A, x50, γ, Emax, E0}.

2.2 Linear control strategy with output feedback

Steady state relationships: For linear control design for set-point tracking, we determine 

relationships among y, x and u for a steady state condition. Imposing the steady state 

condition, ẋ = 0 in Eq. (1), and denoting the constant values at steady state as yss, xss and uss, 

we obtain

xss = − A−1Buss,

(4)

x4, ss = [0, 0, 0, 1]xss .

(5)

yss can be calculated by substituting x4,ss in Eq. (3). When either yss or uss is specified, one 

can use the aforementioned algebraic relationships to calculate the rest of the steady state 

quantities.

Linearizing about a steady state: The relationship between the y and u, via Eqs. (1) 

and (3), is nonlinear. To incorporate a linear feedback control framework to regulate y 
around a steady state value, characterized by the tuple (yss, xss, uss), we linearize Eq. (3) 

about this steady state,

y − yss = dy
dx4 x4, ss

x4 − x4, ss + higher order terms

(6)

Ignoring the higher-order terms, we obtain a new set of equations in terms of dynamic 

quantities that denote perturbations with respect to respective steady state values,

x· = Ax + Bu

(7)

y = Cx

(8)

where, y ≡ y − yss, x ≡ x − xss, u ≡ u − uss and
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C = 000 dy
dx4 x4, ss

(9)

where, dy
dx4 x4, ss

= Emax
x50

γ x4, ss/x50
γ − 1

1 + x4, ss/x50
γ 2

(10)

PID control: To achieve set-point tracking of y about a constant set-point ysp, we consider 

linear system of equations in Eqs. (7) and (8) where linearization is achieved around a 

user-prescribed state (yo, xo, uo). Using PID control gains, KP, KI and KD, tuned based 

on this linear system, we implement the following control strategy (Aström and Murray 

(2010)),

upid = uo + KP y − ysp + KI∫ y − ysp dt + KDẏ

(11)

where, ysp denotes the user-prescribed set-point which may or may not be equal to yo, but 

should be in the neighborhood around yo where the linear dynamics regime can still be 

assumed. The parameter set for the PID is given by ΘPID = {KP, KI, KD, A, x50, γ, Emax, E0, 
uo}. This parameter set includes controller gains (KP, KI, KD) as well as the parameters of 

the nominal linear model that will depend both on the nonlinear plant parameters (A, x50, γ, 
Emax, E0) as well as the state (uo) at which the linearization occurs.

LQG control: To achieve constant set-point tracking when using LQG strategy, we 

reformulate the problem in the form of,

ẋ = A x − xsp + B u − usp + w

(12)

y − ysp = Co x − xsp + v

(13)

where, w and v are continuous-time zero-mean Gaussian white noise processes 

characterized by positive-definite covariance matrix W and positive scalar V, respectively 

(Crassidis and Junkins (2011)). The Co is determined from Eq. (10) using the linearization 

state (yo, xo, uo) prescribed in terms of either yo or uo (see Sec. 2.2.1). We assume that 

during a session the controller parameters that depend on (yo, xo, uo) will be kept constant, 

but the set-point ysp may vary around yo in a session. With the problem setup in Eqs. (12) 

and (13), we can pose the LQG optimal control problem as,
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u⋆(t) = argminE[J( u(t) )]

(14)

J ≡ ∫
0

∞
x − xsp

TQ x − xsp + u − usp
TR u − usp dt

(15)

such that Eq. (12) holds at every time-point, and E[·] indicates an expectation operation. 

Assuming the system (A, B) is stabilizable and (A, Co) is detectable and matrices Q 
and R are positive semi-definite and positive definite, respectively, the solution of the 

aforementioned optimal control problem leads to a steady state linear quadratic regulator 

with control action ulqg given by,

ulqg = usp − KC x − xsp

(16)

where, ẋ is the output of a steady state Kalman filter,

ẋ = A − KECo x − xsp + B u − usp) + KE y − ysp

(17)

Controller gain matrix KC depends on A, B, Q and R. Estimator gain matrix KE depends on 

A, Co, W and V. The formulae to calculate KC and KE can be found in literature (Athans 

(1971); Crassidis and Junkins (2011)). The parameter set for the PID is given by ΘLQG = 

{Q, R, W, V, A, x50, γ, Emax, E0, uo}.

