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Abstract

Machine learning methods are attracting considerable attention from the pharmaceutical industry 

for use in drug discovery and applications beyond. In recent studies we and others have applied 

multiple machine learning algorithms, modeling metrics and in some cases compared molecular 

descriptors to build models for individual targets or properties on a relatively small scale. Several 

research groups have used large numbers of datasets from public databases such as ChEMBL in 

order to evaluate machine learning methods of interest to them. The largest of these types of 

studies used on the order of 1400 datasets. We have now extracted well over 5000 datasets from 

CHEMBL for use with the ECFP6 fingerprint and comparison of our proprietary software Assay 

Central® with random forest, k-Nearest Neighbors, support vector classification, naïve Bayesian, 

AdaBoosted decision trees, and deep neural networks (3 levels). Model performance was assessed 

using an array of five-fold cross-validation metrics including area-under-the-curve, F1 score, 

Cohen’s kappa and Matthews correlation coefficient. Based on ranked normalized scores for the 

metrics or datasets all methods appeared comparable while the distance from the top indicated 

Assay Central® and support vector classification were comparable. Unlike prior studies which 

have placed considerable emphasis on deep neural networks (deep learning), no advantage was 

seen in this case. If anything, Assay Central® may have been at a slight advantage as the activity 

cutoff for each of the over 5000 datasets representing over 570,000 unique compounds was based 

on Assay Central® performance, although support vector classification seems to be a strong 

competitor. We also applied Assay Central® to perform prospective predictions for the toxicity 

targets PXR and hERG to further validate these models. This work appears to be the largest scale 

comparison of these machine learning algorithms to date. Future studies will likely evaluate 

additional databases, descriptors and machine learning algorithms, as well as further refining the 

methods for evaluating and comparing such models.
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INTRODUCTION

The pharmaceutical industry is increasingly looking to using machine learning for drug 

discovery applications to leverage their considerable high throughput screening as well as 

many other types of data 1. Some recent examples outside of big pharma have demonstrated 

the speed with which the machine learning and in vitro testing can produce new leads 

compared to traditional efforts 2. With many thousands of structure activity datasets with 

data from hundreds to hundreds of thousands of molecules screened against a single target or 

organism, this represents a potentially valuable starting point for drug discovery as well as 

understanding molecular properties and predicting toxicity. Accessible public databases like 

ChEMBL 3, PubChem 4, 5 and many others have spawned numerous studies utilizing such 

data for a wide array of applications in machine learning with many algorithms such as deep 

neural networks (DNN) 6–8, support vector machines (SVM) 9–15, k-Nearest Neighbors 
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(kNN) 16, naïve Bayesian 17–21, decision trees 22 and others 23, 24 which have been 

increasingly used 25–28. We are also observing wider usage of deep learning for 

pharmaceutical applications 29 and this has warranted comparisons with other methods 30 

described as follows.

Large scale analyses of public structure activity relationship datasets have been primarily 

focused on creating chemogenomic databases which can be used to predict off-target effects 

as well as compound repurposing. In 2013 TargetHunter was described as a web portal that 

integrated ECFP6 descriptors with two different algorithms (Targets Associated with its 

MOst Similar Counterparts (TAMOSIC) and multiple category models (MCM)) for 794 

targets in ChEMBL. Seven-fold cross-validation results gave average accuracy of 90.9% for 

TAMOSIC and 74.8% for MCM 31. 894 human protein targets from ChEMBL were used to 

train and compare two probabilistic machine-learning algorithms (naïve Bayes and Parzen-

Rosenblatt Window) against a test set from the WOMBAT database used as an external test 

set. Recall was consistently higher for the Parzen-Rosenblatt Window 32. Smaller subsets of 

ChEMBL have also been used for various studies including extraction of 29 datasets for 

comparing 11 ligand efficiency scores with pIC50 as well using Morgan fingerprints or 

physicochemical descriptors with four machine learning algorithms 33. Models were found 

to have a higher predictive power when based on ligand efficiencies. Viral focused datasets 

from ChEMBL (including human immunodeficiency, hepatitis C, hepatitis B, and human 

herpes virus among a selection of 26 viruses) were used to create SVM regression or 

classification models after generating 18,000 descriptors with Padel software. Ten-fold 

cross-validation statistics were generated as well as validation with molecules left out of the 

models. Validation statistics for classification models indicated sensitivity, specificity and 

accuracy > 80%. These models were subsequently used to generate an integrated webserver 

called AVCpred 34. A set of G-protein coupled receptor targets for 5-HT2c, melanin 

concentrating hormone and adenosine A1 were used to build Gaussian process models with 

