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The physiological mechanisms bywhich animals regulate energy expenditure,
respond to stimuli and stressors, andmaintain homeostasis at the tissue, organ
and whole organism levels can be described by ‘physiologging’—that is, the
use of onboard miniature electronic devices to record physiological metrics
of animals in captivity or free-living in the wild. Despite its origins in the
1960s, physiologging has evolved more slowly than its umbrella field of bio-
logging. However, the recording of physiological metrics in free-living
animals will be key to solving some of the greatest challenges in biodiversity
conservation, issues pertaining to animal health andwelfare, and for inspiring
future therapeutic strategies for human health. Current physiologging technol-
ogies encompass the measurement of physiological variables such as heart
rate, brain activity, body temperature, muscle stimulation and dynamic move-
ment, yet future developments will allow for onboard logging of metrics
relating to organelle, molecular and genetic function.

This article is part of the theme issue ‘Measuring physiology in
free-living animals (Part II)’.
1. Introduction
Physiology is the science of life, and can be broadly defined as a branch of
biology that aims to understand the internal mechanisms that allow living
things to stay healthy and respond to the challenges of everyday life. Physio-
logical research spans a wide range of variables from the basis of cell
function at the ionic and molecular level, to the integrated response of the
whole organism and the influence of the external environment. In the context
of ‘biologging’ research [1–4], the sub-discipline of ‘physiologging’ is defined
here as ‘the recording of physiological metrics (e.g. metrics that describe caus-
ality, homeostasis and energy expenditure) onboard miniature electronic
devices carried by animals both in captivity and at liberty in the wild’ (figure 1).
Physiologging does not include analyses of physiological variables ex situ (e.g.
processing a blood sample in the field with a hand-held instrument, or bringing
an animal to a measurement device not mounted on or in the animal), but
instead the data are logged onboard the animal (although the animal need
not be in the wild, see [5]). In this context, it is important to define which vari-
ables can be considered as ‘physiological’ so that developments and evolution
in this field can be measured. Generally speaking, physiologging is not con-
sidered to include metrics that describe the three-dimensional location or
orientation of an animal (e.g. GPS or satellite location, dive depth or flight
height, magnetic direction etc.), but rather includes a suite of sensors or metrics
that measure cellular, chemical and systemic (e.g. cardiovascular and
respiratory) changes that describe how an animal functions in response to
environmental and/or anthropogenic stimuli (table 1, see [37,38]). Often, phy-
siologging is combined with behavioural information, such as location tracking,
and in these cases offers some of the strongest insights into the coupling
between physiological mechanisms and resulting behaviours (see [22,39–41]).
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Figure 1. Physiologging involves recording physiological metrics onboard miniature electronic devices carried by animals both in captivity and at liberty in the wild.
Current physiologging technologies are capable of recording physiological metrics at the tissue, organ, system and whole organism levels (beige shaded area), but
future developments will allow for onboard logging of metrics relating to organelle, molecular and genetic function (dashed box). ACC, acceleration.

Table 1. Description of some physiologging metrics.

variable value of approach examples

heart rate (ECG), variability and waveform

characteristics

cannot expend energy without paying cardiovascular costs at some temporal scale [6–10]

accelerometry (1-, 2- or 3-axes) dynamic acceleration must be funded by muscular contraction with associated

metabolic cost

[11–14]

body temperature reveals patterns of diurnal behaviour, exercise thermogenesis and seasonal changes in

homeotherms

may be correlated with metabolic rate in heterotherms (following principles of Q10)

[15–18]

partial pressure of O2 (pO2) can predict blood O2 saturation as haemoglobin binds to O2 in relation to pO2 [19–21]

brain activity (EEG) directly measures neural transmission of stimuli perception and response [22–24]

compounds in the blood (e.g. glucose,

lactate, hormones)

provides insights into physiology, pharmacokinetics, toxicology of drugs and

metabolites

[25–27]

ventilation (rate, tidal volume) most air-breathing animals cannot acquire O2/release CO2 without ventilation [28,29]

muscle movement (EMG) measures motor unit action potentials of muscle groups, with associated

metabolic costs

[30,31]

