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Summary

Acyl-CoA/protein interactions are essential for life. Despite this importance, their global scope 

and selectivity remains undefined. Here we describe CATNIP (CoA/AcetylTraNsferase Interaction 

Profiling), a chemoproteomic platform for the high-throughput analysis of acyl-CoA/protein 

interactions in endogenous proteomes. First, we apply CATNIP to identify acetyl-CoA-binding 

proteins through unbiased clustering of competitive dose-response data. Next, we use this method 

to profile the selectivity of acyl-CoA/protein interactions, leading to the identification of specific 

acyl-CoA engagement signatures. Finally, we apply systems-level analyses to assess the features 

of protein networks that may interact with acyl-CoAs, and use a strategy for high-confidence 

proteomic annotation of acetyl-CoA binding proteins to identify a site of non-enzymatic acylation 

in the NAT10 acetyltransferase domain that is likely driven by acyl-CoA binding. Overall our 
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studies illustrate how chemoproteomics and systems biology can be integrated to understand the 

roles of acyl-CoA metabolism in biology and disease.

In Brief

Levy et al. developed CATNIP, a competitive chemoproteomic approach for analyzing acyl-CoA/

protein interactions. Systems analysis of CATNIP data revealed diverse acyl-CoA/protein 

interaction signatures across the human proteome. Comparing CATNIP and published lysine 

acylation datasets enabled enzymatic and non-enzymatic regulatory functions of acyl-CoAs to be 

annotated.

Keywords

Chemical proteomics; activity-based protein profiling; acetyl-CoA; acetylation; epigenetics; 
metabolism; pharmacology; systems biology; NAT10; malonylation

Introduction

Acyl-CoAs are essential for life. These metabolites serve as fundamental cellular building 

blocks in the biosynthesis of lipids, intermediates in energy production via the TCA cycle, 

and essential precursors for reversible protein acetylation. Each of these functions are 

physically dependent on acyl-CoA/protein interactions, which can regulate protein activity 

via a variety of mechanisms (Fig. 1). For example, the interaction of acyl-CoAs with lysine 

acetyltransferase (KAT) active sites allows them to serve as enzyme cofactors or, 

alternatively, competitive inhibitors (Dyda et al., 2000; Montgomery et al., 2015). Binding of 

acyl-CoAs to the allosteric site of pantothenate kinase (PanK) enzymes can exert positive or 

negative effects on CoA biosynthesis (Hong et al., 2007). Acyl-CoAs can also non-

enzymatically modify proteins, a covalent interaction that often causes enzyme inhibition 

(Kulkarni et al., 2017; Wagner et al., 2017). These examples illustrate the ability of acyl-

CoA signaling to influence biology and disease. However, the global scope and selectivity of 

these metabolite-governed regulatory networks remains unknown.

A central challenge of studying acyl-CoA/protein interactions is their pharmacological 

nature (Kulkarni et al., 2019). These transient binding events are invisible to traditional next-

generation sequencing and proteomic methods. To address this, our group recently reported 

a competitive chemical proteomic (“chemoproteomic”) approach to detect and analyze acyl-

CoA/protein binding (Montgomery et al., 2016; Montgomery et al., 2014). This method 

applies a resin-immobilized CoA analogue (Lys-CoA) as an affinity matrix to capture CoA-

utilizing enzymes directly from biological samples. Pre-incubating proteomes with acyl-

CoA metabolites competes capture and allows their relative binding affinities to enzymes of 

interest to be assessed. In our initial application of this platform we studied the susceptibility 

of KATs to metabolic feedback inhibition by CoA, evaluating competition by quantitative 

immunoblot (Montgomery et al., 2016). The signal amplification afforded by 

immunodetection enables low abundance KATs to be readily quantified, but limits broad 

profiling or discovery applications. We reasoned such applications could be enabled by 

integrating CoA-based affinity reagents with i) multidimensional chromatographic 
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separation, to efficiently sample rare KAT enzymes, ii) quantitative LC-MS/MS proteomics, 

for unbiased identification of CoA-interacting proteins, and iii) systems analysis of the acyl-

CoA-binding proteins identified, for data-driven analysis of putative interaction networks. 

We term this approach CATNIP (CoA/AcetylTraNsferase Interaction Profiling). Here we 

describe the development and application of CATNIP to globally analyze acyl-CoA/protein 

interactions in endogenous human proteomes. First, we demonstrate the ability of CATNIP 

to identify acetyl-CoA-binding proteins through unbiased clustering of competitive dose-

response data. Next, we apply this method to profile diverse protein-CoA metabolite 

interactions, enabling the identification of biological processes susceptible to altered acetyl-

CoA levels. Finally, we utilize systems-level analyses to assess the features of protein 

networks that may interact with acyl-CoAs and develop a strategy for high-confidence 

annotation of direct acetyl-CoA binding proteins. Overall our studies illustrate the power of 

integrating chemoproteomics and systems biology analysis, and provide a resource for 

understanding the signaling roles of acyl-CoAs in biology and disease.

Results

Validation of CATNIP for the global study of acyl-CoA/protein interactions

In order to deeply sample acyl-CoA/protein interactions on a proteome-wide scale, we first 

integrated CoA-based protein capture methods with LC-MS/MS (Fig. 2a). In this workflow, 

whole cell extracts are first incubated with Lys-CoA Sepharose. This affinity matrix enables 

active site-dependent enrichment of many different classes of CoA-binding proteins, 

(Montgomery et al., 2016) making it ideal for broad profiling studies. Next, enriched 

proteins are subjected to tryptic digest and analyzed using MudPIT (multidimensional 

protein identification technology), a proteomics platform that combines strong cation 

exchange and C18 reverse phase chromatography to pre-fractionate tryptic peptides, 

followed by ionization and data-dependent MS/MS (Washburn et al., 2001b). The separation 

afforded by this approach significantly decreases sample complexity, allowing the 

identification of rare, low abundance peptides from complex proteomic mixtures. To 

facilitate the identification of acyl-CoA/protein interactions, competition experiments are 

performed in which proteomes are pre-incubated with a CoA metabolite prior to capture 

(Leung et al., 2003). Decreased enrichment in competition samples compared to controls (as 

assessed by quantitative spectral counting) signals a metabolite-protein interaction. These 

interacting proteins can then be further classified into pharmacological or biological 

networks using either conventional metrics (fold-change, gene ontology, etc) or systems-

based analysis tools.

As an initial model, we explored the utility of CATNIP to globally profile acetyl-CoA/

protein interactions in unfractionated HeLa cell proteomes. Proteomes were pre-incubated 

with acetyl-CoA or vehicle (buffer) control, followed by enrichment using Lys-CoA 

Sepharose. These experiments assessed competition at 3, 30, and 300 μM acetyl-CoA, which 

spans the physiological concentration range of acetyl-CoA in the cytosol and mitochondria. 

Protein capture in each condition was quantified using distributed normalized spectral 

abundance factor (dNSAF), a label-free metric that normalizes spectral counts relative to 

overall protein length (Fig. S1a-c, Table S1) (Zhang et al., 2015). Each condition was 
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analyzed in triplicate, constituting 12 experiments, >144 hours of instrument time, and over 

1.1 million non-redundant peptide spectra collected. We limited our analysis to high-

confidence protein identifications (≥4 spectral counts in vehicle [0 μM] sample). The capture 

of Uniprot annotated CoA-binding proteins or members of AT complexes (termed ‘AT 

interactors’) did not correlate with overall protein abundance or gene expression (Nagaraj et 

al., 2011), consistent with the ability of chemoproteomic methods to sample functional 

activity metrics (e.g. unique pharmacology, active-site folding/conformation, integration into 

complexes, posttranslational modification) rather than raw quantity (Fig. S1d-i) (Moellering 

and Cravatt, 2012).

To analyze acetyl-CoA binding in a systematic manner throughout the proteome, we first 

grouped proteins into subsets based on their dose-dependent competition profiles. 

Chemoproteomic capture data from 0, 3, 30, and 300 μM acetyl-CoA competition was 

transformed, plotted in two dimensions, and subjected to t-SNE clustering (van der Maaten 

and Hinton, 2008). Eight protein clusters were identified, each of which exhibited a distinct 

dose-dependent competition signature (Fig. 2b-c, Fig. S2a-b, Table S1). The capture of 

proteins within clusters 1–3 were antagonized by acetyl-CoA in a dose-dependent fashion. 