ILQG control: To minimize any steady state bias that can ensue due to model mismatch 

between the plant and the controller, we add an integral action to minimize the steady state 

errors. To do this we consider an additional state z driven by the tracking error,

ż = ysp − y, such that,

(18)

uilqg = ulqg + KIz

(19)

where, KI > 0 is an additional user-prescribed gain. The parameter set for the ILQG is given 

by ΘILQG = {KI, Q, R, W, V, A, x50, γ, Emax, E0, uo}. Since we are interested in how 

the LQG performance changes with regard to the current CLAD problem in the presence 

and absence of an integral action, we explicitly specify KI. This is in the same spirit as the 
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LQG servocontroller designs that can be simulated using the lqgtrack function in MATLAB 

(2019). Alternatively, one can also design KI implicitly within the LQG framework (Grimble 

(1979)).

Additional constraints for CLAD simulation: In the context of CLAD, practical 

considerations require u ≥ umin = 0 and u ≤ umax; the latter constraint can be due to 

constraints on the physiological system and/or the mechanical actuation system. To mimic 

this in our simulation, we allow output of the controller, say uc (such that c ∈ {pid, lqg, 
ilqg}), goes through a saturation block prescribed as,

u = uc, if 0 < uc < umax,
u = 0, if uc ≤ 0,
u = umax, if uc ≥ umax,

(20)

to yield the control signal u that is input to the drug delivery system. Within the drug 

delivery system, the modulation of infusion rates for anesthetic fluids is a mechanical 

phenomenon which can have a short transient before the infusion rate stabilizes around the 

desired flow rate. To simulate this condition without modeling the drug delivery dynamics 

explicitly we impose a zero-order hold (zoh) condition on u, such that the flow rate u is 

updated at an interval Tu, and held constant until the next update. A similar zoh condition 

is applied on the output side assuming that it is sampled at rate Ty which may or may 

not be equal to Tu. To mimic the noise in the observations, we also add Gaussian white 

noise with variance V and sampled at every interval Ty, to the observation. If Ty = 

Tu holds, then one can alternatively choose to model plant and controller dynamics in 

discrete-time governed by incremental dynamic equations. However, this would require the 

increment time-interval to enter the system matrices that are used to calculate controller 

gains. Furthermore, modeling the plant in continuous time is conceptually closer to the 

physiological phenomena governing the true PK-PD phenomena. Therefore, in this work, we 

try to keep the plant and control blocks independent of any prescribed time-interval, but add 

the aforementioned constraints, via user-prescribed values of umax, Tu and Ty, externally in 

the complete simulation block diagram (Fig. 2).

3. RESULTS

3.1 CLAD simulation setup

Plant model parameters: As candidate plant model parameters we used the weight, 

height, age and sex information available for Np = 44 patients reported in prior work 

(Dumont et al., 2009, Table A1). For the PK-PD model, we used the model parameters 

reported for 3-compartment propofol pharmacokinetics (Schnider et al., 1998, Table 2) and 

corresponding EEG-based pharmacodynamics (Schnider et al., 1999, Table 3), where for the 

latter we use only the age-adjusted parameters for the ascending sigmoidal function in the 

bi-phasic response (Schnider et al., 1999, Fig. 1). We set E0 = 0 and Emax = 1 since they 

reflect a constant shift and scaling. Per suggestion by Shafer and Gregg (1992), we use k41 = 

10−5k14.
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Simulation parameters: Each simulation mimics a CLAD session of duration, Tmax = 

