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Abstract: The rapid oscillation of galvanometric resonant optical scanners introduces linear
astigmatism that degrades transverse resolution, and in confocal systems, also reduces signal
[V. Akondi et al., Optica 7, 1506, 2020]. Here, we demonstrate correction of this aberration by
tilting reflective or refractive optical elements for a single vergence or a vergence range, with and
without the use of an adaptive wavefront corrector such as a deformable mirror. The approach,
based on nodal aberration theory, can generate any desired third order aberration that results
from tilting or decentering optical surfaces.
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1. Introduction

Resonant galvanometric scanners are used in a diverse range of applications, including microscopy
[1–3], retinal imaging [4–6], and optical coherence tomography [7–9]. Their rapid sinusoidal
oscillation, which enables high speed imaging and sensing, induces dynamic oblique astigmatism
that is proportional to the angular displacement. This astigmatism can result in up to a factor
of two transverse resolution degradation, and up to an order of magnitude signal reduction in
confocal instruments [10]. Here, we propose the compensation of this aberration, linear with
angular displacement, by tilting optical elements following the resonant scanner. Our approach
is based on the nodal aberration theory (NAT) prediction that the tilting and/or decentering of
optical elements introduces linear astigmatism. NAT, developed by Shack and Thompson [11],
describes the aberrations of optical systems with tilted and/or decentered surfaces. Recently, this
theory has been extended to include non-rotationally symmetric surfaces, such as, the primary
mirror of Ritchey-Chrétien telescopes [12], φ-polynomial surfaces [13], and Zernike polynomial
surfaces [13,14]. Despite its mathematical elegance and physical insight, there are very few
practical demonstrations of NAT [14–18], such as the one provided here.

In the next section we introduce NAT concepts, notation, and conventions. Then, we propose
the minimization of the analytical field-averaged variance of third order aberrations, as a method
for finding the surface tilts and decenters that achieve a desired target wavefront. We then
calculate this field-averaged wavefront variance for circular pupil and a 1-dimensional (line
segment) field of view to describe the resonant scanner. To deal with the need for correction of
aberrations for multiple conjugate planes simultaneously, we calculate the vergence-averaged
field-averaged wavefront variance. Both these quantities, calculated analytically here, are the
continuous equivalent of the discrete merit functions used by ray tracing software to design
and optimize optical instruments, thus providing a natural conceptual understanding for optical
designers. The third section of the manuscript provides a description of two afocal relays used
here to illustrate the correction of linear astigmatism caused by a resonant scanner. This is
followed by the analytical calculation of the NAT aberration coefficients due to the tilting and
decentering of the optical elements in the relays. The fourth section consists of a description of
the parameters used for the calculation of the tilt solutions and the numerical optimization using
ray tracing software. The results section shows the comparison of the calculated solutions against
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those found by ray tracing software, in terms of the estimated tilts, wavefront maps and wavefront
root mean squared. Finally, a summary of the method, findings and observation is provided.

2. Nodal aberration theory

The scalar wavefront aberrations of rotationally symmetric optical systems can be described as
the weighted sum of the contributions from individual surfaces, each of which is represented by
a polynomial of normalized field and pupil coordinates [19]. NAT extends this mathematical
description to include rotationally symmetric systems perturbed through the tilting and/or
decentering of optical elements [11,13,20,21]. In NAT, the normalized pupil and field positions
are represented as the vectors ⇀

ρ and
⇀

H, respectively (see Fig. 1), and the wavefront aberrations
are calculated as the weighted sum of the aberration field for each surface j shifted by a vector ⇀

σj
[11],
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Here k = 2p + m, l = 2n + m, and the field shift vector is defined as [21],

⇀
σj = −

⇀

i
∗

j /ij, (2)

where ij is the chief ray angle of incidence in the centered system, and
⇀

i
∗

j is the optical axis ray
(OAR) angle of incidence measured with respect to the local axis of the tilted and/or decentered
surface. The OAR is a real (as opposed to paraxial) ray that connects the center of the object and
the center of the aperture stop [11]. The field positions at which each term in Eq. (1) becomes
zero are the aberration nodes which give the mathematical formalism its name.

Fig. 1. Normalized pupil position vector ⇀
ρ and field position vector

⇀

H, which in Cartesian
coordinates are (ρ sin φ, cos φ) and (H sin θ, H cos θ), respectively.