CATS2 descriptors which were more predictive for a test set than models developed from a 

proprietary Boehringer Ingelheim dataset. This was likely due to the fact that the ChEMBL 

set was larger and more structurally diverse 35. 173 human targets with Ki bioactivity data 

were extracted from ChEMBL and used to build Naïve Bayes, logistic regression and 

random forest models using Morgan fingerprints or FP2 that were in turn used for target 

inference 36. Seven-fold cross-validation and temporal cross-validation demonstrated that 

cutoffs that were more potent had better accuracy and MCC. These models were then used 

for multiple target prediction using the most similar ligand with false discovery rate control 

procedures to correct the p values. Only two molecules were used as examples for which 

predictions were made 36. 25 datasets from ChEMBL were used to compare random forest, 

multiple linear regression, ridge regression, similarity searching and random selection of 

compounds as approaches to identify highly potent molecules 37. Linear and ridge regression 

were 2–3 times faster than random forest (RF) and similarity searching at finding highly 

potent molecules. 550 human protein targets from ChEMBL version 22 were used for RF 

and conformal prediction models and used to predict additional targets from versions 23 and 

24. The conformal prediction approach generally outperformed RF on internal and temporal 

validation whereas for external validation the situation was reversed 38. There are likely 
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many additional published examples like this, but these clearly point to the progress that has 

been made to date.

As a database like ChEMBL is so large it has become a central resource for many types of 

machine learning projects 39–48. It also contains a large number of cell lines with 

cytotoxicity data and cancer related targets and these have been combined and used recently 

to derive combined perturbation theory machine learning models 49, however the authors did 

not explore prospective external testing of this method. Natural products are important as 

they are the basis for many small molecule drugs. Efforts to identify compounds that are 

natural product-like have curated 265,000 natural products (including those in ChEMBL) 

alongside 322,000 synthetic molecules to derive RF classification models using Morgan2 

fingerprints and MACCS keys. Models were tested using 10-fold cross-validation and an 

independent test set and in both cases the receiver operator characteristic (ROC) score was 

0.996–0.997 50. Subsets of natural products such as macrolactones have also been the recent 

focus of machine learning. In one case using biological data from ChEMBL models were 

generated for macrolactones that possessed a range of activities for Plasmodium falciparum, 

hepatitis C virus and T-cells) using RF, SVM Regression, naïve Bayes, KNN, DNN, as well 

as consensus and hybrid approaches from the two best algorithms (RF_KNN and RF_DNN, 

the average prediction from RF and KNN or DNN). These three case studies demonstrated 

RF was the best predictor across six descriptor sets while consensus modeling or the hybrid 

slightly increased the predictive power of the quantitative structure activity relationship 

(QSAR) models 51.

All of the preceding examples have in common that few if any used prospective prediction 

as a form of validation. The main aim of this study was to evaluate a Bayesian method, 

Assay Central® which we have previously used in several examples where we have 

compared it versus other machine learning methods against a relatively small number of 

datasets or targets such as drug induced liver injury 52, Rat Acute Oral toxicity 53, estrogen 

receptor 54, 55, androgen receptor 56, GSK3β 57 Mycobacterium tuberculosis 58, 59, non-

nucleoside reverse transcriptase and whole cell HIV 60. Our evaluation has now been 

expanded with this study to over 5000 CHEMBL datasets and provides statistics and data 

visualization methods in order to assess each algorithm. In contrast to other large-scale 

machine learning comparisons we also now describe prospective prediction for a selection of 

ADME/Tox properties and retrospective analysis with infectious disease datasets for 

Mycobacterium tuberculosis and non-nucleoside reverse transcriptase and whole cell HIV.

EXPERIMENTAL SECTION

Computing

Computational Servers consisted of the following components: Supermicro EATX DDR4 

LGA 2011, Intel Computer CPU 2.1 8 BX80660E52620V4, Crucial 64GB Kit (16GBx4) 

DDR4 2133 (PC42133) DR x4 288 Pin Server Memory CT4K16G4RFD4213 / 

CT4C16G4RFD4213, 10 x EVGA GeForce GTX 1080 Ti FOUNDERS EDITION 

GAMING, 11GB GDDR5X, Intel 730 SERIES 2.5Inch Solid State Drive 

SSDSC2BP480G410, WD Gold 4TB Datacenter Hard Disk Drive 7200 RPM Class SATA 6 

Gb/s 128MB Cache 3.5 Inch WD4002FYYZ and Supermicro 920 Watt 4U Server. The 
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following software modules were installed: nltk 3.2.2, scikit-learn 0.18.1, Python 3.5.2, 

Anaconda 4.2.0 (64-bit), Keras 1.2.1, Tensorflow 0.12.1, Jupyter Notebook 4.3.1.