600 min. In all simulations, we maintain the maximum allowable infusion rate for a patient 

weighing W (kg) as umax = 1mg/kg/min×W. We set Ty = Tu for simplicity. To mimic a 

practical situation where the CLAD system is activated after a patient is anesthetized, we run 

the system in an open-loop mode for Tind = 5min with a fixed infusion rate of u = umax/10 

prior to activating the closed-loop mode. For the closed-loop mode, the following target 

profile is maintained: ysp = 0.8 for t ∈ (Tind, Tmax/4], then ysp = 0.64 for t ∈ (Tmax(1/4), 
Tmax(2/4)], followed by ysp = 0.88 for t ∈ (Tmax (2/4), Tmax(3/4)], and finally back to ysp 

= 0.9 for t ∈ (Tmax(3/4), Tmax]. We also simulate disturbance profiles at t = 225 min, 375 

min and 575 min where the effect-site dynamic state x4 is scaled by a factor 2, 0.5 and 0.5, 

respectively, for a brief period (= 10Tu).

Controller parameters: For any given simulation run we linearize the PK-

PD model, available to the controller, around a steady state value of uo = 

umax/10. For LQG and ILQG, we set Q to be a diagonal matrix such that 

diag(Q) = 1/ x1, max − xo
2, 1/ x2, max − xo

21/ x3, max − xo
2, ρ/ x4, max − xo

2 , where xmax is calculated 

using Eq. (4) and umax. We set scalar R = 1/(umax−uo)2. For the process noise variance W we 

choose a diagonal matrix such that diag(W) = 10−6V [1, 1, 1, 1]. For the PID controller, we 

determine KP, KI and KD for linear system parameters A, B and Co by invoking the Matlab 

function, pidtune with its default setting of balance between performance and robustness. 

Since we will be simulating with noisy observations, we incorporate a derivative filter such 

that transfer function contribution to the derivative component of the PID transfer function 

is KDs/(Tfs+1) where we set Tf = 5Tu. Furthermore, since we have actuation saturation, 

to avoid integral error buildup, we employ the following anti-windup strategy (Aström and 

Murray (2010)): when the output of the controller, uc, falls outside the range [umin, umax] we 

enforce a zero input into the integrator blocks of both the PID and the ILQG.

3.2 CLAD simulations

For each control strategy we simulate for every patient set-point tracking with Tu ∈ {5/60 

min, 10/60 min}, and V = {10−6, 10−4} under conditions described in the following 

subsection. For each combination of (Tu, V), we simulate: a PID-based CLAD (Fig. 3(a–d)), 

an ILQG-based CLAD with two control designs [ρ = 10−13, KI = 10] (Fig. 5(a–d)) and [ρ 
= 10−6, KI = 1] (Fig. 5(e–h)), and an LQG-based CLAD simulation under same conditions, 

but with KI = 0 (Fig. 4(a–d) and Fig. 4(e–h)). For each of these operating conditions, 

we simulate CLAD sessions for Np subjects such that the nominal plant and true plant 

are different. In these simulations, every subject is characterized by a respective ΘP value, 

whereas controller parameters are characterized by a fixed set of parameters ΘC determined 

based on a nominal model of the plant, ΘPnom. To calculate the ΘPnom, we consider a 

nominal subject (age = 35.5 years, height = 177.5 cm, weight = 79.5 kg, male) using the 

median of each of these features. The parameters, for this nominal patient are: k10 = 0.4282 

min−1, k12 = 0.4005 min−1, k13 = 0.1958 min−1, k21 = 0.0664 min−1, k31 = 0.0035 min−1, 

k41 = 0.4560 min−1, x50 = 6.8 × 10−5 mg, γ = 3.0965. All simulations are performed using 

MATLAB (2019)/Simulink. To assess the performance across controller designs and across 
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multiple simulation conditions, we use the following inaccuracy and bias metrics (Dumont 

et al. (2009)),

Inaccuracy, ϵI = median 100 yk − ysp /ysp

(21)

Bias, ϵB = median 100 yk − ysp /ysp

(22)

where, yk denotes the observation at the k-th time-point. We also report the average infusion, 

uavg, calculated across each simulated session.