The vectors in Eq. (1) are Cartesian coordinate vectors, with their dot and cross products defined
in the conventional way, and their multiplication defined as

⇀

A
⇀

B = (axby + aybx, ayby − axbx)

where
⇀

A = (ax, ay) and
⇀

B = (bx, by) [11]. If the two vectors were complex numbers, this new
operation would be their multiplication, with the output being a coplanar vector with magnitude|︁|︁|︁⇀A|︁|︁|︁ |︁|︁|︁⇀B|︁|︁|︁ and an angle θA + θB.

In order to calculate the field displacement vector ⇀
σj, we first need to calculate the OAR angle

of incidence, which is defined as [21],

⇀

i
∗

j =
⇀

Nj ×
(︂
⇀

Rj ×
⇀

S j

)︂
, (3)
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with
⇀

Nj denoting the unit vector normal to the object plane and its conjugates,
⇀

Rj the unit direction
vector of the optical axis ray, and

⇀

S j the unit surface normal vector at the intersection point with
the OAR, as shown in Fig. 2 [21].

 𝚤௝
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with 𝑁ሬሬ⃑௝  denoting the unit vector normal to the object plane and its conjugates, 𝑅ሬ⃑௝  the unit 

direction vector of the optical axis ray, and 𝑆௝ the unit surface normal vector at the intersection 
point with the OAR, as shown in Fig. 2 [21]. 

 
Fig. 2. Unit vectors used to calculate the optical axis ray angle of incidence in an optical system with tilted 
optical elements for a reflective surface (left) and a refractive surface (right). 

2.1 Tilt convention and OAR angle of incidence 

In what follows, we adopt the tilt convention used by the ray tracing software OpticStudio 
(Zemax, Kirkland, WA, USA), which is depicted in Fig. 3. In this way, 

 𝑆௝ ൌ ൣcos𝛼௝ sin𝛽௝ ,െ sin𝛼௝ , cos𝛼௝ cos𝛽௝൧. (4) 

Now, for each surface 𝑗, 𝑁ሬሬ⃑௝  is normal to the object plane in an unperturbed rotationally 
symmetric optical system, and thus, has Cartesian coordinates ሾ0,0,െ1ሿ [21]. If the optical 
elements are titled but not decentered, as it is the case in the optical systems considered in this 
work, the OAR unit vector 𝑅ሬ⃑௝ will be coaxial with 𝑁ሬሬ⃑௝, which when substituted in Eq. (3) yields, 

  𝚤௝
∗ ൌ  ൣെ cos𝛼௝ sin𝛽௝ , sin𝛼௝ , 0൧. (5) 

Here it is important to note that when a ray reflects off a mirror, the angle 𝚤௝
∗ in Eq. (5) must 

be multiplied by the refractive index of the medium before the surface. If the medium is air and 
the surfaces are all reflective, then the refractive index should be considered as ሺെ1ሻ௝. 

 

Fig. 3. Tilt definition used to derive the unit surface normal vector 𝑆, the optical axis ray angle of incidence 
𝚤∗, the field shift vector 𝜎⃑, and eventually, the wavefront aberrations. 

2.2 Third order aberrations 

Fig. 2. Unit vectors used to calculate the optical axis ray angle of incidence in an optical
system with tilted optical elements for a reflective surface (left) and a refractive surface
(right).

2.1. Tilt convention and OAR angle of incidence

In what follows, we adopt the tilt convention used by the ray tracing software OpticStudio (Zemax,
Kirkland, WA, USA), which is depicted in Fig. 3. In this way,

⇀

S j = [cosαj sin βj,− sinαj, cosαj cos βj]. (4)

Now, for each surface j,
⇀

Nj is normal to the object plane in an unperturbed rotationally
symmetric optical system, and thus, has Cartesian coordinates [0, 0,−1] [21]. If the optical
elements are titled but not decentered, as it is the case in the optical systems considered in this
work, the OAR unit vector

⇀

Rj will be coaxial with
⇀

Nj, which when substituted in Eq. (3) yields,
⇀

i
∗

j = [− cosαj sin βj, sinαj, 0]. (5)

Here it is important to note that when a ray reflects off a mirror, the angle
⇀

i
∗

j in Eq. (5) must
be multiplied by the refractive index of the medium before the surface. If the medium is air and
the surfaces are all reflective, then the refractive index should be considered as (−1)j.

2.2. Third order aberrations

For many optical systems, the terms in Eq. (1) referred to as third-order aberrations (k + l = 4),
provide an adequate description of the optical performance. These third-order wavefront
aberrations in a perturbed system are written as [11],
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Fig. 3. Tilt definition used to derive the unit surface normal vector
⇀

S , the optical axis ray
angle of incidence

⇀

i
∗

, the field shift vector ⇀
σ, and eventually, the wavefront aberrations.

where we have excluded distortion (W311) because it does not affect image sharpness. It should
be emphasized here, that the wavefront coefficients Wklm are calculated as functions of paraxial
ray tracing quantities [22] in the rotationally symmetric system, and remain unchanged when
surfaces are tilted and/or decentered.