Datasets

Datasets were generated in the following manner as described previously 61. A list of all 

molecules present in ChEMBL 62 version 25 was generated from the chembl_25.sdf.gz file 

downloaded from the ChEMBL ftp server. A list of all the targets present in ChEMBL25 

was generated via the interface on the ChEMBL API. Targets of types “ADMET”, “CELL-

LINE”, “CHIMERIC PROTEIN”, “MACROMOLECULE”, “METAL”, 

“OLIGOSACCHARIDE”, “ORGANISM”, “PHENOTYPE”, “PROTEIN COMPLEX”, 

“PROTEIN COMPLEX GROUP”, “PROTEIN FAMILY”, “PROTEIN NUCLEIC-ACID 

COMPLEX”, “SINGLE PROTEIN”, “SMALL MOLECULE”, and “TISSUE” were 

included in the analysis, while targets of types “LIPID”, “NON-MOLECULAR”, “NO 

TARGET”, “NUCLEIC-ACID”, “SELECTIVITY GROUP”, “SUBCELLULAR”, 

“UNCHECKED”, and “UNKNOWN”, were excluded. In total, 12,310 targets were present 

in the initial data collation. Assays which matched the selected targets were collated via the 

ChEMBL API, producing a list of 915,781 assays. From these assays, all activities 

expressed in molar units (i.e. units of type “M”, “mM”, “uM” and “nM”) were collected. For 

each target, the activities were partitioned into datasets based on the type of assay 

(“Functional”, “Binding”, “ADME”, or “All”) and the type of assay endpoint (“C50” 

corresponding to combined IC50/EC50/AC50/GI50, “K” corresponding to Ki/Kd, “MIC”, or 

“All” which combined all possible endpoints). This produced 16,135 datasets, of which 

2,915 had only one activity and were excluded from further analysis. From the resulting 

13,220, we excluded datasets with fewer than 100 activities so as to compare to our previous 

work 61, to give 5,279 datasets. Of these, 8 datasets failed to converge when used to train 

SVM machine learning models and were excluded from further consideration. The 

binarization of these continuous datasets by our Assay Central® algorithm occasionally 

picked a threshold so that there were fewer than 5 actives. These datasets have also been 

excluded from the analysis, resulting in a final total of 5091 datasets with at least 100 

activity measurements each, the largest of which has 15,994 molecules. As these datasets 

were curated in an automated manner, as opposed to manually seeking out specific 

endpoints or assays, these datasets are referred to herein as ‘autocurated’ datasets and we 

have provided these files for others to use (Supplemental Datasets).

Machine learning - Assay Central®

Assay Central® is proprietary software for curating high-quality datasets, generating 

Bayesian machine learning models with extended-connectivity fingerprints (ECFP6) 

generated from the CDK library 63, and making prospective predictions of potential for 

bioactivity 1, 54, 55, 58, 60, 64–70. We have previously described this software in detail 
1, 55, 58, 60, 64–71 as well as the interpretation of prediction scores 61, 72, and the metrics 

generated from internal five-fold cross-validation used to evaluate and compare predictive 

performances. These metrics include, but are not limited to, ROC score 55, Cohen’s kappa 

(CK) 73, 74, and Matthew’s correlation coefficient (MCC) 75 as described by us previously.
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Each of the 5091 ChEMBL version 25 datasets described previously were subjected to the 

same standardization processes (i.e. removing salts, metal complexes and mixtures, merging 

finite activities for duplicate compounds) prior to building a Bayesian classification model 
72. Classification models such as these require a defined threshold of bioactivity, and Assay 

Central® implements an automated method to select this threshold to optimize internal 

model performance metrics 61. After the initial generation of the Bayesian model with Assay 

Central®, a binary activity column was applied to the output dataset for the accurate 

comparison of machine learning methods.

Other machine learning methods

The threshold for all the datasets was set by Assay Central and these were output (i.e. with 

the threshold applied so that the activity is binary, merged duplications, etc.) so that they 

could then be applied by the alternative machine learning algorithms. Additional machine 

learning algorithms were used which also utilized ECFP6 molecular descriptors for 

consistency between methods and were generated from the RDKit (www.rdkit.org) 

cheminformatics library. These additional algorithms include RF, kNN, SVM classification, 

naïve Bayesian, AdaBoosted decision trees, and DNN of three layers; these algorithms have 

been described fully in detail in our earlier publications 55, 58, 60. It should also be noted that 

the hyperparameters for these different models were determined as previously described 76.

Validation metrics

Internal five-fold cross-validation metrics between algorithms for 5091 datasets were 

compared with a rank normalized score, which was also used in previous investigations 
60, 76, 77 of various machine learning methods. Rank normalized scores 60 can be evaluated 

in either a pairwise or independent fashion: the former is informative for a comparison of 

algorithms per training set, while the latter provides a more generalized comparison of 

algorithms overall. A total of 188 datasets were excluded from this study because one or 

more of the internal five-fold cross-validation metrics was unable to be calculated (i.e. 

contained a denominator calculated to be zero).

