
royalsocietypublishing.org/journal/rstb
Opinion piece
Cite this article: Williams HJ, Shipley JR, Rutz
C, Wikelski M, Wilkes M, Hawkes LA. 2021

Future trends in measuring physiology in free-

living animals. Phil. Trans. R. Soc. B 376:
20200230.

https://doi.org/10.1098/rstb.2020.0230

Accepted: 18 March 2021

One contribution of 10 to a theme issue

‘Measuring physiology in free-living animals

(Part II)’.

Subject Areas:
biomaterials, ecology, environmental science,

health and disease and epidemiology,

physiology

Keywords:
artificial intelligence, photoplethysmography,

sensing technology, health management,

wearable devices

Author for correspondence:
L. A. Hawkes

e-mail: l.hawkes@exeter.ac.uk
© 2021 The Author(s) Published by the Royal Society. All rights reserved.
Future trends in measuring physiology
in free-living animals

H. J. Williams1,2, J. Ryan Shipley1,2, C. Rutz3, M. Wikelski1,2,4, M. Wilkes5

and L. A. Hawkes6

1Department of Migration, Max Planck Institute of Animal Behavior, 78315 Radolfzell, Germany
2Department of Biology, University of Konstanz, Universitätsstraße 10, 78464, Konstanz, Germany
3Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, UK
4Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78457 Konstanz, Germany
5Extreme Environments Research Group, University of Portsmouth, Spinnaker Building, Cambridge Road,
Portsmouth PO1 2EF, UK
6Hatherly Laboratories, University of Exeter, College of Life and Environmental Sciences, Exeter EX4 4PS, UK

HJW, 0000-0002-6338-529X; JRS, 0000-0001-9864-2498; CR, 0000-0001-5187-7417;
MWik, 0000-0002-9790-7025; MWil, 0000-0002-9166-7913; LAH, 0000-0002-6696-1862

Thus far, ecophysiology research has predominantly been conducted within
controlled laboratory-based environments, owing to a mismatch between
the recording technologies available for physiological monitoring in wild
animals and the suite of behaviours and environments they need to with-
stand, without unduly affecting subjects. While it is possible to record
some physiological variables for free-living animals using animal-attached
logging devices, including inertial-measurement, heart-rate and temperature
loggers, the field is still in its infancy. In this opinion piece, we review
the most important future research directions for advancing the field of
‘physiologging’ in wild animals, including the technological development
that we anticipate will be required, and the fiscal and ethical challenges
that must be overcome. Non-invasive, multi-sensor miniature devices are
ubiquitous in the world of human health and fitness monitoring, creating
invaluable opportunities for animal and human physiologging to drive
synergistic advances. We argue that by capitalizing on the research efforts
and advancements made in the development of human wearables, it will
be possible to design the non-invasive loggers needed by ecophysiologists
to collect accurate physiological data from free-ranging animals ethically
and with an absolute minimum of impact. In turn, findings have the
capacity to foster transformative advances in human health monitoring.
Thus, we invite biomedical engineers and researchers to collaborate
with the animal-tagging community to drive forward the advancements
necessary to realize the full potential of both fields.

This article is part of the theme issue ‘Measuring physiology in free-
living animals (Part II)’.
1. Introduction
Studies in ecophysiology have provided astonishing insights into how animals
respond to extreme environments and manage athletic feats such as deep
breath-hold diving and endurance migration [1–6]. However, the field of
‘physiologging’ (defined here as the use of archival devices attached to, or
implanted in, animals to record their physiology) significantly lags behind
advances in the development of wearables for monitoring of human health
and fitness, owing to significant practical, technological and fiscal challenges.
Real-time recording can often be achieved with much smaller and simpler elec-
tronic devices such as continuous radio transmitters [7], but is only possible
within the reception range of a radio receiver that is then coupled to a data-log-
ging device. Using this approach, the heart rate of very small animals such as
free-living songbirds and bats could be recorded during their regular daily

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2020.0230&domain=pdf&date_stamp=2021-06-28
http://dx.doi.org/10.1098/rstb/376/1831
http://dx.doi.org/10.1098/rstb/376/1831
mailto:l.hawkes@exeter.ac.uk
http://orcid.org/
http://orcid.org/0000-0002-6338-529X
http://orcid.org/0000-0001-9864-2498
http://orcid.org/0000-0001-5187-7417
http://orcid.org/0000-0002-9790-7025
http://orcid.org/0000-0002-9166-7913
http://orcid.org/0000-0002-6696-1862


royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.B

376:20200230

2
routines [8,9], describing energetic changes [10–12] or
migrations [13–16]. However, when animals move outside
of radio reception, or where there is a wish to log data over
the longer term, these devices do not suffice. Portable,
animal-borne devices have therefore been developed to
record key variables of interest, such as ECG, EEG, blood
pressure, body temperature and indwelling compounds
(including lactate, table 1), but there is significant scope for
further development. Many physiological variables, such as
changes in blood glucose, circulating hormones or energetic
expenditure, are still only monitored in controlled laboratory
settings (e.g. [20–23]), limited by either the invasiveness or
size of available measuring instruments. Unlike health and
sports practitioners, ecophysiologists require devices that are
unobtrusive enough to allow for uninhibited natural behav-
iour, while robust enough to withstand particularly harsh
environments to log data continuously over extended periods
of time, ranging from weeks, to months, to years.