3.3 Discussion

Our final assessment of controller performance across the simulated CLAD sessions is based 

on both the numerical outputs of ϵI, ϵB, uavg (Table 1) and visual inspection of output and 

control trajectory plots (Figs. 3, 4, 5). The inaccuracy and bias metrics for the PID are found 

to be lower than both ILQG and LQG. The ILQG simulations show better set-point tracking 

performance relative to LQG, e.g. compare Fig. 4(a–d) vs. Fig. 5(a–d) and Fig. 4(e–h) vs. 

Fig. 5(e–h). Since the model mis-specification (difference between true and nominal models) 

has a significantly adverse effect on the performance metrics for Fig. 4(e–h) this particular 

LQG design is unacceptable for any practical CLAD implementation. Also, from visual 

inspection we can infer that PID control leads to faster convergence to set-point relative 

to LQG or ILQG, but all three control strategies are able to provide stable regulation. The 

plots in Figs. 3(a–d), 5(a–d), and 5(e–f) indicate that by lowering ρ (the relative weighting 

of state cost to input cost in the LQG quadratic objective function) we can tune the ILQG 

to achieve a control signal that is not as sensitive to the observation noise and leads to 

tracking performance comparable to PID. In all the simulations except for Fig. 4(e–h), the 

median uavg is found to be almost similar (at least to the first significant digit). A plausible 

reason for this observation is that in all cases, except Fig. 4(e–h), the control strategies are 

able to converge on the same average infusion rate that would achieve and track the same 

ysp for most part of the simulated sessions (as indicated by the median ϵI ≤ 4.2% across all 

these sessions, which is markedly lower than the same metric in Fig. 4(e–h)). Furthermore, 

the influence of the transient dynamics of the control signal due to set-point changes and 

noise become less pronounced in the total infused volume estimate (used to calculate uavg) 

over such long sessions. In the summary our aforementioned observations reflect the salient 

differences among the three control strategies. The PID controller is designed to have fast, 

stable dynamics on the output feedback error. On the other hand, the LQG controller is 

designed to minimize the quadratic cost Eq. (15) and a higher penalty on the deviation of 

state trajectory from xsp (relative to the deviation of control from usp) can lead to better 

set-point tracking of ysp by y. For ILQG, the addition of integral action leads to a suboptimal 

performance relative to the LQG cost function but with improved steady state set-point 

tracking relative to LQG, and comparable to PID.
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4. CONCLUSION

In this work, we compared three control strategies: PID, LQG, and ILQG for a CLAD 

application. For the CLAD problem of set-point tracking of output from a single-input 

single-output system described by Eqs. (1) and (3), we draw the following inference from 

our analyses. PID can help with faster convergence to set-point when a set-point change 

occurs. Once a set-point is achieved, PID, ILQG and LQG can each provide stable set-point 

tracking. LQG requires a very high penalty on state cost relative to actuation cost to 

provide acceptable set-point tracking performance, but adding an integral action via an 

ILQG can lead to acceptable tracking performance with lower relative cost. In the presence 

of observation noise, ILQG can be tuned to achieve temporally smoother actuation with 

comparable set-point tracking performance relative to a PID controller. Our results indicate 

that an integral action, incorporated within a linear feedback control strategy, can improve 

set-point tracking of pharmacodynamic response in such a CLAD setting.

We envisage that this work will be useful to guide controller choices in future CLAD 

designs, and to numerically assess their performance prior to their usage in animal models 

or humans. Since the framework involving PK-PD model considered in this study is quite 

general (Meibohm and Derendorf (1997)), our work can be relevant to CLAD applications 

beyond the specific anesthetic drug and physiologic signal definitions of the assumed PK-

PD model (Schnider et al. (1998, 1999)). Furthermore, this paper may also serve as a tutorial 

introduction to applications of control theory in CLAD systems.
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Fig. 1. 
Schematic of a 4-compartment PK model
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Fig. 2. 
Schematic block diagram of CLAD simulation setup
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Fig. 3. 
PID: Simulated trajectories for 45 patients (including the nominal subject, highlighted in 

solid blue) with 4 sets of (60Tu, V): (a) (5 s, 10−6), (b) (5 s, 10−4), (c) (10 s, 10−6), (d) (10 s, 
10−4). Also see Table 1.
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Fig. 4. 
LQG: Simulated trajectories for 45 patients (including the nominal subject, highlighted in 

solid blue) with 4 sets of (60Tu, V): (a,e) (5 s, 10−6), (b,f) (5 s, 10−4), (c,g) (10 s, 10−6), (d,h) 