The rank normalized score takes the mean of the normalized scores of several traditional 

measurements of model performance including accuracy (ACC), recall, precision, F1 score, 

ROC AUC, Cohen’s Kappa (CK) and Matthews correlation coefficient (MCC). As ACC, 

ROC AUC, precision, recall, specificity and F1 scores are fixed from 0 to 1, the raw scores 

were used directed to calculate the rank normalized score. As CK and MCC range from −1 

to 1, the normalized score was calculated as CK or MCC + 1
2  in order to truncate the range 

from 0 to 1. The rank normalized score is just the mean of these values.

Additionally, a “difference from the top” (∆RNS) metric, where the rank normalized score 

for each algorithm is subtracted from the highest corresponding score of a specific dataset 
76. This metric maintains the pairwise comparison results and enables a direct assessment of 

the performance of multiple machine learning algorithms while maintaining information 

from the other machine learning algorithms tested simultaneously.

Lane et al. Page 6

Mol Pharm. Author manuscript; available in PMC 2022 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.rdkit.org


External validation examples for Assay Central® models

Several recent internal projects have involved using manually curated and specific machine 

learning models (i.e. single measurement type such as IC50, Ki etc.) to score compounds 

prior to selection of compounds for testing in vitro with Assay Central®. We have compared 

the predictions made previously for PXR (ChEMBL target ID 3401) and hERG (ChEMBL 

target ID 240) using manually curated datasets to those predictions from auto-curated “C50” 

datasets from ADME or binding assays (described earlier in the “datasets” section). All 

datasets were subjected to the same standardization steps (i.e. removing salts, neutralizing 

anions, merging duplicates) as described for generating models with Assay Central®. When 

structures are predicted they are also desalted and neutralized for compatibility with a 

model.

Additionally, several test sets from previous studies were subjected to external validation by 

corresponding auto-curated datasets from ChEMBL. Two HIV datasets from the NIAID 

ChemDB used previously by us 60 as training datasets were utilized herein as test sets for 

either whole cell HIV or reverse transcriptase. All whole cell data was from MT-4 cells with 

a molecular weight limit of 750 g/mol and totalled 13,783 compounds. A test set of three 

reverse transcriptase training sets from the same publication 60 (from colorimetric, 

immunological, and incorporation assays) totalled 1578 compounds. A final test set of 

literature MIC data against M. tuberculosis H37Rv strain was utilized in another previous 

publication 58 and totalled 155 compounds. All these test sets were re-evaluated to remove 

compounds overlapping with the corresponding ChEMBL autocurated dataset in order to 

enable a true external validation.

The HIV whole cell datasets from the NIAID ChemDB were evaluated with the auto-curated 

“C50” datasets from functional assays from ChEMBL target ID 378 (HIV-1), and the reverse 

transcriptase dataset with autocurated “C50” datasets from binding assays from ChEMBL 

target ID 2366516 (HIV-1 reverse transcriptase). The M. tuberculosis test set was evaluated 

against the autocurated MIC dataset from functional assays from ChEMBL target ID 

2111188 (M. tuberculosis H37Rv strain). All external validations were then evaluated at the 

calculated activity threshold unique to each training model.

Descriptor calculations

To assess the molecular properties of the ChEMBL datasets (570,872 uniquecompounds) 

versus known drug-like molecules we used the SuperDrug2 library (3992 unique 

compounds)78 we generated molecular descriptors (AlogP, molecular weight, number of 

rotatable bonds, number of rings, number of aromatic rings, number of hydrogen bond 

acceptors, number of hydrogen bond donors, and molecular fractional polar surface area) 

using Discovery Studio (Biovia, San Diego, CA) for each dataset individually and these 

property distributions were compared.

Statistics

All statistics were performed using Graphpad Prism 8 for macOS version 8.4.3.
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External biological testing

External PXR and hERG testing was performed by ThermoFisher Scientific SelectScreen™ 

Profiling Service (Life Technologies Corporation, (Chicago, IL 60693). The PXR assay uses 

a LanthaScreen TR-FRET competitive binding assay and used SR-12813 as a positive 

control. a Tb-labeled anti-GST antibody is used to indirectly label the receptor by binding to 

its GST tag. Competitive ligand binding is detected by a test compound’s ability to displace 

a fluorescent ligand (tracer) from the receptor, which results in a loss of FRET signal 

between the Tb-anti-GST antibody and the tracer. The hERG screening used a fluorescence 

polarization assay previously described 79 and E-4031 as a positive control.