Proteins in cluster 1 displayed hypersensitivity to acetyl-CoA competition, while proteins in 

clusters 2 and 3 exhibited moderate and partial competition, respectively. The remaining 

clusters exhibited more complicated capture profiles (clusters 4–8, Fig. 2c, Fig. S2b). To 

determine which of these competition signatures were most characteristic of acetyl-CoA 

binding, we first analyzed each cluster for the presence of known CoA-binding proteins and 

AT interactors. Cluster 1, composed of proteins whose capture is hypercompetitive to pre-

incubation with acetyl-CoA, contains only 7% of the total proteins identified in this 

experiment. However, 25% of proteins in this cluster are annotated CoA-binding proteins 

and AT interactors, a disproportionate enrichment (Fig. 2d, Fig. S2c). Clusters 2 and 3 were 

also enriched in annotated CoA binders and AT interactors, while all other subsets were not 

(Fig. 2d). Consistent with this specific enrichment, assessments of background using a 

capped pulldown resin found 88% of background proteins identified lie in clusters 4–8 

(Table S1). Examining our entire dataset, we found the total number of CoA-binding 

proteins and AT interactors competed 2-fold by acetyl-CoA) almost doubled going from 3 to 

30 μM, but was only modestly increased by higher concentrations of competitor (Fig. 2e). 

Proteins in clusters 1 and 2 exhibit almost complete loss of capture at 30 μM acetyl-CoA 

(Fig. 2c). This suggests the occupancy of most acetyl CoA-binding sites accessible to our 

method are saturated at this intermediate concentration (~30 μM), in line with literature 

measurements of binding affinity and Michaelis constants (Scheer et al., 2011). Clusters 1 

and 2 include proteins that bind to acetyl-CoA directly (CREBBP, NAA10), allosterically 

(PANK1), and indirectly via protein-protein interactions (NAA25, JADE1; Table S1). This 

indicates that proteins with disparate modes of acetyl-CoA interaction can display similar 

dose-dependent competition signatures. Gene ontology analysis of annotated CoA binders in 

clusters 1 and 2, whose enrichment was hypercompetitive to acetyl-CoA pre-incubation, 

revealed an enrichment in terms related to histone and N-terminal acetyltransferases as well 

as CoA biosynthetic enzymes (Fig. 2f, Fig. S2d-e). The strong enrichment of KATs is 

consistent with their propensity to interact with the bisubstrate Lys-CoA capture agent (Lau 

et al., 2000). A similar analysis of proteins in cluster 3, which exhibits partial competition by 
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acetyl-CoA, identified a disproportionate number of mitochondrial CoA-binding enzymes 

(Fig. S2f). This decreased sensitivity to acyl-CoA competition may reflect evolutionary 

adaptation to subcellular metabolite concentrations, as acetyl-CoA is found at millimolar 

concentrations in mitochondria (Chen et al., 2016). Overall, these studies validate the ability 

of CATNIP to detect bona fide acetyl-CoA/protein interaction signatures and establish key 

parameters for studying the pharmacology of CoA metabolites.

Applying CATNIP to define the unique pharmacological signatures of acetyltransferase 
enzymes

In addition to acetyl-CoA (1), cells produce a physiochemically diverse range of CoA 

metabolites whose concentrations directly reflect the metabolic state of the cell. Many of 

these species make regulatory interactions with proteins, including the long chain fatty acyl 

(LCFA) palmitoyl-CoA, a classic feedback inhibitor of acetyl-CoA carboxylase, (Greenspan 

and Lowenstein, 1968) short chain fatty acyl (SCFA) butyryl-CoA, which can potently 

inhibit KATs or be used as a substrate, (Carrer et al., 2017; Montgomery et al., 2015) and 

negatively charged succinyl-CoA, which can covalently inhibit many mitochondrial enzymes 

(Kulkarni et al., 2017; Wagner et al., 2017). However, despite their physiological relevance, 

few studies have interrogated the comparative pharmacology of acyl-CoA/enzyme 

interactions. We hypothesized that the ability of CATNIP to report on the binding affinity of 

ligands relative to Lys-CoA could address this gap and enable the generation of 

pharmacological fingerprints of acyl-CoA-protein interactions across the proteome. To 

explore this hypothesis, we performed competitive chemoproteomic capture experiments in 

the presence of additional metabolites including: i) CoA (2), an acetyltransferase feedback 

inhibitor, ii) butyryl-CoA (3), a short chain fatty acyl-CoA, iii) crotonyl-CoA (4), a SCFA-

CoA containing a latent acrylamide electrophile, iv) acetic-CoA (5), a stable analogue of 

malonyl-CoA, and v) palmitoyl-CoA (6), a LCFA-CoA we have previously shown can 

potently inhibit KATs in vitro (Fig. 3a, Table S2). For these experiments, CoA metabolites 

were equilibrated with proteomes (1 h) prior to Lys-CoA capture. A dosage of 30 μM was 

selected to enable a comparison of each ligand’s competition profile to that of acetyl-CoA, 

which showed substantial interaction with proteins in clusters 1–3 at this concentration. For 

palmitoyl-CoA a lower concentration (3 μM) was used, in order to ensure solubility and 

accurately reflect the limited free (non-protein/membrane bound) LCFA-CoA present in 

cells.

As an initial rough measure of acyl-CoA selectivity, we performed a global analysis of 

proteins displaying robust interaction (QPROT log2FC ≤ −2) with competitors. Evaluating 

1757 proteins quantified in Lys-CoA enrichments, we found 1566 (89%) were ≥4-fold 

competed by at least one CoA/acyl-CoA metabolite (1-6, Fig. 3b, Table S2). 1170 proteins 

(66%) displayed significant competition by one or more ligands using a more stringent 

statistical cutoff (QPROT FDRdown ≤0.1). In general, the majority of proteins found to 

interact with acetyl-CoA (1) also displayed competition by 2-6, suggestive of ligand-binding 

promiscuity amongst CoA-binding proteins. Examining physiochemically distinct ligands 

3-6, a handful of selective interactions were observed for each acyl-CoA (Fig. 3c). Notably, 

targets of butyryl-CoA (3) and 4-6 showed substantial overlap. This may reflect butyryl-

CoA’s metabolic stability in lysates, or ability to make high affinity interactions with many 
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proteins at the concentration applied. To compare the magnitude of protein-ligand 

interactions, we plotted the competition (log2 fold change, competitor v. control) of each 

individual ligand relative to acetyl-CoA (Fig. 3d). Most proteins interacted more strongly 

with acetyl-CoA (1) than other ligands, with the exception of butyryl-CoA (3). This is 

consistent with the fact that acetyl-CoA (1) and butyryl-CoA (3) exhibited the greatest 

number of unique interaction partners in our comparative analysis. This promiscuous 

binding extended to KATs (Fig. S3). Notable exceptions were HADHB, interacted only with 

butyryl-CoA, and ECHS1, which interacted only with crotonyl-CoA (Table S2). HADHB 

encodes the thiolase subunit of the mitochondrial trifunctional protein, which is involved in 

the oxidation of fatty acids >8 carbons long (Middleton, 1994). Its ability to specifically 

interact with butyryl-CoA, but not acetyl-CoA, could represent a mechanism allowing cells 

to sense blockade of the terminal steps of SCFA-CoA catabolism, triggering feedback 

inhibition of fatty acid oxidation. ECHS1 encodes an acyl-CoA dehydrogenase, and was the 

only protein found to be specifically competed by crotonyl-CoA. This is consistent with the 

substrate specificity of this enzyme, which shows rapid turnover of crotonyl-CoA relative to 

longer chain enoyl-CoA thioesters (Yamada et al., 2015). To facilitate a more granular 

analysis, we grouped CoA-binding proteins by biological function or fold and compared 

their quantitative metabolite-binding signatures upon interaction with 1-6. Histone, lysine, 

and GNAT acetyltransferases displayed a diversity of ligand binding signatures (Fig. 3e). For 

example, the capture of enzymes such as CREBBP and NAT10 was strongly competed by 

multiple metabolites, while others (KAT8 and HAT1) displayed selectivity for the enzyme 

cofactor acetyl-CoA (Fig. 3e). Selectivity did not correlate with enzyme function/fold, 

capture abundance, or acetyl-CoA interaction cluster (Fig. 3e, Table S3), suggesting this 

metabolite interaction fingerprint represents a unique and intrinsic feature of individual 

enzymes. The promiscuous ligand binding of CREBBP is notable, as this KAT and its 

homologue EP300 have been found to utilize several acyl-CoAs as alternative cofactors 

(Chen et al., 2007; Sabari et al., 2018). The PANK family of proteins catalyze the 

phosphorylation of pantothentate (vitamin B5) to phosphopantothenate, which constitutes a 

key step in CoA biosynthesis. Previous biochemical studies have found PANK1 to be 

allosterically inhibited by acetyl-CoA but not CoA, while PANK2 is strongly inhibited by 

both ligands (Rock et al., 2002; Zhang et al., 2006). We found acetyl-CoA interacted 

strongly with each enzyme but did not observe substantial disparity between CoA binding to 

the two enzyme isoforms. This may reflect differential binding of metabolites to these 

enzymes in the complex proteomic milieu compared to biochemical assays or, alternatively, 

a limitation of our single concentration measurements. Overall, these studies validate the 

ability of chemoproteomics to study acyl-CoA/protein interactions and provide an initial 

snapshot of their proteome-wide selectivity.