In this opinion piece, we will review the current state of
physiologging, as well as the technical challenges that require
future advancement critical for ethical and measurement
performance. Specifically, we explore the opportunity to
foster collaborative exchange between the fields of animal
physiologging and human biomedical and sports monitoring.
We highlight how ecophysiologists may benefit from impress-
ive advances made by the wearables industry [24,25] and how
work on wild animals can, in turn, become a major engine of
innovation for human applications and research.

2. Current state of physiologging
Since the first pioneering studies in the late 1930s [7], the field
of physiologging has been transformed by significant
advances in the miniaturization of sensor technology [26],
in on-board memory capacity, and in power demand, man-
agement and supply [27,28]. The earliest biologging devices
[29,30] were large film time-depth recorders (TDR) deployed
on seals. For example, the Kooyman-Billups TDR was
approximately 20 × 8 cm long, weighed more than 1 kg, and
could record for up to an hour [31]. Nowadays, it is possible
to record several orders of magnitude more dive data on tiny
high-resolution bio-logging devices (e.g. Cefas G5 TDR is
36.5 × 12 mm, weighs 6.5 g, and records at 10 Hz for more
than 730 days).

A diverse array of devices is now available for recording
information about the three-dimensional movements and
behaviour of wild animals [32–35]. For example, the last 15
years have seen the development of loggers that can record
sub-second movement data via inertial measurement units
(IMUs) that are sensitive to micromovements and magnetic
fields (e.g. [36–39]), or even obtain high-resolution video
recordings of an animal’s activities, including breathing and
prey-capture rates [40–42]. Information on subjects’ physio-
logical responses to stressors can be gathered through
measurements of heart rate, blood flow and pressure (e.g.
[43]), blood and tissue oxygenation [44,45] as well as electro-
encephalogram (EEG) data [46,47]. Physiologging technology
is now advancing our understanding of the ecophysiology of
flight [48–50], terrestrial locomotion [51,52], swimming [53]
and diving [26,45,54].

Ecophysiology research, however, is restricted to ‘work-
ing within the limits’ of the technology available. We
asked 20 leading biologging scientists (from biology and
engineering backgrounds, appendix A) to help us chart the
state-of-the-art of the field as well as future opportunities,
using an anonymous online questionnaire. Temperature
was the most commonly measured physiological variable,
not least because temperature sensors are easily integrated
into devices and are straightforward to calibrate. Interest-
ingly, however, many respondents suggested that
temperature was not particularly useful for their research
compared with other available physiological variables, prob-
ably because it is often only the output of an underlying
physiological alteration such as the heat increment of feeding,
or changes in heart rate, but does not in itself reveal the phys-
iological cause of state alterations. Heart rate was the next
most commonly recorded variable and was considered
more helpful than temperature, but heart-rate logging devices
for wild animals are only available from a very small number
of manufacturers. Respondents said that recording durations
achievable currently (generally up to a week or a month per
deployment) were satisfactory, noting that longer recordings
would be limited by battery size, where devices that record
for longer may be too large or heavy to be ethically accepta-
ble. Longer deployment durations also increase the risk of
device loss, as the likelihood of device retrieval decreases
with deployment time (e.g. the subject migrates away). How-
ever, in response to open horizon-scanning questions, several
colleagues highlighted that physiologging research requires
longer datasets of higher recording frequencies, and devices
that return data in their raw form (i.e. not summarized
or binned).