RESULTS

Model statistics

Multiple machine learning models were generated and their internal five-fold cross-

validation metrics were compared to assess their performance. The distribution of the model 

metrics for each model approach was not normally distributed, (Figure S1) therefore the 

median model statistics are used for comparative purposes (Table 1). Even though the 

magnitudes vary drastically, there is a statistically significant difference between essentially 

all of the algorithms using the RNS metrics (RNS and ΔRNS). As shown in Figure 1A, the 

two algorithms that show the most pronounced score superiority with these metrics are the 

Bayesian algorithm used by Assay Central® and SVC. Even though the RNS between these 

two algorithms were statistically indifferent from each other (Table 2) there was a 

statistically significant difference with the ΔRNS between AC and SVC, suggesting AC as 

the better algorithm based on 5-fold cross validation for these datasets. This difference in the 

∆RNS metric is visualized in Figure 1B and quantified in Table 3. Knn and RF lacked 

statistically significant differences when comparing the RNS or ΔRNS independently, but 

there was a statically significant win for RF when utilizing a pairwise RNS comparison 

(Table 2). As the ΔRNS score comparison shows no significance difference and should be a 

more sensitive metric to compare the algorithms in the same way as the RNS pairwise 

comparison is intending to do, this difference, while significant, is likely inconsequential. 

DL showed a similar, but reduced performance as compared to Knn and RF using both the 

pairwise and independent methods. Ada and Bnb had the most drastic disparity in their 

performances as compared to all the other algorithms tested (Table 2). This is quantified by 

the mean rank differences, which shows the extent of these differences (Table 3).

Overall, the trends seen with the RNS and ΔRNS score comparisons are mimicked in each 

individual metric comparison (Figure 2, Table S2), with some minor exceptions being 

highlighted. AC or SVC ranked in the top 2 for every metric examined except for 

Specificity, where RF scored the best. The most pronounced metric difference between the 

top scoring algorithms was AUC, with AC and SVC having median scores of 0.887 (95% 

CI: 0.884–0.888) and 0.826 (95% CI: 0.823–0.829), respectively. While the RNS of Knn and 

RF were similar, each algorithm had multiple metrics where one dominated over the other. 

RF had significantly higher Precision and Specificity where Knn was substantially better in 

Recall. Finally, while Ada had one of the lowest RNS’s, it did have the second-best 

Specificity score out of all the algorithms tested. The median score for each metric by 
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algorithm is shown in Table 1, which is expanded to show the confidence intervals in Table 

S1. A full statistical comparison of each metric is shown in Table S2.

Molecular properties

As the ChEMBL dataset is proposed to represent drug-like molecules we sought to compare 

it to actual drugs, using the Superdrug2 library. The distribution of each of the 8 calculated 

molecular properties selected was assessed for normality and none of these were statistically 

likely to be normally distributed (D’Agostino & Pearson test, p <0.0001****), therefore the 

differences were evaluated nonparametrically. The Gaussian fit displayed on each graph is 

meant only for easier visual discrimination of the two datasets and not for statistical 

purposes. Both the distributions (Kolmogorov-Smirnov test) and medians (Mann Whitney 

test) of each chemical library were determined to be statically significantly different for all 

measured metrics except for the number of hydrogen-bond donors, where the medium was 

not significantly different between the libraries (p = 0.1404) (Figure 3). The molecular 

weight, AlogP, number of aromatic rings, number of rings, number of hydrogen bond 

acceptors and number of rotatable bonds were all higher in the ChEMBL dataset. These 

results would suggest that the ChEMBL dataset consists of molecules that have properties 

outside of known drugs. Individual models built with subsets of the ChEMBL data would 

likely also vary in their overlap with approved drug properties.

External test sets

We used machine learning to prospectively score libraries of compounds to test in vitro for 

several toxicology properties of interest important for drug discovery. We have now collated 

this unpublished experimental data against the ion channel hERG (N = 10) and the nuclear 

receptor PXR (N = 14). We have then compared the predictions for these compounds from 

the autocurated models with additional machine learning models that used manually curated 

datasets in order to evaluate whether there is a difference between these techniques in the 

model prediction outcome. These two datasets therefore represent prospective external test 

sets. We have also anonymized these molecules to maintain confidentiality of our pipeline 

which consists of multiple infectious disease targets.

The two auto-curated datasets for PXR were quite dissimilar from the manually curated 

dataset (Table S3a, Figure S2). While the model metrics remained in a reasonably tight 

range, the calculated model thresholds were ~16 µM and 329 nM for ‘ADME’ and ‘binding’ 

models, respectively. The manually curated ChEMBL model contained agonism data 

exclusively and had an activity threshold of 665 nM. This resulted in little agreement 

between the predictions of PXR activity for the compounds chosen as a prospective test set 

from our internal library of compounds. Only three of the 14 molecules of the test set were 

predicted to have the same classification across the PXR models. However, both the 

manually curated and the auto-curated ‘ADME’ assays datasets generated similar prediction 

classifications for nine of the molecules in the test set. This is despite the vast threshold 

difference and less than half the amount of data present in the manually curated model 

(Table S3b). Additionally, this finding is interesting considering the specificity of the 

manually curated dataset (agonism assay descriptions) whereas the other models are 

capturing different assay types. An enrichment curve (Figure 4A) suggests that the manually 
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curated and auto-curated ‘ADME’ model performed similarly, though the manually curated 

model suggested it has a slight edge.