Evaluating the dynamic activity of acetyltransferases in response to metabolic 
perturbation

Coenzyme A (2) is one of the most abundant metabolites in cells. In addition to functioning 

as an obligate precursor for acyl-CoAs, it also serves as a potent feedback inhibitor AT 

enzymes. Previously, we used quantitative immunoblotting of Lys-CoA capture experiments 

to probe the sensitivity of eight ATs to product inhibition by testing their relative binding to 

acetyl-CoA (cofactor) and CoA (inhibitor) (Montgomery et al., 2016). This inspired us to 
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apply CATNIP to extend this comparison proteome-wide. Capture experiments were 

performed in the presence of escalating doses of CoA (3, 30, 300 μM), transformed, and 

clustered using an identical pipeline as in our acetyl-CoA binding experiments above (Table 

S4). Two clusters (3 and 8) exhibited readily interpretable dose-dependent competition 

profiles, with several additional clusters (1, 2, and 5) displaying hypersensitivity at low 

concentrations (3 μM) of CoA (Fig. S4a-b). Dose-dependent cluster 3 contained KAT2A, 

CREBBP, and PANK2, all of whom have been shown to be biologically or biochemically 

susceptible to metabolic feedback inhibition by CoA (Hong et al., 2007; Marino et al., 2014; 

Tanner et al., 2000). Further examination of this cluster revealed three proteins that were 

most sensitive to CoA, exhibiting >50% loss of capture in the presence of 3 μM ligand and 

>80% loss of capture in the presence of 30 μM ligand: ACLY, NAT6, and NAT10 (Fig. 4a). 

The unusually strong CoA interaction profile of these three proteins was distinct from that of 

other proteins in the cluster and within the KAT superfamily, most of which are competed 

much more efficiently by acetyl-CoA (Fig. 4b, Fig. S4c). The binding of ACLY to both CoA 

and acetyl-CoA is consistent with the reversible activity of the enzyme, which has been 

previously observed in biochemical assays (Inoue et al., 1968). NAT6 (NAA80) is a recently 

de-orphanized enzyme which has been determined to acetylate the N-terminus of actin, 

whose metabolic sensitivity has not been explored (Drazic et al., 2018). NAT10 is an RNA 

acetyltransferase that has been found to catalyze acetylation of cytidine in ribosomal, 

transfer, and messenger RNA, forming the minor nucleobase N4-acetylcytidine (ac4C) 

(Arango et al., 2018; Ito et al., 2014; Sharma et al., 2015). The identification of NAT10-CoA 

interactions by CATNIP is consistent with our previous studies, which found NAT10 binds 

acetyl-CoA and CoA with similar affinities and may be susceptible to metabolic feedback 

inhibition (Montgomery et al., 2016). Of note, no related N4-acylations of cytidine (e.g. 

butyrylation) have been identified in RNA, suggesting NAT10 may also be subject to 

inihibition by SCFA- and LCFA-CoAs.

To gain further insight into the metabolic regulation of NAT10, we determined the source of 

the acetate group post-transcriptionally introduced into ac4C in proliferating cancer cell 

lines (Fig. 4c). Treatment of cells with isotopically-labeled acetyl-CoA precursors, followed 

by RNA digest and LC-MS/MS analysis revealed the majority of NAT10-dependent cytidine 

acetylation is derived from glucose (Fig. 4d). Since the production of glucose-derived acetyl-

CoA in human cells is highly dependent on ACLY activity (Wellen et al., 2009), we next 

examined how stable knockout of ACLY impacted ac4C levels in RNA. Analysis of wild-

type and ACLY knockout human glioblastoma cells (Zhao et al., 2016) revealed similar 

levels of ac4C in total RNA (Fig. 4e). However, LC-MS analysis of poly(A)-enriched RNA 

fractions from these cell lines indicated an ACLY-dependent decrease in ac4C. Of note, the 

relative abundance of ac4C is ~8-fold lower in oligo(dT)-enriched RNA than total RNA, 

indicating additional work will be needed to understand the physiological-relevance of this 

finding. ACLY-dependent deposition is also observed for another acetyl-CoA derived RNA 

nucleobase, 5-methoxycarbonylmethyl-2-thiouridine (mcm5S2U), whose production is 

catalyzed by the AT enzyme Elp3 (Fig. S4d-e) (Lin et al., 2019). The observation that ac4C 

and mcm5s2U are sensitive to the metabolic state of the cell is consistent with the findings 

of Balasubramanian and coworkers, who reported that starvation conditions reduced the 

levels of these two modifications transfer RNA (van Delft et al., 2017). The observation that 
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ACLY perturbation influences the acetylation of oligo(dT)-enriched RNA, but not total 

RNA, suggests inhibitory CoA/acyl-CoAs may interact distinctly with different functional 

forms of NAT10. These studies illustrate the ability of CATNIP to link acetylation events to 

the metabolic state of the cell.

Unbiased CATNIP analysis reveals annotation and mechanistic features of acyl-CoA-
binding

The annotation of the cellular acyl-CoA binding proteome has never been directly assessed 

using experimental methods. Therefore, we next set out to develop a workflow for analysis 

of CATNIP data that could enable the de novo identification of known acyl-CoA dependent 

enzymes and identify uncharacterized proteins that share these properties. To differentiate 

acyl-CoA interacting proteins from background, our initial criteria were: 1) significant 

competition (QPROT log2FC ≤ −2 and FDR ≤ 0.05) of enriched proteins by at least one 

CoA ligand, and 2) absence of enrichment in the ‘CRAPome’ common contaminant 

database (Fig. 5a) (Mellacheruvu et al., 2013). Of 1757 proteins detected in Lys-CoA 

Sepharose capture experiments, 650 (37.0%) passed these cut-offs (Table S2), including the 

majority of annotated ATs that were enriched by Lys-CoA (Fig. 5b). Acetyltransferases not 

identified were mostly found to be poorly expressed in HeLa cells by RNA Seq (Fig. 5b) 

(Nagaraj et al., 2011) and did not display obvious structural similarities in GNAT consensus 

elements (Fig. S5a) (Dyda et al., 2000). To examine whether unique patterns of acyl-CoA 

binding in this filtered dataset are associated with distinct biological processes, we further 

analyzed proteins using Topological Data Analysis (TDA) (Lum et al., 2013). TDA 

functions as a geometric approach that can be used to identify shared properties of complex 

multidimensional datasets that may not be apparent by other methods, and has previously 

been used to detect biologically-relevant modules in protein complexes from 

immunoprecipitation LC-MS/MS data (Sardiu et al., 2015). Therefore, we applied TDA to 

analyze the multidimensional CoA metabolite competition profiles for each protein in our 

filtered subset, and then annotated the TDA clusters with enriched pathways identified by 

gene ontology analysis using DAVID (https://david.ncifcrf.gov) and ConsensusPathDB 

(http://cpdb.molgen.mpg.de/). To further increase stringency we required competition with 

≥3 CoA metabolites (248 proteins; Table S2). Applying this analysis revealed that histone 

acetyltransferases, which bind to CoAs directly, form a distinct cluster relative to PANK2 

and PANK3, which are allosterically regulated by CoA metabolites. This analysis also 

identified many proteins involved in RNA metabolism and cell cycle whose association with 

CoA metabolites has not been previously characterized (Fig. 5c). This suggests that multiple 

proteins involved in these processes may directly or indirectly bind to acyl-CoAs, and 

potentially be subject to differential regulation by levels of CoA metabolism. Moreover, 

these studies demonstrate the utility of TDA for clustering and visual representation of 

ligand-protein interaction networks.