Thus, research in ecophysiology has naturally focused on
variables that pose fewer challenges, on physiological
responses during relatively short observation windows, and
in species that are accessible to study and large enough to
carry available devices. However, the discipline arguably
requires longer-term datasets, from a broader range of ani-
mals and a greater scope of physiological variables to
explore the range of physiological responses of wild animals
to the abiotic and biotic environment. Our expert respondents
indicated a particular desire to gather reliable data on respir-
ation and blood gases, muscle glycogen and lactate, and
visual function. Such information would not only provide a
greater appreciation of the physiological strategies wild
animals employ to cope with demanding and rapidly
changing environmental conditions but may also offer new
perspectives for those tackling major public health challenges,
including hyperglycaemia and obesity. In the following sec-
tion, we review what we, and our questionnaire respondents,
perceive as major barriers to the field’s advancement, and
sketch possible solutions.
3. Major barriers to physiologging research
(a) Internal logger placement
The predominant barrier to recording the internal physiologi-
cal state of organisms is the impervious nature of the skin.
The majority of geolocating biologging devices (such as
GPS, Argos, or ICARUS tags) are externally attached, permit-
ting long-distance data transmission and solar recharging, do
not require veterinary expertise to implant them and circum-
vent the need to recapture subjects for data retrieval.
However, by efficiently isolating the animal from the harsh-
ness of their external environment, the skin layer restricts



Table 1. Availability of portable devices to measure physiological
variables—this table is not an exhaustive list of all suppliers.

physiological variable animals humans

respiratory gases (−) COSMEDa

Metamax 3Bb [17]

VO2 Master
c

respiratory rate and/or

depth

(−) Astroskind

Hexoskind

Current Healthe

Equivitalf

blood gases

(pO2, pCO2, pH, etc.)

(−) Astroskind

Sentecg

blood glucose Dexcom G6h

Freestyle

Libre 14i

Dexcomh

Freestyle Librei

Guardianj

Kenzen Echok

Medtronic MiniMedl

Omnipodm

Sanon

Sweatio

other compounds in the

blood

(−) Sempionatto et al.

[18]

blood pressure Transonic

Endogearp
Astroskind

Omron Heart Guideq

heart rate (inc. ECG) StarOddi DSTr

Transonic

Endogearp

Astroskind

Current Healthe

Hexoskind

AmbioTexs

AIOsleevet

OmSignalu

VivaLnk ECG

patchv

muscle contraction

(EMG)

(−) LiveAthosw

muscle gases

(pO2, pCO2, pH, etc.)

(−) Humonx

Moxyy

body temperature StarOddi DSTr

Transonic

Endogearp

Current Healthe

COREz

VivaLnk Fever

Scoutaa

TempTRAQab

Equivitalf

brain activity (EEG) Neurologgerac BitBrain Diademad

Unicorn BIae

visual function (−) TobiiPro glasses Xaf

lactate Payne et al.

[19]

BSX Insighty

Sweatio

(Continued.)

Table 1. (Continued.)

ahttps://www.cosmed.com/en//.
bhttps://cortex-medical.com/EN/METAMAX-3B-en.htm.
chttps://vo2master.com.
dhttps://www.hexoskin.com/collections/all.
ehttps://currenthealth.com.
fhttps://www.equivital.com/products/tnr/sense-and-transmit.
ghttps://www.sentec.com/transcutaneous-monitoring/.
hhttps://www.dexcom.com.
ihttps://www.freestylelibre.co.uk/libre/.
jhttps://guardianconnect.medtronic-diabetes.co.uk.
khttps://kenzen.com.
lhttps://www.medtronicdiabetes.com/home.
mhttps://www.omnipod.com/en-gb/a-simple-way-to-deliver-insulin?ctoken=
7019E000000vB7NQAU.
nhttps://sano.co/index.html.
ohttps://www.iamsweati.com/home.
phttps://www.transonic.com/product/endogear4/.
qhttps://www.omron-healthcare.co.uk/blood-pressure-monitors/heartguide.
html.
rhttps://www.star-oddi.com/products/data-loggers?sensors=heart-rate.
shttps://www.ambiotex.com/en/#product.
thttps://komodotec.com.
uhttps://smartclothinglab.com/brands/omsignal/.
vhttps://www.vivalnk.com/products/medical-wearable-sensors/continuous-
ecg-monitor.
whttps://shop.liveathos.com.
xhttps://humon.io.
yhttps://www.moxymonitor.com.
zhttps://corebodytemp.com.
aahttps://www.vivalnk.com/feverscout.
abhttps://www.temptraq.com/Home.
achttps://www.vyssotski.ch/neurologger.
adhttps://www.bitbrain.com/.
aehttps://www.unicorn-bi.com/.
afhttps://www.tobiipro.com/.
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direct measurement of many aspects of internal state, such as
blood chemistry and muscular physiology. The majority of
physiologging devices to date have therefore been surgically
implanted (e.g. [1,7,43,55–60]). Some devices may be
mounted externally but are still physically connected to sur-
gically placed indwelling electrodes or cannulas (reviewed
in Williams et al. [26]). Importantly, most physiologgers do
not remotely transmit data, either because biological tissue is
relatively opaque to radio wave transmission, and/ or because
devices collect huge volumes of raw data during a typical
deployment (e.g. for ECG and EEG), which would require
excessive power for transmission. Subsequent removal of
the device or electrode usually necessitates recapture and
repeat surgery, with important ethical implications (reviewed
in [61]).

