Skip to main content
. 2021 Jun 14;8:699984. doi: 10.3389/fmed.2021.699984

Table 3.

Comparison of general models.

Method AUC Accuracy Recall Precision F1 score
TabNet (20) 0.7891 0.7755 0.7727 0.7391 0.7559
AutoML (21) 0.7453 0.7368 0.7143 0.7895 0.7519
DeepFM (22) 0.6941 0.6818 0.7273 0.6667 0.6970
XGBoost (23) 0.7131 0.7097 0.6429 0.6923 0.6676
Our Model 0.8412 0.8191 0.8597 0.8389 0.8464

For all the comparison methods please refer to the opensource implementations at TabNet: https://github.com/dreamquark-ai/tabnet, AutoML: https://github.com/google/automl, DeepFM: https://github.com/ChenglongChen/tensorflow-DeepFM, XGBoost: https://github.com/dmlc/xgboost.

Bold values indicate the best performed method.