Table 3.
Method | AUC | Accuracy | Recall | Precision | F1 score |
---|---|---|---|---|---|
TabNet (20) | 0.7891 | 0.7755 | 0.7727 | 0.7391 | 0.7559 |
AutoML (21) | 0.7453 | 0.7368 | 0.7143 | 0.7895 | 0.7519 |
DeepFM (22) | 0.6941 | 0.6818 | 0.7273 | 0.6667 | 0.6970 |
XGBoost (23) | 0.7131 | 0.7097 | 0.6429 | 0.6923 | 0.6676 |
Our Model | 0.8412 | 0.8191 | 0.8597 | 0.8389 | 0.8464 |
For all the comparison methods please refer to the opensource implementations at TabNet: https://github.com/dreamquark-ai/tabnet, AutoML: https://github.com/google/automl, DeepFM: https://github.com/ChenglongChen/tensorflow-DeepFM, XGBoost: https://github.com/dmlc/xgboost.
Bold values indicate the best performed method.