The need for surgical removal of some implanted device
types could be avoided if, in principle, it was possible to
transmit data from the implant over short distances (e.g. via
low-energy Bluetooth connection) to externally mounted
logging devices (e.g. [43]), such as those developed for
laboratory studies (e.g. for neuroscience research in mice,
[62]), or by first reducing data volume (see below) and then
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Figure 1. Schematic for recording of physiological variables in wild-animal physiologging and human health monitoring technologies. (a) Typical device attach-
ments include external devices recording motion, PPG and sampling fluids with microneedles, internal devices (dashed outline) recording blood chemistry and heart
rate, and physiologically sensitive tattoos. (b) Basic hardware housed in externally attached devices records the suite of physiological variables in both systems.
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transmitting the condensed data to autonomous receivers
placed strategically in the environment (near nests, inside
burrows, at haul outs, or near natural or experimental feeding
sites; e.g. [63,64]). Promising future solutions also include
physiologically sensitive skin ‘tattoo’ biosensors (e.g.
[27,65,66]), the colour of which reflects biochemical changes
(e.g. in pH or glucose) and can be recorded via imaging
devices. In biomedical applications, this is achieved with an
app on a smartphone, but for wild animals, such an imaging
device could be placed at sites that are routinely revisited by
tagged subjects.

However, considerable advances have been made within
the biomedical industry to measure various parameters
non-invasively with externally mounted devices, such as
ECG, respiratory rate, blood oxygen and blood pressure, or
with minimal implantation (e.g. for circulating compounds
such as glucose, table 1), suggesting that many of these tech-
nologies may soon be within reach for use on free-living
animals. In biomedicine, these measurements are generally
made in one of four ways: (i) photoplethysmography (PPG,
e.g. heart rate and oxygen saturation estimation by smart
watches, [67]); (ii) sampling interstitial fluids via microneedle
(e.g. continuous glucose monitors, [68]); (iii) motion sensors
(e.g. ventilation, [69]); or (iv) sampling of eccrine sweat (e.g.
lactate sensing skin patch, [70], figure 1). These technologies
are by no means perfected for human deployment, and
their utility for non-human application remains to be
explored. PPG, for example, is vulnerable to interference
from light and the effects of variable perfusion from changing
blood-flow dynamics and temperatures [71]. A particular
challenge for PPG is ‘signal crossover’ where the periodic
signal from repetitive motion is mistaken for the cardiovascu-
lar cycle [71]. Respiratory rate can be estimated by spirometry,
capnography, impedance pneumography or accelerometry
but these approaches still require considerable refinement in
the context of commercial wearables [72]. Non-invasive



royalsocietypublishing.org/journal/rstb
Phil.Trans.R.Soc.

5
measures of temperature are relatively poor at estimating
deep body temperature [73], even though they are in wide-
spread use, and because the skin is the major organ for
heat dissipation and conservation, its temperature may lag
behind or trend in the opposite direction to deep body temp-
erature. There is still no satisfactory means of non-invasive
continuous blood pressure measurement in biomedicine
[74]. Unfortunately, no non-human animal is known to pro-
duce eccrine sweat, so sports wearable technologies that
sample sweat are not transferable.

Because these non-invasive approaches are designed for
use on humans, they usually have short battery life (i.e.
days to weeks), but to our knowledge none of these devices
have yet been experimentally deployed on animals. It is
clear that there is abundant potential to refine these technol-
ogies for use on wild animals. This will no doubt pose
significant engineering challenges, but successful innovation
would be rewarded with unprecedented insight into
ecophysiological processes.
 B

376:20200230
(b) Power requirements
Ethical guidelines have been proposed, such as a rule that
biologging devices should not exceed 3% of an animal’s
body mass [6,75–79], but it is notable that most current
physiologgers would exceed such limits for most study
species of interest, in part due to the significant mass of
on-board power storage required for high-frequency
and long-duration sampling protocols. For example, the
smallest available heart rate logger to our knowledge
weighs 3.3 g (Star Oddi DST micro-HRT), which means that
74% of extant bird species are too light to carry them
according to the 3% rule [80]. Consequently, there has
been a considerable drive to create lightweight devices to
study smaller animals.