(10 s, 10−4). (a-d) ρ = 1013, KI = 0, (e-h) ρ = 106, KI = 0. See Table 1.
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Fig. 5. 
ILQG: Simulated trajectories for 45 patients (including the nominal subject, highlighted in 

solid blue) with 4 sets of (60Tu, V): (a,e) (5 s, 10−6), (b,f) (5 s, 10−4), (c,g) (10 s, 10−6), (d,h) 

(10 s, 10−4). (a-d) ρ = 1013, KI = 10, (e-h) ρ = 106, KI = 1. See Table 1.
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Table 1.

Performance metrics for PID (Fig.3(a–d)), LQG with ρ = 10−13 (Fig.4(a–d)), LQG with ρ = 10−6 (Fig.4(e–h)), 

ILQG with KI = 10, ρ = 10−13 (Fig.5(a–d)), LQG with KI = 1, ρ = 10−6 (Fig.5(e–h)). Median (min, max) 

values of performance metrics from 44 CLAD simulations per case.

Fig. 60Tu V ∈I (%) ∈B (%) uavg

3(a) 5s 10−6 0.4(0.4,0.4) 0.1(0.1,0.1) 5.6(4.0,7.3)

3(b) 5s 10−4 3.2(3.2,3.3) 0.2(0.1,0.2) 5.6(4.0,7.3)

3(c) 10s 10−6 0.3(0.3,0.4) 0.1(0.1,0.1) 5.7(4.1,7.3)

3(d) 10s 10−4 2.4(2.3,2.4) 0.2(0.2,0.3) 5.6(4.0,7.3)

4(a) 5s 10−6 2.6(1.2,6.7) −2.5(−6.6,1.6) 5.4(4.2,6.6)

4(b) 5s 10−4 4.2(3.7,7.0) −2.7(−6.8,1.7) 5.4(4.2,6.6)

4(c) 10s 10−6 2.6(1.5,6.5) −2.4(−6.4,1.4) 5.4(4.2,6.6)

4(d) 10s 10−4 3.6(3.0,6.8) −2.6(−6.6,1.9) 5.4(4.2,6.6)

4(e) 5s 10−6 16.9(3.4,47.2) −16.9(−47.2,4.7) 4.6(4.6,4.6)

4(f) 5s 10−4 14.8(5.5,42.8) −14.8(−42.8,7.0) 4.6(4.6,4.6)

4(g) 10s 10−6 17.2(3.4,47.5) −17.0(−47.5,4.3) 4.6(4.6,4.6)

4(h) 10s 10−4 15.2(4.7,44.7) −15.2(−44.7,7.0) 4.6(4.6,4.6)

5(a) 5s 10−6 1.0(0.9,1.2) 0.5(0.2,0.9) 5.6(4.1,7.2)

5(b) 5s 10−4 3.6(3.5,3.7) 0.3(−0.3,1.2) 5.6(4.1,7.2)

5(c) 10s 10−6 1.0(1.0,1.2) 0.5(0.1,1.0) 5.7(4.1,7.2)

5(d) 10s 10−4 2.9 (2.8,3.0) 0.5(−0.1,1.3) 5.7(4.1,7.2)

5(e) 5s 10−6 1.2(0.9,1.6) 0.7(0.5,0.9) 5.6(4.1,7.3)

5(f) 5s 10−4 3.7(3.5,3.9) 0.6(0.3,0.9) 5.6(4.1,7.3)

5(g) 10s 10−6 1.5(1.0,1.9) 0.8(0.6,1.0) 5.7(4.1,7.3)

5(h) 10s 10−4 2.8(2.6,3.1) 0.8(0.5,1.1) 5.7(4.1,7.3)
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