gastric pH pH increases as prey is ingested, and decreases as gastric acids and enzymes are

secreted for digestion

[32,33]

tissue blood flow and oxygenation blood flow is managed to deliver O2 and remove CO2 depending on metabolic

demand

[34–36]
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In this special issue, we feature some of the latest examples
of physiologging in a range of animal systems to demonstrate
the breadth of research questions and insights that this exciting
field can produce. Arguably, the first and most fundamental
physiologging metric is the recording of heart rate, which
dates back as far as 1962 in birds [42], 1968 in fish [43] and
1972 for pinnipeds [44]. This metric has been successfully
used to demonstrate some of the more astonishing accomplish-
ments of free-living animals, for example, that diving whales
can have heart rates as low as 2 beats per minute [45], whereas
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on the opposite end of the spectrum, flying birds can maintain
heart rates of more than 500 beats per minute for many hours
[46,47]. The rapid development and increasing availability of
technologies capable of monitoring and analysing heart rate
in recent times [6] have been used to gain unique insights
into animal welfare (e.g. farmed terrestrial and aquatic species
[48–51]), to assess social interactions in animals [52–55] and
to comprehensively understand the cardiorespiratory adap-
tations of breath-hold diving species [7,8]. A more recent
physiologging variable is accelerometry, where the two- or
three-dimensional acceleration of an animal is recorded at a tem-
poral resolution that is sufficiently high to reveal individual
wing or tail beats during locomotion [56–59]. Although accel-
erometry does not directly measure energy expenditure,
dynamic body acceleration has often been shown to be corre-
lated with energy expenditure when the animal is in its
primary mode of locomotion [60,61]. When used judiciously,
accelerometry has revealed fascinating insights into the costs
of movement in a range of species [62]. Physiologging of body
temperature has also been widely used throughout the terres-
trial and aquatic realms [63], and can yield broad insights into
the activity patterns and behaviour of free-living animals [15–
18,64]. Another commonly used physiologging metric is the
intravascular partial pressure of O2 (pO2), which requires the
use of highly specialized equipment and techniques (and has
thus been restricted to just one extended laboratory of research-
ers). However, this metric has provided a foundation for much
ofwhatwe knowabout diving physiologyandoxygenmanage-
ment (see [65]). Finally, the recording of brain activity has
revealed astonishing insights into cognition, navigation and
sleep in both wild and captive animals [22,23,39], with
advanced loggers currently as small as 1.92 g commercially
available at the time of writing (see https://www.vyssotski.
ch). Currently, there is comparatively little work in animal
physiologging on circulating compounds in the blood, despite
the fact that an automated blood sampling devicewas first envi-
saged and built in 1986 [66]. This device was further refined
recently and a current version measures 18 × 8.6 cm, weighs
160 g in water and is capable of drawing two blood samples
during deployment [67]. Furthermore, a technology from the
biomedical field has been adapted to provide continuous,
non-invasive measurements of blood flow and tissue oxygen-
ation through Near Infrared Spectroscopy technology [34,35],
and the future adaptation of medical technology will permit
measurements of circulating chemicals in an animal’s tissues.
For example, the measurement of various hormones and meta-
bolic substrates, without the need for sampling and storage of
blood, is now commonplace in human wearable technologies
[68,69].

As the future brings about significant changes in climate and
anthropogenic pressure on biodiversity [70–72], physiologging
will fundamentally underpin our understanding of how to pre-
dict biodiversity responses and to set appropriate conservation
policies [73,74]. Indeed, measuring physiology in free-living
animals will underpin a huge range of future research priorities
from understanding the potential of animals to tolerate and
adapt to rapidly changing environments, to managing invasive
species, to understanding the impact of threats such as pol-
lution, for ensuring the success of restoration efforts and for
managing human–wildlife interactions [75]. Physiologging
will also be key for understanding the mechanisms with
which vertebrate life copes with extremes of hypoxia, circula-
tory changes and infectious diseases, which will undoubtedly
have important ramifications for future medical interventions
in humans [76,77]. Many of these research questions will need
to be tackled outside of the laboratory in wild animal study sys-
tems, and thus physiologging technologies perhaps provide the
most critical tools for future biodiversity research.
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