The advances made have been possible, primarily, due to
increased efficiency of microcontrollers and usage of low
power states [81], rather than increased battery energy den-
sity. For example, over the last decade, lithium ion batteries
have nearly tripled in energy density from about 100 to
300 W kg−1, yet during the same period microprocessor com-
puting efficiency has increased approximately 16-fold [82]. In
addition, as batteries become physically smaller, they tend to
be less efficient in terms of energy per unit of mass, as the
external casing is a larger percentage of total battery mass.
Thus, future advances in increasing the quantity of data,
the lifetime of devices and reducing detrimental effects on
tagged animals is likely to be driven by increases in power
use efficiency, rather than jumps in emerging battery
technology [83]. Generally, physiologging devices record
huge volumes of original sensor data and use fairly unsophis-
ticated first-level evaluations of the logged data to calculate,
for example, heart rate, which is then stored. Quite often
such a system results in either memory overrun within a
short amount of time, or erroneous data because of noise in
the sensor system or unanticipated physiological data
ranges. Perhaps one of the biggest improvements in
physiologgers would be if the on-board electronic processors
were powerful enough to run the computational algorithms
now used on post-processing computers after the return of
the physiologger to the laboratory. The best available ASICs
(application-specific integrated circuits) are now capable of
running machine learning algorithms ‘on-board’, with
minimal energy requirements, thus allowing for long-term
deployments and mass-recordings of multi-sensor original
data and intelligently evaluated and combined physiological
data.

An exciting prospect to reduce battery mass further is the
design of physiologging devices that can harness power from
the animals to which they are attached [84,85]. There have
been several advances in energy harvesting recently, with
the three primary approaches being: (i) piezoelectric, which
involves bending of a membrane, best suited to dynamically
moving, flying or running animals [84]; (ii) hydrostatic,
which is ideal for diving animals [85]; and (iii) exploitation
of temperature differentials [86] using the Peltier-Seebeck
effect (although it is worth noting the inefficiency of this
method). In the case of birds, for example, estimates of
harvestable power during flight show that it would be poss-
ible to power physiologgers solely by kinetic energy
harvesting methods [84], with data resolution dependent on
device components and the specific device-to-animal-mass
ratio. The maximum power that individual species are
capable of generating depends on wingbeat frequency
and amplitude, and the time spent in different flight modes
(i.e. powered versus soaring flight), but such devices may
even be suitable for small-bodied passerines [84]. Exper-
iment-specific tailoring of sampling rates and duty cycles
(the pre-programmed schedule that determines when a
system is active and inactive) means that even peripheral
sensors with relatively high power consumption, such as
ECG, are potential future candidates for coupling with
energy-harvesting technologies.

Physiologgers could also be powered via external
sources, which with the notable exception of solar cells
remains to the best of our knowledge a completely unex-
plored approach to powering devices in the field. For
example, devices could be powered externally by electromag-
netic induction or magnetic resonant coupling. Wireless
recharging of device batteries (e.g. with the same Qi technol-
ogy as used in wireless smartphone charging) would permit
battery recharge and data transfer, extending data collection
periods and reducing the need for repeated capture and
associated handling stress. This technology is already being
used in laboratory-based studies (e.g. [62]) and could be
adapted for field deployment. However, a major caveat is
that this recharging method would be restricted to species
with sufficiently high (and predictable) site fidelity to
ensure very close proximity between the device and the
power source for extended periods of time (e.g. inside
nestboxes or burrows).
(c) Environment and animal proofing
By far the largest component of early biologging devices, in
terms of mass, was that of the material required to protect
sensitive electronics from seawater ingress (e.g. [87]). Devel-
opments in commodity plastics [88] have dramatically
reduced the mass of device housings over the years. But the
need to fully water-, depth- and impact-proof devices,
while (often) connecting to power and transmitter com-
ponents, means that housings and their attachment
materials generally still remain large and heavy. As a conse-
quence, externally attached loggers, although not considered
invasive, can still have measurable effects on the behaviour
and energetics of the tagged animal (e.g. due to placement
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and media flow effects, [89]). The same is true of implanted
physiologging devices, which in addition to the above proof-
ing need to be ‘biocompatible’, that is, manufactured from
material that minimizes tissue inflammation. Perhaps the
greatest challenge to material development is that unlike in
human applications, studies on wild animals need to accom-
modate an enormous range of species-specific habitats, and
have dramatically different skin types (e.g. covered with
fur, scales or denticles), locomotion and lifestyles.