The metrics generated from five-fold cross-validation auto-curated and manually curated 

models of hERG were largely similar, the number of actives and total size was nearly the 

same, and the calculated threshold was the same (Table S4a, Figure S3), Unsurprisingly, 

predictions of hERG inhibition were nearly identical between these two models (Table S4b). 

While the predicted classifications were identical with each of the models a small difference 

can be visualized using an enrichment curve (Figure 4B), which appears to favor the auto-

curated model.

To further test the predictive performance of auto-curated datasets on much larger external 

test sets (consisting of thousands of molecules), we utilized data from our previous 

publications for HIV whole cell and reverse transcriptase from NIAID 60 and M. 
tuberculosis whole cell data from literature 58. These datasets were predicted against auto-

curated training models of HIV, whole cell and reverse transcriptase (Table S5, Figure S4) or 

M. tuberculosis, respectively (Table S6, Figure S5). All compounds which overlapped with 

the auto-curated training set were removed from the original published test set, and the 

activity threshold was set as equivalent to the training set.

The auto-curated HIV whole cell training model was able to more accurately predict the 

corresponding testing set (ROC = 0.79) in comparison to the reverse transcriptase model 

(ROC = 0.73) and test set (Table S5, Figure S4). In relation to whole cell validations, most 

of the reverse transcriptase test set metrics are diminished with the exception of ROC and 

specificity (Table S5c, Figure S4d). The M. tuberculosis validation (ROC = 0.77) had the 

highest specificity of all test sets, but all other metrics were comparable to the HIV test sets 

(Table S6, Figure S5).

DISCUSSION

Several of the largest comparisons of machine learning models relevant to drug discovery to 

date have used over 1000 models in numerous studies. For example 1227 datasets from 

ChEMBL version 20 were used to compare naïve Bayes, RF, SVM, logistic regression and 

DNN using random split and temporal validation 39. Morgan fingerprints were used as 

descriptors and validation metrics included MCC and Boltzmann Enhanced Discrimination 

of ROC (BEDROC). The random split used a 70% training and 30% validation; DNN 

appeared to perform better than other methods when BEDROC was used, while RF was the 

best for MCC using random split validation. Temporal validation demonstrated DNN 

outperformed all other methods, but all approaches performed better in the random split 

validation 39. Another study used 1310 assays from ChEMBL version 20 to compare binary 

models generated with SVM, kNN, RF, naïve Bayes, and several types of DNN including 

feed-forward neural networks, convolutional neural networks and recurrent neural networks 

for target prediction. Models were generated with a wide array of molecular descriptors and 

evaluated using ROC-AUC. Feed-forward neural networks were found to perform better 

than all other methods followed by SVM 40. 1067 human targets in ChEMBL version 23 

have been selected to train and test multitask and single task DNN models considering 
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sequence similarities of targets. Multitask learning outperformed single task learning when 

the targets are similar (ROC > 0.8) but when this is not considered or they are diverse then 

single task learning was superior (ROC 0.76– 0.79) 41. ChEMBL version 22 was used to 

extract molecules tested in 758 cell lines which was then used for machine learning with 

SVM and similarity analysis which illustrated comparable data on 10-fold cross-validation 

(accuracy = 0.65) but SVM was superior on external validation 42. ChEMBL version 22 was 

used for compound-target interactions and 1720 targets were selected with at least 10 

compounds. Various molecular fingerprints and machine learning (naïve Bayes and DNN) 

were compared with nearest neighbor approaches. It was demonstrated that combining naïve 

Bayes and nearest neighbors performed the best in terms of recall and in a case study using a 

TRPV6 inhibitor 43. 1360 datasets from ChEMBL version 19 were used to build RF 

regression models with ECFP4 descriptors out of which 440 were reliable and in turn were 

used to create a QSAR-based affinity fingerprint. This was then evaluated for similarity 

searching and biological activity classification and found to be equivalent to Morgan 

fingerprints for similarity searching and outperform Morgan fingerprints for scaffold 

hopping 44. Deep learning has been used to learn the compound protein interactions using 

data from ChEMBL, BindingDB and DrugBank using latent semantic analysis to compare a 

method called DeepCPI to other similar approaches. It was found to perform well with AUC 

ROC of 0.92. Several G-protein coupled receptors (GLP-1R, GCGR, VIPR) were then 

selected for prospective virtual screening and three positive allosteric modulators for 

GLP-1R were identified 45. These examples are representative of the types of comparisons 

performed to date using subsets of ChEMBL.