The last term in Eq. (6) is the third order astigmatism, where the scalar W222 is the amplitude

of the astigmatism quadratic in the radial field coordinate, and the vectors
⇀

A222 and
⇀

B
2
222, are

the amplitudes of astigmatism that are linear and constant across the field of view, respectively.
Equation (7) shows that these amplitude vectors depend on the quadratic astigmatism (W222j ) and
the field shift vector ⇀

σj associated with each optical surface, which indicates that surfaces could
be intentionally tilted to achieve a desired linear and constant astigmatism, which is the strategy
we propose to compensate for the linear astigmatism introduce by the resonant scanner.

2.3. Wavefront targeting

Let us now consider the general problem of generating a target, or desired, wavefront Wd
(︂
⇀

H, ⇀
ρ
)︂

in an initially rotationally symmetric system by tilting and/or decentering surfaces. That is,
the optical elements and the distance between them have been selected and the only remaining
parameters to adjust are their tilts and/or decenters. This can be pursued by first deriving the
explicit formula for the residual field-averaged wavefront variance [23],

Wvar = ∫∫Wvar
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⇀

H
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HdHdθ, (8)

where, the integration is performed over the desired field of view and,
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ρ
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]︃2
,

(9)
with the integration performed over the entire pupil. The surface tilts αj, βj and decenters dx,j,
dy,j, can be chosen to minimize the field-averaged wavefront variance of the difference between
the system and desired wavefronts by solving the system of equations,

∂Wvar
∂αj

=
∂Wvar
∂βj

=
∂Wvar
∂dx,j

=
∂Wvar
∂dy,j

= 0, (10)
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for all surfaces j. From within the solutions to this system of equations, only the actual minima,
as opposed to maxima or saddle points, are desirable solutions, which can be determined
by calculating the sign of the local second derivatives. Finally, the tilts and decenters that
correspond to local minima can be substituted in Eq. (8) to determine which of these is the global
field-averaged wavefront variance minimum, thus providing the best fit to the desired wavefront.
It should be noted, that even if the number of tilts and decenters was equal or greater than the
number of equations, there is no guarantee that solutions for this set of transcendental equations
exist.

2.4. Linear astigmatism targeting over a linear field of view

In this work, we aim to generate oblique linear astigmatism equal and opposite to that introduced
by the dynamic distortion of a resonant scanner at the entrance pupil [10], which is described

by the aberration coefficient
⇀

A
d
222,x. Our goal is to find the optical element tilts that achieve

this desired linear astigmatism while keeping all other third order aberrations to a minimum.
To achieve this, we first calculate the field-averaged wavefront variance over a circular pupil
and the field of view of the resonant scanner, which is the line segment defined as Hx = 0 and
Hy = [−1, 1]. If the field-constant defocus is chosen such that W020 = −B220M , that is, if the
system is refocused to compensate for any defocus introduced by the surface tilting, we get,

Wvar =
1

180

[︂
30W2

11 + 32W2
040 + 20W040W220M + 15W2

131 + 45
⇀

A131 ·
⇀

A131 + 6W2
220M
+ 40A2

220M ,y

+ 3W2
222 + 20(A222,x − Ad

222,x)
2
+ 20A2

222,y + 15
⇀

B
2
222 ·

⇀

B
2
222 + 10B2

222,yW222

]︃
.

(11)
Since tilting and decentering do not change the rotationally symmetric wavefront aberration

coefficients, they can be ignored in the minimization process, as they are constant. The remaining
terms can be thought of as the non-rotationally symmetric (NRS) wavefront variance,

WvarNRS =
1
36

[9A2
131,x + 9A2

131,y + 8A2
220M ,y + 4(A222,x − Ad

222,x)
2

+ 4A2
222,y + 3B4

222,x + 3B4
222,y + 2B2

222,yW222].
(12)

The next step is to substitute here the formulae for each coefficient in terms of the optical
system parameters, followed by the calculation of the partial derivatives with respect to the tilts
α1, β1, α2, and β2, which will be equated to zero. Solving the resulting set of equations provides
an initial set of angles that can be fed to ray tracing software for further refinement.