The biggest change in the housing of physiologgers could
come from the miniaturization or elimination of batteries as
the main power source, as described above. In addition,
smart materials borrowed from the biomedical and sports
industries (e.g. stretch sensitive, conductive or biocompatible
materials) could be integrated into harnesses or pads used to
attach devices to animals and simultaneously provide sensor
functionality. A cutting-edge innovation in this regard is the
development of biodegradable electronic devices [90], which
operate for a defined period of time before complete degra-
dation into biocompatible products. A proof-of-concept,
degradable device has been developed to electrically stimu-
late nerve regrowth in mice, and remains stable for several
days before degradation begins [91].
 230
(d) Fiscal constraints
A major hurdle for physiologging engineering has been a lack
of market opportunity to provide revenue for innovation,
development and testing. In comparison, companies in the
sports wearables industry developing non-invasive devices
to detect biomarkers in sweat, for example, have collaborated
with multi-billion dollar market partners such as Gatorade
and the US Air Force, who have profit, data harvesting or
other motives for fostering opportunities for real-time health
and performance monitoring [69]. Uptake of products by
large consumer markets dramatically reduces cost through
scale production (e.g. ‘roll to roll printing’ [92]) and generates
revenue that can be reinvested into further research and
development. Notwithstanding that within ecophysiology
sample sizes should be kept to the minimum required to
robustly test hypotheses and minimize device effects, larger-
scale deployments within and across study species will be
unable to go ahead until physiologging devices move from
being custom-built by individual research groups to being
mass-produced at affordable prices.

Large-scale (e.g. philanthropic) investment in animal
physiologging is needed to facilitate future physiologging
development, particularly by enabling embedded systems
engineers to work as an integral part of the design, prototyp-
ing, device testing and version development process. In
addition, better (open source) sharing of device design and
manufacture (following collaboration models such as Ardu-
ino and Raspberry Pi; http://thingiverse.com) would
enable local and tailored production for individual projects
(e.g. device shape and size changes depending on the host
animal). At present, engineers at different organizations
across the world may simultaneously develop devices for
measuring the same variables (e.g. heart rate) in wild ani-
mals, without ever having the opportunity to benefit from
each other’s ideas, prototyping, successes and failures. We
envisage a future, open source ‘modular nano-tag’ that can
be adapted to host a variety of sensor types and power
inputs and can be potted to suit a variety of applications
via user-contributed three-dimensional printed designs,
democratising production. Translating new developments in
consumer technology, such as wireless Qi smartphone battery
charging (see above), will require a close partnership between
the wildlife science community and the consumer technology
industry, perhaps via agriculture and domestic industries,
something that does not yet exist to our knowledge. It
seems unlikely that wild-animal physiologging will ever be
particularly profitable: some well-established biologging
device manufacturers for wild-animal research, farming and
aquaculture devices have a relatively modest annual
revenue of $2 M to $23 M (www.zoominfo.com) compared
to several billion dollars for consumer electronic companies.
This underscores the need for philanthropy in shaping the
future of this important discipline, although we note that
supporting animal ecophysiological research could generate
significant indirect benefits for manufacturers of human
wearables, and others. Alternatively, following radio-astron-
omy and other fields, the technology developments could
be taken over by a ‘national biologging laboratory’. We
suggest there is enough technological scope and need, as
well as expected scientific transformations, that a centralized
and long-term high-tech laboratory should be considered. A
drive by the community to describe the translational benefits
of physiologging to the study of human physiology and
broader ecological concerns may help in this endeavour.

4. Important ethical considerations
The study of animal physiology currently necessitates, in
many cases, invasive procedures such as the withdrawal of
blood or surgical implantation of physiologging devices, elec-
trodes or cannulas [77,93,94]. The data obtained by such
studies are only accurate and useful if animals are not
affected by the tagging procedure, devices and/or post-pro-
cedure recovery (i.e. have an ‘observer effect’), although this
has rarely been assessed to date [6,75–79]. The design of
non-invasive physiologgers, deployment procedures (e.g.
[95–98]) and remote data download (e.g. using robotics of
Remote-control Operated Vehicles [99]) is critical for mini-
mizing tagging effects and must be the field’s top research
priority. But, until such minimum-impact techniques
become widely available (some are currently at proof-of-con-
cept stage), there remains the challenge of ensuring the
highest ethical standards in any work using current physio-
logging technologies. The ‘3Rs’ (replacement, reduction and
refinement) are well embedded in laboratory animal research
[100], but have yet to be implemented as an obligatory
standard for all work, internationally, on wild-animals [101].

First, we believe there is an unacceptable lack of well-
developed good-practice guidelines (including evidence-
based recommendations for capture, anaesthesia, analgesia,
instrumentation and post-operative care) for all but a few
wild-animal study systems (see [93,102–106]). Species exhibit
different pharmacokinetic and pharmacodynamic responses
to anaesthetic drugs, and the morbidity and mortality of
veterinary anaesthesia remains orders of magnitude higher
than in humans [107]. Animals may also have different
responses to foreign-body insertion, which requires careful
investigation and adequate mitigation [61]. There remains
significant potential for sub-standard practice, despite
researchers’ best intentions and efforts, which the community
must address head-on. A mechanism for sharing practical

http://thingiverse.com
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experience and flagging potential concerns, akin to the pro-
cesses used for reporting surgical ‘near miss’ incidents
[108,109], would help avoid unnecessary repetition of subop-
timal protocols, minimize impact on animals and contribute
to refining physiological research on wild-animals.