Next, we sought to examine the annotation of the human CoA-binding proteome. 

Specifically, we wished to incorporate additional criteria allowing us to differentiate proteins 

that directly bind to CoA metabolites, such as ATs, from proteins that are indirectly captured 

via protein-protein interactions, such as non-catalytic members of AT complexes. Such an 

approach would potentially provide a pipeline for novel AT discovery, as well as insights 
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into how well the CoA-binding proteome is currently characterized. To accomplish this, we 

first classified proteins in our statistically significant filtered subset based on their dose-

dependent acetyl-CoA competition profiles determined above, whose clustering we found 

could enrich known ATs and CoA-binding proteins (Fig. 2b, d). Approximately 7% (42/650) 

of proteins showing statistically significant competition by any single CoA metabolite also 

resided in cluster 1, whose capture is hypersensitive to competition by acetyl-CoA (Fig. 5d, 

Table S5). This included 12 direct CoA-binders, 14 AT-interactors, and 16 proteins whose 

interaction with CoA metabolites had not been previously characterized. Amongst this 

protein subset, terms related to histone acetyltransferases and CoA biosynthesis were clearly 

differentiated as the most highly enriched biological process (Fig. S5d, Table S5). To 

differentiate between direct and indirect CoA interactions, we first explored the use of high 

salt washes to disrupt proteins captured through protein-protein interactions. Salt sensitivity 

data was obtained for 20 of the 42 proteins in our stringent subset, nine of whose capture 

was insensitive to ionic strength. Amongst these were 6 proteins whose interaction with CoA 

had not been characterized. Notably, most of these proteins were found to contain either 

adenine cofactor (SAM, NADP+) or RNA binding sites, consistent with potential for capture 

by Lys-CoA Sepharose (Table S5). As an orthogonal measure, we further investigated these 

42 proteins for sites of high stoichiometry acetylation. We hypothesized this criteria may 

provide identify functional binding events, since acyl-CoA interaction can underlie both 

enzymatic and non-enzymatic autoacylation. Using a recently published dataset, (Hansen et 

al., 2019) we identified 6 out of 42 proteins that contain a modified lysine lying near the top 

10% of all acetylation stoichiometries measured in HeLa cells (>0.17% stoichiometry, Fig. 

5d). Five of these proteins were Uniprot annotated CoA binders (ACLY, CREBBP, HADH, 

NAT10, NAA10), while one was a member of an AT complex (NAA15). This analysis 

suggests that a multi-pronged approach assessing i) statistically significant competition, ii) 

dose-response clustering, iii) acetylation stoichiometry, and iv) stringent washing can 

meaningfully annotate the CoA-binding proteome, with the major caveat that additional 

stringency will also lead to filtering of many ‘true’ positives.

Finally, we asked whether CATNIP could help identify acyl-CoA binding events that drive 

non-enzymatic acylation. Our previous studies have found lysine malonylation and 

succinylation serve as markers of non-enzymatic acylation, due to the high reactivity of their 

acyl-CoA precursors (Kulkarni et al., 2017). This led us to hypothesize that if an enzyme 1) 

binds a malonyl-CoA analogue and 2) possesses overlapping malonylation and high 

stoichiometry acetylation sites, then acyl-CoA binding may be responsible for driving non-

enzymatic acylation. Examining the six proteins above, only one (NAT10) exhibited 

statistically significant competition by the malonyl-CoA surrogate acetic-CoA. In line with 

this, while 5/6 of these proteins were found to harbor sites of lysine malonylation, (Colak et 

al., 2015) only in the case of NAT10 were the high stoichiometry acetylation and 

malonylation sites found on the same residue (K426). This lysine lies within NAT10’s 

GNAT domain and is highly conserved from eukaryotes to bacteria (Fig. S5f). Analyzing the 

position of K426 using the structure of a NAT10 orthologue shows it lies proximal to the 

acetyl-CoA binding site (Chimnaronk et al., 2009), potentially priming it for non-enzymatic 

acetylation (Fig. 5f). Consistent with this, we find FLAG-NAT10 overexpressed in HEK-293 

cells is readily malonylated upon incubation with malonyl-CoA (Fig. 5f; note that we used 
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malonyl- and not acetyl-CoA to decouple enzymatic and non-enzymatic mechanisms, as no 

known ATs use malonyl-CoA as a cofactor). Such a non-enzymatic mechanism would 

reconcile the paradoxical finding that NAT10 undergoes functional lysine acetylation in its 

active site (Cai et al., 2017), but its only biochemically validated substrates are RNA 

cytidine residues. Further work will be needed to evaluate what impact K426 malonylation 

has on NAT10 activity, as well as the global extent to which malonylation is dependent on 

specific malonyl-CoA/protein interactions versus solvent accessibility of lysine residues. 

These studies demonstrate how CATNIP may be interfaced with PTM analyses to identify 

functionally-relevant acyl-CoA/protein interactions.

Discussion

Chemoproteomics has recently emerged as a powerful method for the interrogation of 

metabolite signaling. Here we describe the development and application of CATNIP, a 

systems chemoproteomic approach for the high-throughput analysis of acyl-CoA/protein 

interactions. We first validate the ability of CATNIP to identify protein subsets enriched in 

CoA-binding, and then apply this method to probe the selectivity of acyl-CoA/protein 

interactions, visualize acyl-CoA interactive biological networks, and characterize the 

interplay between direct acyl-CoA binding and covalent lysine acylation. These studies 

highlight the ability of CATNIP to identify biological processes conditionally regulated by 

acetyl-CoA and provide a novel hypothesis generation tool for the functional interrogation 

of metabolite-protein interactions in biology and disease.

To explore the utility of CATNIP for discovery applications, we developed an unbiased 

workflow to applying chemoproteomic data for the de novo annotation of acetyl-CoA 

binding proteins. Critical to this endeavor was the integration of CATNIP and acetylation 

stoichiometry datasets, (Hansen et al., 2019) which allowed the identification of a protein 

subset highly enriched in CoA-binders and AT interactors that was obscure to either method 

alone (Fig. S4d). An interesting finding was the absence of any ‘unexpected interactors,’ i.e. 

unannotated proteins with CATNIP profiles indicative of CoA-binding, within this highly 

curated subset. This suggests the current CoA-binding proteome is well-annotated, with the 

caveat that this conclusion is entirely dependent on the unique workflow applied here, and 

therefore does not preclude the discovery of novel acyl-CoA-binding proteins by new 

experimental methods (e.g. structurally distinct capture probes) or computational analyses. 

With regards to the latter, it is important to note that many authentic acyl-CoA-binding 

proteins sampled by CATNIP do not exhibit high stoichiometry acetylation sites (e.g. 

ATAT1) or fall outside of dose-dependent cluster 1 (e.g. KAT2A). Our studies demonstrate 

how acetylation stoichiometry may serve as a useful guide to high-confidence annotation of 

acyl-CoA binding, while simultaneously raising the possibility of mining additional CoA 

binders and AT interactors from CATNIP data.

Acyl-CoA/protein interactions can play many potential functional roles (Fig. 1). Inspired by 

recent chemoproteomic studies showing that inositol polyphosphate binding can trigger non-

enzymatic protein pyrophosphorylation, (Wu et al., 2016) we wondered whether acyl-CoA 

binding may similarly be a major driver of non-enzymatic lysine acylation. Examining the 

lysine malonylation, a putative non-enzymatic PTM derived from the electrophilic 
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metabolite malonyl-CoA, (Kulkarni et al., 2017) we identified NAT10 as a unique case in 

which these PTMs could be correlated with proximity to an acyl-CoA binding site. However, 

this approach is far from predictive and, even in our curated dataset of high confidence acyl-

CoA-binding proteins, found many sites of malonylation mapping far from the annotated 

active site (Fig. 5e, Fig. S5f) (Colak et al., 2015). Although additional studies are needed, 

our data suggests for many non-enzymatic acylations factors independent of acyl-CoA 

binding affinity such as lysine nucleophilicity, surface accessibility, and exposure to high 

local concentrations of electrophilic CoAs may be important determinants for covalent 

modification.