The search for analytical solutions for such system of equations could be pursued using
symbolic calculation engines, such as MATLAB (Mathworks, Natick, MA, USA) or Mathematica
(Wolfram Research, Champaign, IL, USA). Alternatively, numerical solutions could be pursued,
although widely used solvers (e.g., MATLAB’s vpasolve or the Nelder–Mead minimization
method implemented in MATLAB through the fminsearch function) might not be able to find the
global field-averaged wavefront variance minimum, as they might get stuck in local minima.

Part of the challenge in solving such system of equations comes from the appearance of
trigonometric functions of the tilts. Therefore, in what follows we sought approximate solutions
by using the small angle approximation (i.e., sin θ ≈ θ, cos θ ≈ 1) on the formulae describing
the wavefront aberration coefficients.

2.5. Linear astigmatism targeting across a vergence range

Some applications require a target wavefront across a range of conjugates, which for convenience
we express in terms of vergence (ϕv), defined as the marginal ray angle divided by the ray height
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at the pupil. In this scenario, the quantity that should be minimized, assuming that all vergences
within the range are of equal importance, is the field-averaged wavefront variance averaged across
the desired vergence range,

WvarNRS =
1

(ϕv,max − ϕv,min)

∫ φv,max

φv,min

WvarNRSdϕv, (13)

where the first overbar denotes average across the field of view and the second across the vergence
range.

3. Afocal relay

Let us now study an afocal relay consisting of two elements with focal lengths f1 and f2, separated
by the sum of their focal lengths, with the entrance pupil a focal length in front of the first optical
element and the exit pupil, a focal length behind the second element. For the infinite conjugate in
this system, the magnification is m = −f2/f1, with the marginal ray of height with radius h0 at the
entrance pupil emerging collimated.

3.1. Reflective afocal relay

When the proposed afocal relay is reflective and formed by two concave spherical mirrors as
depicted in Fig. 4 below, the field shift vectors calculated using Eqs. (2) to (5) are,

⇀
σ1 =

2
tan(HFOV)

⎡⎢⎢⎢⎢⎣
cosα1sinβ1
− sinα1

⎤⎥⎥⎥⎥⎦ and ⇀
σ2 =

2m
tan(HFOV)

⎡⎢⎢⎢⎢⎣
− cosα2 sin β2

sinα2

⎤⎥⎥⎥⎥⎦ . (14)

These can be combined with the traditional definition of the Wklm, j coefficients for rotationally
symmetric aberrations of each surface [22] and substituted in Eq. (7) to calculate the non-
rotationally symmetric wavefront aberration coefficients, which we show in Table 1 below as a
function of vergence.

2.5 Linear astigmatism targeting across a vergence range 

Some applications require a target wavefront across a range of conjugates, which for 
convenience we express in terms of vergence (𝜙௩), defined as the marginal ray angle divided 
by the ray height at the pupil. In this scenario, the quantity that should be minimized, assuming 
that all vergences within the range are of equal importance, is the field-averaged wavefront 
variance averaged across the desired vergence range,  
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𝑑𝜙௩, (13) 

where the first overbar denotes average across the field of view and the second across the 
vergence range. 

3. Afocal relay 

Let us now study an afocal relay consisting of two elements with focal lengths 𝑓ଵ  and 𝑓ଶ , 
separated by the sum of their focal lengths, with the entrance pupil a focal length in front of the 
first optical element and the exit pupil, a focal length behind the second element. For the infinite 
conjugate in this system, the magnification is 𝑚 ൌ െ𝑓ଶ/𝑓ଵ, with the marginal ray of height with 
radius ℎ଴ at the entrance pupil emerging collimated. 

3.1 Reflective afocal relay 

When the proposed afocal relay is reflective and formed by two concave spherical mirrors as 
depicted in Fig. 4 below, the field shift vectors calculated using Eqs. (2) to (5) are, 
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These can be combined with the traditional definition of the 𝑊௞௟௠,௝  coefficients for 
rotationally symmetric aberrations of each surface [22] and substituted in Eq. (7) to calculate 
the non-rotationally symmetric wavefront aberration coefficients, which we show in Table 1 
below as a function of vergence. 

 
Fig. 4. Schematic of a reflective afocal relay with tilted elements, in which the black line represents the 
optical axis ray (OAR), the red line the marginal ray, and ℎ଴ entrance pupil radius. 