Second, researchers may face the challenge of deciding
how to proceed with a study when the technology available
is not yet well-tested, and the capture opportunities are few
and far between. For example, they may find themselves
under pressure to collect data (e.g. if there is only a narrow
time window for tagging animals due to the study system’s
seasonality or logistical constraints) or dealing with novel
technologies where the evidence on which to base judge-
ments of risk and benefits may be slim. Our position here
is an uncompromising ‘do not tag’, unless all devices and pro-
tocols have been thoroughly tested and are known to be safe
for deployment on wild-animals (e.g. using preliminary
short-term deployments on captive animals in controlled con-
ditions). A clearly defined ‘threshold to proceed’ score, based
on cost-benefit assessments of the conservation value of the
work and to prevent incremental research (see [110]), or a
set of ‘no go’ criteria, could be established. Developed by
experts, such criteria can then be adopted by relevant
bodies representing the physiologging/biologging commu-
nity, and employed by researchers, their institutional ethical
review boards, and journal editors and reviewers.

We consider the development of a robust framework for
the evaluation of all physiologging work essential. In an
ideal future, the field will have completely transitioned to
using loggers that do not break skin yet are capable of collect-
ing useful data at high resolution, and either transmit the
data, remain attached until they can be safely recovered, or
degrade. We acknowledge that it may be difficult to collect
some desirable physiological variables (such as core body
temperature or blood hormones) non-invasively, and that
the field is still in a nascent state, but we feel encouraged
by recent advances with non-invasive biomedical techniques
and see considerable scope for cross-disciplinary exchange.
5. Collaboration between physiologging and
biomedicine

Biologging has fast become its own discipline within animal
biology, accelerated by advances in sensor technology, minia-
turization and analytical tools. Each development step has
followed major advancements in human-focused, consu-
mer-driven technologies [111], such as advancements in the
cellular phone industry driving those in solid-state technol-
ogy and power efficiency [83] and the miniaturisation of
sensor types (e.g. video cameras). We are now at a point
where externally mounted devices are routinely used by biol-
ogists for studying wild-animals, and by consumers who
want to know the movements and behaviour of their live-
stock [112–114] and pets [115–117]. However, physiological
logging lags behind both biologging of the movement of ani-
mals, and human health monitoring by wearables, which have
overcome many of the fundamental challenges inherent in
physiologging research. Ultimately, the goal of the wearables
industry is to develop a multimodal, non-intrusive device
capable of continuous measurement of both physiological
variables and biomarkers (table 1), calibrated to general and
individual trends. The translation of advanced human
wearable technology to physiologging will drive forward the
next paradigm shift in animal-attached devices, overcoming
our own challenges towards what is a shared goal of the
two fields.

Many of the greatest biomedical challenges faced by
humanity today have been ‘evolutionarily solved’ in the
animal kingdom, and there is rich potential for insights
from animal ecophysiology research to inform healthcare sol-
utions in the twenty-first century. Globally, the leading cause
of human death is cardiovascular disease (including stroke
and diabetes) and respiratory illness. Together these account
for 29 million deaths annually, [118]), and the leading risk fac-
tors are high blood pressure, smoking, hyperglycaemia and
obesity. Many species are known to experience chronic
hypertension, hyperglycaemia and obesity. For example,
birds have approximately double the circulating blood glu-
cose of similarly sized mammals [119] and become
seasonally morbidly obese, storing approximately 50–60%
body fat, and as much as 150% body fat in some species
[2]. The mechanisms by which birds can ameliorate chronic
symptoms such as nerve damage, are not yet known, nor is
the function of chronic hyperglycaemia across this taxon.
Hypoxia is a major factor in conditions such as heart attacks
and stroke, and is the final common pathway of many critical
illnesses. Effective management of hypoxia in critical care
medicine is still considered a challenge [120], and although
current practice is generally to treat hypoxia by administering
oxygen, hyperoxaemia may cause harm; indeed, ‘permissive
hypoxaemia’ is now being used in critical care patients [121].
Diving animals like seals and whales have remarkable toler-
ance to hypoxia and regularly experience tissue ischemia that
may last for tens of minutes during a dive [24,25]. The most
remarkable example of this is probably the elephant seal,
which spends more than 90% of its time at sea underwater,
with mean surface intervals of just two minutes between
dives [122]. While diving mammals have adaptations to pro-
tect against hypoxaemic damage at almost every step of the
oxygen transport cascade [25], none have yet been adopted
as therapeutic approaches for hypoxia treatment in human
medicine. This may be because hypoxia from diving occurs
in healthy subjects, whereas hypoxia in critical care is
symptomatic of disease; but it seems possible that research
on the former may inspire innovative strategies for tackling
the latter.