Finally, it is important to note some limitations of our current method, and steps that may be 

taken to optimize it for future applications. To facilitate the development of CATNIP, our 

initial study employed ion trap mass spectrometers for protein identification. Transitioning 

CATNIP to higher resolution instruments will be important for improving the throughput 

and quantitative applications of our method. An important characteristic of CATNIP is that it 

reports on relative, rather than absolute, binding affinities due to differences in the inherent 

binding affinity of individual proteins to the Lys-CoA capture matrix. This means CATNIP 

is best suited to gauging the comparative pharmacology of individual acyl-CoA binding 

proteins (i.e. for a series of ligands, which ones interact strongly with protein of interest), 

rather than rank order comparisons of absolute ligand-protein binding affinity across the 

proteome. Such biases are an intrinsic feature of chemoproteomic methods and extend even 

to label-free approaches such as LiP-MS and CETSA, (Piazza et al., 2018; Sridharan et al., 

2019). Future studies of acyl-CoA/protein interactions may benefit from the integration of 

multiple approaches. Clustering analysis indicated that many CoA binders and AT 

interactors display similar competition profiles, implying CATNIP as currently constituted is 

not able to discriminate between direct and indirect interactors. In addition to using 

acetylation stoichiometry as an orthogonal measure for the de novo assignment of direct 

acyl-CoA binding, it may be possible to conclusively distinguish indirect binding based on 

more intricate studies of ionic competition (i.e. high salt) or by complementing matrix-based 

pulldown with covalent capture using clickable photoaffinity probes (Montgomery et al., 

2014). Alternatively this may be solved by optimized computational analysis, in which the 

proteins identified from multiple competitive ligands are compared using topological scoring 

(TopS) (Sardiu et al., 2019) to determine enrichment of proteins and direct interactions from 

a range of concentrations or ligand types. Although we focused here on studying the 

interactions of proteins with endogenous acyl-CoA metabolites, recently multiple classes of 

drug-like KAT inhibitors have been reported, (Baell et al., 2018; Lasko et al., 2017) and we 

anticipate our method will be immediately useful for understanding the pharmacological 

specificity and potency of these small molecule chemical probes. Such studies are underway 

and will be reported in due course.

STAR METHODS

LEAD CONTACT

Requests for resources and reagents should be directed to and will be fulfilled by the Lead 

Contact, Jordan L. Meier (jordan.meier@nih.gov)
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MATERIALS AVAILABILITY STATEMENT

All unique reagents generated in this study are available from the Lead Contact with a 

completed Materials Transfer Agreement.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture—HeLa S3 (female) and HEK-293T (female) cells were obtained from ATCC. 

LN229 (female; ACLY WT and ACLY KO) cells were a kind gift of K. Wellen (University 

of Pennsylvania). HeLa S3 and HEK-293T were cultured at 37 °C under 5% CO 2 

atmosphere in a growth medium of DMEM supplemented with 10% FBS and 2 mM 

glutamine, while LN229 cells were cultured at 37 °C under 5% CO 2 atmosphere in a growth 

medium of RPMI supplemented with 10% FBS and 2 mM glutamine. All cell lines were 

routinely tested for mycoplasma contamination.

METHOD DETAILS

General synthetic methods—Amine-functionalized Lys-CoA-Ahx was synthesized as 

described previously (Montgomery et al., 2016). Acetic-CoA was synthesized from 2-

bromoacetic acid and CoA in a single-step as described previously (Montgomery et al., 

2014). Prior to utilization all acyl-CoAs were analyzed for purity by LC-MS and re-purified 

via HPLC if necessary. CoAs were quantified using the molar extinction coefficient (ε) for 

Coenzyme A of 15, 000 M−1cm−1 at λmax of 259 nm. Analytical analyses of Lys-CoA and 

all acyl-CoAs were performed using a Shimadzu 2020 LC-MS system.

Preparation of Lys-CoA Sepharose and capped resins—Lys-CoA Sepharose (1) 

was prepared using NHS-Activated Sepharose 4 Fast Flow resin essentially according to the 

manufacturer’s protocol (GE Healthcare Life Sciences, Instructions 71–5000-14 AD) 

(Montgomery et al., 2016). Briefly, amine-functionalized Lys-CoA-Ahx was prepared as a 

3.4 mM solution in PBS. Resin was washed with cold 1 mM HCl prior to coupling, before 

addition of the ligand solution at a ratio of 2:1 resin:ligand volume. The pH was adjusted to 

~7–8 by addition of 20x PBS, and the mixture was then rotated at 4°C overnight. The resin 

was pellet ed at 1400 rcf for 3 minutes, and the supernatant was discarded prior to addition 

of 3 resin volumes of 0.1 M Tris-HCl [pH 8.5], and the mixture was rotated for 3 hr at room 

temperature. Resin was washed 3x each with alternating solutions of 0.1 M Tris-HCl [pH 

8.5] and 0.1M Sodium Acetate, 0.5 M NaCl [pH 4.5] (6 washes total). Capped resins were 

prepared analogously but substituting 1,6-hexanediamine for Lys-CoA-Ahx. Resins were 

stored as a 33% solutions in aqueous 20% EtOH at 4°C.

Preparation of HeLa cell lysates—HeLa cells used to prepare proteomic extracts were 

grown by Cell Culture Company (formerly National Cell Culture Center, Minneapolis, MN). 

Proteomes were prepared by re-suspending cell pellets in ice-cold PBS containing protease 

inhibitor cocktail (EDTA-free, Cell Signaling Technology # 5871S). Samples were then 

lysed by sonication using a 100 W QSonica XL2000 sonicator (3 × 1 s pulse, amplitude 1, 

60 s resting on ice between pulses). Lysates were pelleted by centrifugation (20,817 r.c.f. x 

30 minutes, 4 °C) and quantified using the Qubit 4.0 Fluorometer and Qubit Protein Assay 

Kit. Quantified proteomes were diluted and stored at −80 °C in between uses.
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Procedure for CATNIP affinity capture, competition and LC-MS/MS studies—
Affinity capture using Lys-CoA Sepharose was carried out essentially as previously reported 

(Montgomery et al., 2016; Montgomery et al., 2015). Briefly, 33 μl of capture resin was 

washed once with 1 ml of PBS, prior to addition of 500 μl of clarified lysates (1.5 mg/ml, 

pretreated with vehicle or competitor ligand for 30 min on ice). This mixture was rotated for 

1 hr at room temperature, pelleted at 1400 rcf, and supernatant discarded. Sepharose capture 

resins were subjected to a series of mild washes using ice cold wash buffer (50 mM Tris-HCl 

[pH 7.5], 5% glycerol [omitted in LC-MS/MS experiments], 1.5 mM MgCl2, 150 mM NaCl, 

3 × 500 μl). Salt sensitivity experiments were performed in a paired fashion as a separate 

biological replicate and used washes containing either 150 or 500 mM NaCl. Following the 

final wash, enriched resin was collected on top of centrifugal filters (VWR, 82031–256). 

Capped resin capture experiments were performed completely analogously. For LC-MS/MS 

analysis of captured proteins, enriched resin was transferred from centrifugal filters to fresh 

1.7-ml tubes using 400 μl of tryptic digest buffer (50 mM Tris-HCl [pH 8.0], 1 M urea). 

Digests were initiated by addition of 0.4 μl of 1 M CaCl2 and 4 μl of trypsin (0.25 mg/ml) 

and allowed to proceed overnight at 37°C with shaking. After extraction, tryptic peptide 

samples were acidified to a final concentration of 5% formic acid, lyophilized, and frozen at 

−80°C until LC-MS/MS analysis.

MudPIT LC-MS/MS analysis of and database searching of Lys-CoA enriched 
proteomes—Lyophilized peptide samples from Lys-CoA Sepharose enriched HeLa 

proteomes were analyzed independently in triplicate by Multidimensional Protein 

Identification Technology (MudPIT), as described previously (Florens and Washburn, 2006; 

Washburn et al., 2001a). Briefly, dried peptides were resuspended in 100μL of Buffer A (5% 

acetonitrile (ACN), 0.1% formic acid (FA)) prior to pressure-loading onto 100 μm fused 

silica microcapillary columns packed first with 9 cm of reverse phase (RP) material (Aqua; 

Phenomenex), followed by 3 cm of 5-μm Strong Cation Exchange material (Luna; 

Phenomenex), followed by 1 cm of 5-μm C18 RP. The loaded microcapillary columns were 

placed in-line with a 1260 Quartenary HPLC (Agilent). The application of a 2.5 kV distal 

voltage electrosprayed the eluting peptides directly into LTQ linear ion trap mass 

spectrometers (Thermo Scientific) equipped with a custom-made nano-LC electrospray 

ionization source. Full MS spectra were recorded on the eluting peptides over a 400 to 1600 

m/z range followed by fragmentation in the ion trap (at 35% collision energy) on the first to 

fifth most intense ions selected from the full MS spectrum. Dynamic exclusion was enabled 

for 120 sec (Zhang et al., 2009). Mass spectrometer scan functions and HPLC solvent 

gradients were controlled by the XCalibur data system (Thermo Scientific). RAW files were 

extracted into .ms2 file format (McDonald et al., 2004) using RawDistiller v. 1.0, in-house 

developed software (Zhang et al., 2011). RawDistiller D(g, 6) settings were used to abstract 

MS1 scan profiles by Gaussian fitting and to implement dynamic offline lock mass using six 

background polydimethylcyclosiloxane ions as internal calibrants (Zhang et al., 2011). 