There has also been considerable discussion about how best to evaluate machine learning 

models. One approach offered the quantile-activity bootstrap to mimic the extrapolation onto 

previously unseen areas of molecular space in order to evaluate 25 sets of targets from 

ChEMBL with multiple machine learning methods. This approach was found to remove any 

advantage of deep neural networks or RF versus using SVM and ridge regression 46. The 

work of Mayr et al. was reanalyzed in another study on the optimal way to benchmark 

studies questioned the AUCROC and instead proposed the area under the precision-recall 

curve should be used as well. SVM were comparable to feed-forward neural networks 47. It 

is important to note that not all computational approaches using machine learning models 

are successful and this likely represents publication bias. One rare example described using 

ChEMBL and REAXYS to generate SVM models used along with pharmacophores and 

generative topographic mapping to select compounds as bromodomain BRD4 binders with a 

2.6 fold increase in hit rate relative to random screening 48.

We have previously described Assay Central® which uses a previously described Bayesian 

method and ECFP6 fingerprints that were made open source 61, 72 and the underlying 

components are therefore publicly available. We have shown that ECFP6 fingerprints 

compare favorably with other descriptors 54. We have compared Assay Central® with other 

machine learning methods for a relatively small number of targets such as drug induced liver 

injury 52, Rat Acute Oral toxicity 53, estrogen receptor 54, 55, androgen receptor 56, GSK3β 
57 Mycobacterium tuberculosis 58, 59, non-nucleoside reverse transcriptase and whole cell 

HIV 60. In general, we have found from our earlier studies that while DNN generally 

performed the best for five-fold cross validation, but with external test sets this superiority 
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was not observed and generally Assay Central® performed comparably with SVM 

classification or DNN. Our evaluation of these algorithms is now expanded to well over 

5000 CHEMBL datasets in this current study making it the largest performed to date. We 

find that Assay Central® compares very well to SVM classification using the commonly 

used five-fold cross-validation when many metrics are compared and visualized using 

several methods in order to assess each algorithm. While this is only one form of leave out 

and it has limitations, it is certainly not as optimistic as leave-one out and it provides a 

useful guide for model utility. Unlike prior studies that have placed their emphasis on 

demonstrating the capabilities of DNN, we saw little or no advantage here where model 

tuning was performed as previously described 76. In this study Assay Central® had a slight 

advantage as the algorithm was used to select the optimal classification cutoff 61 for each of 

the > 5000 datasets was based on that used for Assay Central®. SVM classification seems a 

very strong competitor overall producing comparable model metrics. Ideally a standardized 

threshold would be applied to all datasets, but due to their heterogeneity and uncertainty in 

how that would skew datasets to be extremely unbalanced (i.e. some datasets at 1μM 

threshold would be 90% active and others 2%); so in order to simplify the process, we opted 

for a calculated, albeit non-standardized, threshold. One of the reasons for this performance 

observed by the Bayesian approach may be that in can handle unbalanced datasets well and 

in this study no attempts were made to balance datasets. In such cases it is likely other 

methods would perform better. We have not attempted to understand the effects of different 

algorithms with models of different sizes or degrees of (im)balance. However, dataset 

balancing will also reduce the dataset size and in some cases this would likely make them 

too small to be of use. In our previous multiple dataset comparisons of multiple machine 

learning methods and metrics, we limited our assessment to just eight datasets ranging in 

size from hundreds to hundreds of thousands of molecules curated from different sources 76. 

A rank normalized score across the various model metrics suggested in this case that DNN 

outperformed SVM during external testing with a validation set held out from model 

training 76. The current analysis represents a study that is orders of magnitude larger, 

allowing us to draw statistically significant conclusions. It should also be noted that our prior 

comparisons of leave out validation groups has reported stability in the ROC obtained when 

large datasets are used, whether this is leave one out or 30–50% x100 fold validations 80, 81. 

5-fold cross validation is one way to obtain a snapshot comparison of how the models 

perform.

To our knowledge this also appears the largest scale comparison of such machine learning 

algorithms and metrics that we are aware of. As we have now shown, the ChEMBL data set 

is also statistically different to drugs that are approved based on important molecular 

properties (Figure 3). This is important because it illustrates the structural diversity of 

ChEMBL and also the dataset diversity in general is much larger than previous studies 

performing Machine learning comparisons. This should therefore provide more confidence 

in the algorithm comparison results as it would suggest that we are covering more diverse 

chemical property space. Future studies could certainly evaluate additional descriptors, 

algorithms and machine learning methods for evaluating the resulting models. Such public 

datasets and databases as ChEMBL will likely increase in size and they will continue be 

utilized more extensively to generate machine learning models by many more scientists. In 
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order for this to be the case we need to make such datasets accessible for machine learning 

and this requires some degree of curation. In this study we have demonstrated that minimally 

curated datasets (desalted, neutralized and excluding any problematic compounds) can 

produce useful machine learning models with good statistics across a range of different 

algorithms. We have termed this approach “auto-curation”. We would naturally expect that it 

would be advantageous to expend significant effort to further manually curate datasets 

before using them for prediction, however there may be some value in such minimally 

curated models, and it may be impractical to manual curate thousands of models. While it is 

cost prohibitive and virtually impossible to prospectively predict all of the over 5000 

ChEMBL models we have selected several to demonstrate their potential. We have therefore 

tested the utility of these auto-curated and manually curated models for PXR (Table S3) and 

hERG (Table S4). We noted that the model built with auto-curation (pxr/adme/ic50) 

predicted several of the most active PXR activators including CPI1072, CPI1073, CPI1077. 