Other major medical challenges arise from age- and
immobilization-related sarcopenia [123,124], and countering
muscle mass loss is a major hurdle for very long-duration
spaceflight [125]. Of relevance are hibernating bears that
can maintain lean body mass during this period of extreme
inactivity and fasting, potentially using as-yet undescribed
circulating serum compounds that have been shown to inhi-
bit proteolysis in human muscle cells in vitro [126]. In
addition, king penguins are able to preserve prey captured
at sea to feed their chick after winter incubation (thus storing
food for several weeks). An antimicrobial peptide that is effi-
cient against Staphylococcus aureus was found in the stomachs
of free-ranging penguins that likely helps to preserve undi-
gested food during incubation [127]. The medical relevance
of uncovering the strategies with which wild-animals can
thrive in periods of extreme inactivity is clear, and data collec-
tion via physiologging provides a rich information source for
medical innovation, not least because animals can be studied
at liberty, under natural conditions. Presently, remote blood
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sampling devices (for example, that could collect circulating
serum samples) have been developed for diving seals [94],
and with further refinement could yield considerable gains
for discovering the temporal variation in such compounds,
as well as the promise of wearable analytical devices [27].

A striking recent example of potential for medical inno-
vation via knowledge exchange is the emergence of the
highly infectious novel coronavirus SARS-CoV-2 (COVID-
19) in 2019 [128]. It has become clear that, in response to
the virus, the host immune system can become dysregulated
and release excess cytokines (small signalling proteins) in a
‘storm’, leading to overwhelming systemic inflammation,
ultimately resulting in organ failure and death [129]. By con-
trast, birds and bats serve as viral reservoirs (and bats may be
the original source of the SARS-CoV-2 virus; [130]), and yet
bats rarely display clinical symptoms of infection (reviewed
in [131]). Bats have many of the same immunological features
as other mammals, but when infected, mount an immune
response that restricts viral replication without triggering
uncontrolled inflammatory gene expression, avoiding cyto-
kine storms [132]. The ultimate driver for this adaptation
may be to minimize oxidative stress produced during flight
[133], and enables bats to live approximately three to four
times longer than similar-sized non-flying mammals [134].
The physiological study of these highly adapted animals is
not complete, and it remains limited by a lack of suitable
tools as highlighted throughout this article. But the study of
wild-animal physiology can clearly offer medicine insights
into pathways and strategies to ameliorate the impact of
many of the biggest public health challenges, perhaps even
those we may face with rising CO2 levels and climate
change (e.g. [135]).
6. The future of physiologging for ecophysiology
Over the past several decades, physiologists and ecologists
alike have realized the inseparable linkages between pro-
cesses that occur within an organism’s internal and external
environment. The local environment can not only influence
the state of an animal’s internal physiology but also in turn
forms a feedback loop that determines how an organism
responds to the environment in the future [136]. A range of
physiological responses that result in increased fitness or sur-
vival have allowed animal life to conquer nearly all habitats
on our planet, no matter how inhospitable [6,137–139]. How-
ever, in the face of threats such as climate change [140], the
links between physiological responses and the environment
may become mismatched, impacting effectiveness of future
management. Thus, it is important to understand the linkage
between physiology and space use, survival and fitness for
conservation strategies to be successful [141]. Understanding
physiological response within their environmental context is
vital if we are to predict species response to the changing cli-
mate [136,142,143], quantify physiological stress caused by
anthropogenic infrastructure (e.g. heart rate and roads,
sleep and light pollution, and renewable energy structures
[144,145]) or avoid direct negative impact in fishing and man-
agement policies with maximum net soak times to prevent
drowning of bycatch species [146], to list but a few examples.

Success in biologging and data sharing has significantly
enhanced our understanding of global trends, noteworthy
meta-studies of the movement patterns and space-use of
megafauna [147], of behavioural response to the anthropocene
[148] and more recently the COVID-19 anthropause [149].
However, the addition of physiological data to the positional
and behavioural data of biologging will increase our ability
to predict behavioural response to external factors greatly.
Underlying physiological processes are underappreciated in
ecological studies, despite their known importance. In a
rapidly changing world the development of physiologging
will prove invaluable.
7. Concluding remarks
There exists unrealized potential for ecophysiologists
to overcome the limitations of current physiologging
technology by capitalising on the research efforts and devel-
opments of human wearables for biomedical science.
Fostering collaboration between the two fields, it will be
possible to design non-invasive devices needed to realize
the full potential of physiologging, responsibly, while
advancing our understanding of human health.
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