MS/MS spectra were first searched using ProLuCID(Xu et al., 2015) with a mass tolerance 

of 500 ppm for peptide and fragment ions. Trypsin specificity was imposed on both ends of 

candidate peptides during the search against a protein database combining 36,628 human 

proteins (NCBI 2016–06-10 release), as well as 193 usual contaminants such as human 

keratins, IgGs and proteolytic enzymes. To estimate false discovery rates (FDR), each 
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protein sequence was randomized (keeping the same amino acid composition and length) 

and the resulting “shuffled” sequences were added to the database, for a total search space of 

73,642 amino acid sequences. A mass of 15.9949 Da was differentially added to methionine 

residues.

DTASelect v.1.9 (Tabb et al., 2002) was used to select and sort peptide/spectrum matches 

(PSMs) passing the following criteria set: PSMs were only retained if they had a DeltCn of 

at least 0.08; minimum XCorr values of 1.9 for singly-, 2.7 for doubly-, and 2.9 for triply-

charged spectra; peptides had to be at least 7 amino acids long. Results from each sample 

were merged and compared using CONTRAST (Tabb et al., 2002). Combining all replicate 

injections, proteins had to be detected by at least 2 peptides and/or 2 spectral counts. 

Proteins that were subsets of others were removed using the parsimony option in DTASelect 

on the proteins detected after merging all runs. Proteins that were identified by the same set 

of peptides (including at least one peptide unique to such protein group to distinguish 

between isoforms) were grouped together, and one accession number was arbitrarily 

considered as representative of each protein group.

NSAF7 (Zhang et al., 2010) was used to create the final reports on all detected peptides and 

non-redundant proteins identified across the different runs. Spectral and protein level FDRs 

were, on average, 0.31±0.10% and 1.0±0.35%, respectively. QPROT (Choi, et al, 2015) was 

used to calculate a log fold change and false discovery rate for the dosed samples compared 

to the vehicle control.

Partitioning clustering—To group proteins based on their abundance profile across the 

four treatment conditions (i.e. 0, 3μM, 30μM and 300μM), first each individual protein was 

normalized in each condition to the highest value across the four conditions (i.e. the highest 

value equals to 100%). To spatially map the proteins in the dataset, a t-distributed stochastic 

neighbor embedding (t-SNE), a nonlinear visualization of the data was applied. Then, k-

means clustering was applied to this transformed matrix using the Hartigan-Wong algorithm 

and a maximum number of iterations set at 50000. To determine the best partition, the 

numbers of clusters, k, were continuously increased from 3 to 20. The result showed that the 

optimal number of clusters was obtained when k=8, after carefully inspecting all the clusters 

and their silhouette and Hartigan indexes. All computations were run using R environment 

using k-means function for the partition and daisy function to compute all the pairwise 

dissimilarities (Euclidean distances) between observations in the dataset for the silhouette.

Dose response curves—Normalized dNSAF values for each protein were plotted as a 

function of ligand concentration in Origin Pro 2018 for each cluster. The curves were 

averaged in Origin and the average was displayed on the graph.

Topological data analysis—The input data for TDA were represented in a matrix, with 

each column corresponding to a CoA ligand and each row corresponding to a protein. Values 

were distributed spectral counts values for each protein. A network of nodes with edges 

between them was then created using the TDA approach based on Ayasdi platform (AYASDI 

Inc., Menlo Park CA as described previously (Sardiu et al., 2015). Two types of parameters 

are needed to generate a topological analysis: First is a measurement of similarity, called 

Levy et al. Page 14

Cell Chem Biol. Author manuscript; available in PMC 2021 June 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



metric, which measures the distance between two points in space (i.e. between rows in the 

data). Second are lenses, which are real valued functions on the data points. Here, Variance 

Norm Euclidean was used as a distance metric with 2 filter functions: Neighborhood lens 1 

and Neighborhood lens2. Resolution 30 and gain 3 were used to generate Fig. 5c.

Pathway analysis.—Proteins that were changing in at least one of the CoA ligands with a 

Z-score less than −2 and FDR less or equal to 0.05 were considered for the analysis. Using 

this criteria, 671 proteins were identified and used for the pathway analysis. As expected, 

HATs acetylate histone was one of the top 30 enriched pathways (p-value of 4.55e-12) in the 

ConsensusPathDB (http://cpdb.molgen.mpg.de/) database.

Bioinformatic analyses of CATNIP data and correlation with literature datasets
—A list of annotated CoA-binders was defined by searching the Uniprot database using 

query terms related to this function including “CoA binding,” “CoA,” “Coenzyme A,” 

“Acetyltransferase” “HAT,” “NAT,” “NAA,” “GNAT.” A similar analysis was performed to 

annotate AT interactors, using query terms including “HAT complex,” “KAT complex,” 

“NAA complex,” “NAT complex,” and “acetyltransferase complex.” Results were then 

manually curated with irrelevant proteins and duplicates removed, resulting in the term list 

provided in Table S1. Correlation of CATNIP enrichment to HeLa cell gene expression and 

protein abundance (Fig. S1 d-i) was performed using literature RNA-Seq and deep 

proteomic datasets (Nagaraj et al., 2011). Venn diagrams comparing overlap between 

proteins competed 2-fold by acetyl-CoA and all other ligands (Fig. 3b), or metabolic acyl-

CoAs 3-6 (Fig. 3c) were generated by identifying a list of proteins showing a (−log2FC) 

value ≥1 for each ligand and then assessing overlap using an online Venn diagram tool 

accessible at http://bioinformatics.psb.ugent.be/webtools/Venn/. Protein subsets were 

interrogated for enrichment of molecular functions and pathways using the online 

informatics tools DAVID (david.ncifcrf.gov) and ConsensusPathDB (http://

cpdb.molgen.mpg.de/CPDB/rlFrame). For analysis of acetylation stoichiometry, filtered 

protein subsets were cross-referenced with a list of peptide hits falling in the top 10% of all 

HeLa cell lysine acetylation stoichiometries measured in a recently published analysis 

(Hansen et al., 2019). For analysis of lysine malonylation, filtered protein subsets were 

cross-referenced with a list of malonylated peptides derived from a recently published 

analysis. Figures of E. coli NAT10 orthologue complexed with acetyl-CoA was generated 

using Chimera.

Isotopic tracing experiments to determine metabolic source of N4-
acetylcytidine (ac4C)—HeLa S3 cells were cultured at 37 °C under 5% CO 2 atmosphere 

in a growth medium of DMEM supplemented with 10% FBS and 2 mM glutamine. HeLa S3 

cells were plated in 10 cm dishes (3 ×106 cells in 10 ml RPMI media/dish) and allowed to 

adhere for 24 h. After this, media was removed, cells were washed once with PBS (10 ml), 

and switched to either i) heavy glucose media (glucose-free DMEM containing 2 mM 

glutamine, 25 mM U-13C6-glucose, 0.2 mM acetate), ii) heavy acetate media (glucose-free 

DMEM containing 2 mM glutamine, 25 mM glucose, 0.2 mM U-13C2-acetate) or iii) regular 

glucose media (glucose-free DMEM containing 2 mM glutamine, 25 mM glucose, 0.2 mM 

acetate). Cells were incubated with the tracer for 16 h or 24 h at 37 °C and total RNA was 
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harvested using TRIzol reagent (ThermoFisher Scientific) according to the manufacturer’s 

instructions. Digestion of total RNA (220 μg) was performed as previously described 

(Sinclair et al., 2017). Briefly, RNA was incubated with 1U/10 μg RNA of nuclease P1 

(Sigma-Aldrich) in 100 mM ammonium acetate [pH 5.5] for 16 hr at 37 °C. Five microliter 

of 1 M ammoniu m bicarbonate [pH 8.3] and 0.5U/10 μg RNA of Bacterial Alkaline 

Phosphatase (ThermoFisher Scientific) were added for 2 hr at 37 °C. Following digestion, 

sample volumes were adjusted to 150 μL with RNase-free water and spin filtered to remove 

enzymatic constituents (Amicon Ultra 3K, #UFC500396). Filtrate and washes (200 μL x 3, 

RNase-free water) were collected and lyophilized. Lyophilized samples were reconstituted 

in 250 μL H2O containing internal standards (D3-ac4C, 500 nM; 15N3-C, 5 μM, Cambridge 

Isotopes). Individual samples (15 μL for ac4C analyses, 5 μL for major bases) were then 

analyzed via injection onto a C18 reverse phase column coupled to an Agilent 6410 QQQ 

triple-quadrupole LC mass spectrometer in positive electrospray ionization mode (Agilent 

Technologies). Quantification was performed based on nucleoside-to-base ion transitions 

using standard curves of pure nucleosides and stable isotope labelled internal standards.