These molecules were also scored highly with the manually curated model with the lowest 

cutoff. Similarly, the most potent inhibitors of hERG CPI1071, CPI1223a and CPI1286 were 

also predicted by the auto-curated ChEMBL model, however other compounds were 

similarly scored indicating poor prediction capability. Similar results were seen with 

manually curated models suggesting in these two limited cases (for relatively small 

datasets), the benefits of different curation approaches. We would certainly benefit from a 

much larger evaluation using many more examples to see whether there is a statistically 

relevant improvement in models after curation, however the cost of doing this either 

internally or through an external organization is currently cost prohibitive. In addition, an 

alternative approach to validation is to use several of these auto-curated models to predict 

data that was previously manually curated and used for training or testing models for HIV 

whole cell, HIV reverse transcriptase and Mtb inhibition 58, 60. In all cases the ROC for 

these test sets was > 0.7 (Figure S4 and S5). These results also suggest the potential of auto-

curated models (Figure 4). Efforts are ongoing to develop more advanced auto-curation 

approaches which might bring more of the benefits of full manual curation but with limited 

human input. This work builds on our recent comparisons of different machine learning 

methods and algorithms for various individual projects 52, 53, 55–60, 82 to enable a very large 

scale comparison. It also demonstrates that several widely used (and openly accessible) 

machine learning methods consistently outperform the others at classification. Assay 

Central® uses a Bayesian approach which appears comparable to SVM classification 

(Figure 1B) and these in turn outperform all other algorithms used including the much hyped 

deep learning which is being more widely applied in pharmaceutical research 29. This study 

may be enlightening as it echoes our earlier findings on individual datasets after extensive 

manual curation 52, 53, 55–60, 82. It also goes some way further in using external validation 

with these methods for toxicology and drug discovery properties. Now that we have 

generated such a vast array of over 5000 machine learning models it presents opportunities 

for using them for predicting the potential of new molecules to interact with targets of 

interest or avoiding others (such as PXR and HERG) that may result in undesirable effects. 

We will also be able to compare the prospective ability of all the machine learning methods 

which is also rarely undertaken. This current study therefore represents a step towards using 

large scale machine learning models to assist in creating a drug discovery pipeline1. Our 

approach with models created with ChEMBL could also be taken using other very large 
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databases such as PubChem or even considered by pharmaceutical companies to leverage 

their internal databases.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS USED

AUC area under the curve

DNN Deep Neural Networks

kNN k-Nearest Neighbors

QSAR quantitative structure activity relationships

RF Random forest

ROC receiver operating characteristic

SVM support vector machines
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Figure 1. 
Machine learning algorithm comparisons for ChEMBL datasets across multiple five-fold 

cross-validation metrics based on the rank normalized scores. A) Rank normalized score and 

B) ∆RNS distributions. Truncated violin plots are shown with minimal smoothing to retain 

an accurate distribution representation. The solid central line represents the median with the 

quarterlies indicated. AC = Assay Central (Bayesian), RF = Random Forest, Knn = k-

Nearest Neighbors, SVC = Support Vector Classification, Bnb = Naïve Bayesian, Ada = 

AdaBoosted Decision Trees, DL = Deep Learning.

Lane et al. Page 20

Mol Pharm. Author manuscript; available in PMC 2022 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Machine learning algorithm comparisons for ChEMBL datasets across multiple five-fold 

cross-validation using multiple classical metrics. Distributions are show as either a raw score 

(A) or as a ‘difference from the top’ metric score (B). Truncated violin plots are shown with 

minimal smoothing to retain an accurate distribution representation. The solid central line 

represents the median with the quarterlies indicated. AC = Assay Central (Bayesian), RF = 

Random Forest, Knn = k-Nearest Neighbors, SVC = Support Vector Classification, Bnb = 

Naïve Bayesian, Ada = AdaBoosted Decision Trees, DL = Deep Learning.
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Figure 3. 
Comparison of the distribution of molecular properties for >570,000 unique compounds in 

the ChEMBL datasets versus 3992 compounds in the SuperDrug2 library as an example of 

approved drugs. Median values are highlighted along with statistical analyses.
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Figure 4. 
Comparison of enrichment rates of finding actives in the external test sets for A. PXR and B. 

hERG models using manually curated and auto-curated Assay Central models.
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