Table 1.
Median values for each model and metric color coded by scale.
AC | SVC | ADA | BNB | DL | KNN | RF | |
---|---|---|---|---|---|---|---|
ACC | 0.827 | 0.841 | 0.811 | 0.801 | 0.825 | 0.829 | 0.832 |
AUC | 0.887 | 0.826 | 0.772 | 0.766 | 0.796 | 0.810 | 0.807 |
Cohen’s Kappa | 0.627 | 0.643 | 0.557 | 0.540 | 0.597 | 0.617 | 0.616 |
MCC | 0.636 | 0.646 | 0.563 | 0.544 | 0.604 | 0.619 | 0.620 |
Precision | 0.782 | 0.796 | 0.775 | 0.750 | 0.778 | 0.765 | 0.795 |
Recall | 0.833 | 0.817 | 0.732 | 0.730 | 0.773 | 0.810 | 0.775 |
Specificity | 0.841 | 0.857 | 0.863 | 0.845 | 0.855 | 0.835 | 0.868 |
F1-Score | 0.791 | 0.798 | 0.749 | 0.738 | 0.766 | 0.785 | 0.781 |
AC = Assay Central (Bayesian), rf = Random Forest, knn = k-Nearest Neighbors, svc = Support Vector Classification, bnb = Naïve Bayesian, ada = AdaBoosted Decision Trees, DL = Deep Learning.