LN229 ac4C analysis and MS—LN229 wild-type (WT) and ACLY knockout (ACLY 

KO) cell lines (kind gift of K. Wellen laboratory, University of Pennsylvania) were cultured 

at 37 °C under 5% CO 2 atmosphere in a growth medium of RPMI supplemented with 10% 

FBS and 2 mM glutamine as previously described (Lee et al., 2018). For assessment of ac4C 

levels, total RNA was isolated from LN229 cells using TRIzol reagent (ThermoFisher 

Scientific). Enrichment of polyadenylated RNA [poly(A) RNA] for UHPLC-MS, was 

carried using two rounds of selection with Oligo-(dT)25 Dynabeads (ThermoFisher 

Scientific) according to the manufacturer’s instructions. 300 ng of total or poly(A)-enriched 

RNA was used to evaluate the levels of ac4C and mcm5s2U by LC-MS/MS using a similar 

method as described (Arango et al., 2018). Briefly, prior to UHPLC-MS analysis, 300 ng of 

each oligonucleotide was treated with 0.5 pg/μl of internal standard (IS), isotopically labeled 

guanosine, [13C][15N]-G. The enzymatic digestion was carried out using Nucleoside 

Digestion Mix (New England BioLabs) according to the manufacturer’s instructions. 

Finally, the digested samples were lyophilized and reconstituted in 100 μl of RNAse-free 

water, 0.01% formic acid prior to UHPLC-MS/MS analysis. The UHPLC-MS analysis was 

accomplished on a Waters XEVO TQ-S™ (Waters Corporation, USA) triple quadruple mass 

spectrometer equipped with an electrospray source (ESI) source maintained at 150 °C and a 

capillary voltage of 1 kV. Nitrogen wa s used as the nebulizer gas, which was maintained at 

7 bars pressure, flow rate of 500 l/h and at temperature of 500°C. UHPLC-MS/MS analysis 

was performed in ESI positive-ion mode using multiple-reaction monitoring (MRM) from 

ion transitions previously determined for ac4C and mcm5s2U (Basanta-Sanchez et al., 

2016). A Waters ACQUITY UPLC™ HSS T3 guard column, 2.1× 5 mm, 1.8 μm, attached 

to a HSS T3 column, 2,1×50 nm, 1.7 μm were used for the separation. Mobile phases 

included RNAse-free water (18 MΩcm−1) containing 0.01% formic acid (Buffer A) and 

50:50 acetonitrile in Buffer A (Buffer B). The digested nucleotides were eluted at a flow rate 

of 0.5 ml/min with a gradient as follows: 0–2 min, 0–10%B; 2–3 min, 10–15% B; 3–4 min, 

15–100% B; 4–4.5 min, 100 %B. The total run time was 7 min. The column oven 

temperature was kept at 35oC and sample injection volume was 10 ul. Three injections were 

performed for each sample. Data acquisition and analysis were performed with MassLynx 
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V4.1 and TargetLynx. Calibration curves were plotted using linear regression with a weight 

factor of 1/x.

Ectopic overexpression, non-enzymatic malonylation, and 
immunoprecipitation of NAT10—HEK-293T cells were plated in 10 cm dishes (2.5 

×106 cells/dish in 10 ml DMEM media and allowed to adhere and grow for 24 h. 3xFLAG-

tagged NAT10 was overexpressed using FuGENE® 6 transfection reagent (Promega 

#E2691) according to the manufacturer’s instructions. Overexpression was carried out by 

incubating the cells for 24 hr at 37 °C under 5% CO2 atmosphere, after which time the cells 

were harvested, and lysed in potassium phosphate buffer, pH 8, sonicated using a 100 W 

QSonica XL2000 sonicator (3 × 1 s pulse, amplitude 1, 60 s resting on ice between pulses), 

and quantified using the Qubit Broad Sensitivity Protein Kit (Thermo Fisher # Q33211). 

Lysates were incubated with 0 or 0.25 mM malonyl-CoA for six hours at 37°C. Anti-FLAG 

pulldo wn was performed using FLAG immunoprecipitation kit (Sigma-Aldrich, 

FLAGIPT1–1KT) according to the manufacturer’s instruction. 450 μg of lysate was 

incubated with the anti-FLAG resin overnight at 4 °C. Eluted protein was ran on SDS-PAGE 

and immunoblotted against anti-FLAG-tag and anti-Malonyl-Lysine antibodies. For 

immunoblotting, SDS–PAGE gels were transferred to nitrocellulose membranes (Novex, 

Life Technologies # LC2001) by electroblotting at 30 V for 1 h using a XCell II Blot 

Module (Novex). Membranes were blocked using StartingBlock (PBS) Blocking Buffer 

(Thermo Scientific) for 30 min and incubated overnight at 4 °C in primary antibody. The 

membranes were washed with TBST buffer and incubated with secondary HRP-conjugated 

antibody (Cell Signaling #7074) for 1 h at room temperature. The membranes were again 

washed with TBST and treated with chemiluminescence reagents (Western Blot Detection 

System, Cell Signaling) for 1 min, and imaged for chemiluminescent signal using an 

ImageQuant Las4010 Digital Imaging System (GE Healthcare).

QUANTIFICATION AND STATISTICAL ANALYSIS

The number of replicates, fold-change, mean +/− standard deviation (SD), and p-values are 

reported in the figures and legends. Experiments were performed with three biological 

replicates from at least two independent experiments when possible. LC-MS experiments 

were performed using an n=3, with fold-enrichments and -log10FDR calculated by 

analyzing dNSAF values using the statistical framework QPROT as described in Methods. 

Statistical analysis of non-proteomic data (i.e. t-tests) were performed with Graphpad Prism 

software.

DATA AND CODE AVAILABILITY

The mass spectrometry proteomics data have been deposited to the ProteomeXchange 

Consortium via Pride (Deutsch, et. al, 2017; Perez-Riverol, Y., et. al, 2019) partner 

repository with the dataset identifier PXD013157 and 10.6019/PXD013157. Original data 

underlying this manuscript may also be accessed after publication from the Stowers Original 

Data Repository at http://www.stowers.org/research/publications/libpb-1355. Review access 

can be obtained using the following username and password:

Username: reviewer59307@ebi.ac.uk
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Highlights

• Global profiling of acetyl-CoA binding proteins with chemoproteomic probes

• t-SNE clustering allows enrichment of direct and indirect acetyl-CoA binders

• Identification of specific and promiscuous acyl-CoA interaction signatures

• Development of a de novo acetyltransferase annotation workflow
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Significance

Acyl-CoAs are essential for life. These central metabolites interact with proteins to 

regulate critical biological processes ranging from energy production to gene expression. 

However, despite their importance, the scope and selectivity of these interactions remains 

unknown. Here we report the development of CATNIP (CoA/AcetylTraNsferase 

Interaction Profiling), an approach that combines chemoproteomic profiling with 

systems-level analysis for the proteome-wide interrogation of acyl-CoA/protein 

interactions. We validated the ability of this approach to identify CoA-utilizing enzymes 

based on their dose-dependent metabolite competition profiles and detect unique 

interaction signatures of enzymes with acyl-CoAs responsible for substrate utilization or 

metabolic inhibition. Applying CATNIP to profile the susceptibility of acetyltransferases 

led to the characterization of two RNA modifications sensitive to disruption of the acetyl-

CoA biosynthetic enzyme ACLY. Finally, we demonstrated an unbiased workflow for 

analysis of CATNIP binding data that can be used to detect candidate acyl-CoA regulated 

protein networks, identify proteins that directly bind acetyl-CoA, and define proteins 

whose functional interaction with acyl-CoAs may lead to non-enzymatic acylation. Our 

studies illustrate the utility of integrating chemical biology and systems biology to 

rapidly characterize protein-metabolite interactions and provide a powerful first-in-class 

resource for studying the signaling functions of acyl-CoAs. Moreover, our experimental 

demonstration that acyl-CoAs show selectivity in their interactions with the AT 

superfamily suggests manipulating them may re-direct the activity of specific enzyme 

subsets and provides a rationale for the development of approaches to modulate acyl-CoA 

metabolism in cells and living organisms.
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Figure 1. 
Diverse consequences of acyl-CoA interactions on protein activity and signaling. Metabolic 

acyl-CoAs can interact with proteins as cofactors, inhibitors, allosteric modulators, or 

covalent modifiers.
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Figure 2. 
Profiling acetyl-CoA/protein interactions using CATNIP. (a) Schematic for chemoproteomic 

analyses of acyl-CoA/protein interactions. (b) Normalized dNSAF values across 4 acetyl-

CoA concentrations (0, 3, 30, 300μM) were t-SNE transformed and plotted in two 

dimensions for all proteins competed in CATNIP experiments (n=3 LC-MS/MS 

experiments). (c) Dose-response profiles of acetyl-CoA CATNIP clusters. Colored lines 

indicate the capture profiles of individual proteins at each concentration of acetyl-CoA 

competitor. Black lines indicate the mean capture profile for all proteins in a given cluster. 
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(d) Clusters 1–3 are enriched in Uniprot-annotated CoA-binding proteins (“CoA binders”) as 

well as members of acetyltransferase complexes (”AT interactors”). (e) Analysis of 

annotated CoA binders exhibiting 2-fold competition at each concentration. Fold-change in 

d and e were calculated by QPROT. (f) Gene ontology analysis of CoA binders and AT 

interactors lying in CATNIP clusters 1 and 2. Fold enrichment of functional terms are 

plotted versus statistical significance (−log10[FDR]). Circle size reflects the number of 

proteins matching a given term. Functional enrichment was performed with the tool DAVID 

(https://david.ncifcrf.gov).
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Figure 3. 
Applying CATNIP to profile the comparative pharmacology of CoA metabolites. (a) CoA 

metabolites (1-6) analyzed in this study. (b) Venn diagram depicting overlap between 

proteins whose capture was competed more than four-fold by acetyl-CoA (1) or all other 

CoAs (2-6). (c) Venn diagram depicting overlap between proteins whose capture was two-

fold competed by acyl-CoAs 3-6. (d) Comparison of acyl-CoA (x-axis) and acetyl-CoA (y-

axis and acyl-CoA competition. Uniprot-annotated CoA binders and AT interactors are 

highlighted in dark blue and light blue, respectively. Log2FC values for b-d were calculated 

using QPROT. (e) Comparative CATNIP analysis highlights distinct signatures of metabolite 
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interaction amongst families of CoA binders. Relative capture was calculated by comparing 

average dNSAF values. White = more competition by CoA metabolite, blue = less 

competition by CoA metabolite. All graphs are from n=3 control/competitor datasets.
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Figure 4. 
Applying CATNIP to profile AT feedback inhibition. (a) Exemplary dose-response profiles 

of proteins that interact strongly with CoA. (b) Exemplary dose-response profiles of proteins 

more weakly with CoA. (c) Scheme for isotopic tracing of metabolic source of the acetate 

group in ac4C. Heavy (U-13C) glucose or acetate were applied in separate metabolic 

labeling experiments. Incorporation into ac4C was assessed by mass isotopomer analysis of 

digested total RNA. (d) The major source of ac4C’s N4-acetyl group is glucose. (e) 

Disruption of ACLY reduces levels of ac4C in poly(A)-enriched, but not total RNA. Values 
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represent ≥ 3 replicates, analyzed by two-tailed student’s t-test (ns = not significant, 

*P<0.05, **P<0.01, ***P<0.001).
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Figure 5. 
Applying CATNIP to assess the annotation of the CoA-binding proteome. (a) Schematic for 

differentiating CATNIP-enriched proteins from background based on significant competition 

and absence from common contaminant databases. (b) Proteins from diverse AT families 

display statistically significant CoA/acyl-CoA competition. (c) Topological network analysis 

of proteins exhibiting significant interaction with ≥ 3 CoA metabolites. Protein nodes are 

colored based on the metric PCA2. Color bar: red = high values; blue = low values. Node 

size is proportional to the number of proteins in the node. (d) Combining CATNIP 
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competition (QPROT Log2FC ≤ −2 and FDRdown<0.05) and acetylation stoichiometry 

filters greatly enriches CoA-binders and AT-interactors relative to either measure alone. (e) 

Comparing annotated sites of lysine malonylation (top) and competition by malonyl-CoA 

mimic 5 (bottom) for CoA-binders detected by de novo CATNIP analysis. (f) A conserved 

site of lysine malonylation lies in close proximity to the acetyl-CoA binding site of bacterial 

NAT10. (g) Overexpressed FLAG-NAT10 is malonylated in the presence of malonyl-CoA, 

consistent with a non-enzymatic acylation mechanism.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit monoclonal MultiMab Malonyl-Lysine antibody Cell Signaling Technologies Cat# 14942

Anti-FLAG (DYKDDDDK) Tag Antibody (HRP-linked) Cell Signaling Technologies Cat# 2044

Anti-rabbit IgG antibody (HRP-linked) Cell Signaling Technologies Cat # 7074

Bacterial and Virus Strains

n/a

Biological Samples

Cell pellets from HeLa S3 epithelial suspension cell line Cell Culture Company Cat # HA48

Chemicals, Peptides, and Recombinant Proteins

NHS-Activated Sepharose 4 Fast Flow resin GE Healthcare Cat# 71-5000-14 AD

Amine-functionalized Lys-CoA-Ahx Montgomery et al,, 2016 n/a

U-13C6-glucose Cambridge Isotope Laboratories Cat# CLM-1396

U-13C2-acetate Cambridge Isotope Laboratories Cat# CLM-440

acetyl-CoA Sigma-Aldrich Cat# A2056

coenzyme A Sigma-Aldrich Cat#

butyryl-CoA Sigma-Aldrich Cat# B1508

crotonyl-CoA Sigma-Aldrich Cat# 28007

palmitoyl-CoA Sigma-Aldrich Cat# P9716

acetic-CoA This study n/a

Critical Commercial Assays

Anti-FLAG IP kit Sigma-Aldrich Cat# FLAGIPT1-1KT

TRIzol reagent ThermoFisher Scientific Cat#15596026

oligo-(dT)25 Dynabeads ThermoFisher Scientific Cat# 61005

Qubit Broad Sensitivity Protein Assay Kit ThermoFisher Scientific Cat# Q33211

Deposited Data
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REAGENT or RESOURCE SOURCE IDENTIFIER

Proteomic datasets for CATNIP (Lys-CoA) pulldowns 
and competitions

ProteomeXchange Consortium; 
PRIDE

PXD013157

Experimental Models: Cell Lines

HeLa S3 cells ATCC CCL-2.2

HEK-293T cells ATCC CRL-3216

LN229 ACLY knockout cells Zhao et al. 2016 n/a

LN229 ACLY wild-type cells Zhao et al. 2016 n/a

Experimental Models: Organisms/Strains

Oligonucleotides

Recombinant DNA

Software and Algorithms

DTASelect v.1.9/ CONTRAST for protein detection Tabb et al.,2002

NSAF7 Zhang, et al., 2010

QSPEC/QPROT for the statistical analysis of protein 
differentiation

Choi, et al., 2015 http://http//sourceforge.net/p/qprot/

tSNE and k-means algorithms for proteins separation 
and clustering

Van der Maaten, et al., 2008 R source

TDA software for the topological analysis Lum et al., 2013. https://platform.ayasdi.com/workbench 
(AYASDI Inc., Menlo Park CA)

DAVID gene ontology for functional enrichment DAVID tool http://david.abcc.ncifcrf.gov/

ConsensusPathDB http://cpdb.molgen.mpg.de/CPDB/
rlFrame
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REAGENT or RESOURCE SOURCE IDENTIFIER

Other
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