Table 1. Third order non-rotationally symmetric aberration coefficients for an afocal reflective relay formed by 
tilted concave spherical mirror for conjugates defined in terms of: vergence (𝝓𝒗), half field of view (𝑯𝑭𝑶𝑽), 
entrance pupil radius (𝒉𝟎), focal length of the first spherical mirror (𝒇𝟏), magnification (𝒎ሻ and spherical 
mirror tilt about the local x- (𝜶) and y-axis (𝜷). Note that 𝑩𝟐𝟐𝟎𝑴 is a scalar. 

Fig. 4. Schematic of a reflective afocal relay with tilted elements, in which the black line
represents the optical axis ray (OAR), the red line the marginal ray, and h0 entrance pupil
radius.

The difference between quadratic, linear and constant astigmatism is illustrated by the wavefront
maps shown in Fig. 5 for zero vergence, with the spherical mirrors tilted to generate 0.07 waves
of oblique astigmatism at the field edge. The quadratic astigmatism, unchanged by the tilting
of the spherical mirrors rotate with the angle of the position vector

⇀

H. The linear astigmatism
wavefronts, induced by the tilting of the spherical mirrors, rotate only by half of the position



Research Article Vol. 29, No. 7 / 29 March 2021 / Optics Express 10352

Table 1. Third order non-rotationally symmetric aberration coefficients for an afocal
reflective relay formed by tilted concave spherical mirror for conjugates defined in
terms of: vergence (φv ), half field of view (HFOV ), entrance pupil radius (h0), focal

length of the first spherical mirror (f1), magnification (m) and spherical mirror tilt about
the local x- (α) and y-axis (β). Note that B220M is a scalar.
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A131 −

h3
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4f 2
1
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vector (see dashed lines), while the constant astigmatism wavefronts, also induced by the tilting,
do not change their orientations across the field of view.
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The difference between quadratic, linear and constant astigmatism is illustrated by the 
wavefront maps shown in Fig. 5 for zero vergence, with the spherical mirrors tilted to generate 
0.07 waves of oblique astigmatism at the field edge.  The quadratic astigmatism, unchanged by 
the tilting of the spherical mirrors rotate with the angle of the position vector 𝐻ሬሬ⃑ . The linear 
astigmatism wavefronts, induced by the tilting of the spherical mirrors, rotate only by half of 
the position vector (see dashed lines), while the constant astigmatism wavefronts, also induced 
by the tilting, do not change their orientations across the field of view.  

 
Fig. 5. Quadratic, linear, and constant astigmatism wavefront plots for a reflective afocal relay formed by 
two concave spherical mirrors with 𝑓ଵ = 400 mm, 𝑓ଶ=800 mm, zero vergence and tilt angles 𝛼ଵ ൌ 𝛼ଶ ൌ 0°, 
𝛽ଵ ൌ 7.7° and 𝛽ଶ ൌ 15.3°.  

3.2 Refractive afocal relay 

Fig. 5. Quadratic, linear, and constant astigmatism wavefront plots for a reflective afocal
relay formed by two concave spherical mirrors with f1 = 400 mm, f2=800 mm, zero vergence
and tilt angles α1 = α2 = 0◦, β1 = 7.7◦ and β2 = 15.3◦.



Research Article Vol. 29, No. 7 / 29 March 2021 / Optics Express 10353

3.2. Refractive afocal relay

For an equivalent afocal relay formed by two thin plano-convex lenses with refractive indices n1
and n2, the non-rotationally symmetric aberration coefficients are calculated using the thin lens
approximation, and therefore, each lens has only one field shift vector ⇀

σj. The formulae were
derived with the flatter surfaces facing the infinite conjugate, as depicted in Fig. 6, to minimize
pupil aberrations. The results of the field shift vectors are similar to that of the reflective system,
other than for replacing the 2(−1)j factor due to the reflection on the mirror surfaces with the
(nj − 1) due to the refraction on the lens curved surfaces,

⇀
σ1 =

n1 − 1
tan(HFOV)

⎡⎢⎢⎢⎢⎣
− cosα1 sin β1

sinα1

⎤⎥⎥⎥⎥⎦ and ⇀
σ2 =

m(n2 − 1)
tan(HFOV)

⎡⎢⎢⎢⎢⎣
− cosα2 sin β2

sinα2

⎤⎥⎥⎥⎥⎦ . (15)

For simplicity, the coefficients in Table 2 have been calculated only for zero vergence.

For an equivalent afocal relay formed by two thin plano-convex lenses with refractive indices 
𝑛ଵ and 𝑛ଶ, the non-rotationally symmetric aberration coefficients are calculated using the thin 
lens approximation, and therefore, each lens has only one field shift vector 𝜎⃑௝. The formulae 
were derived with the flatter surfaces facing the infinite conjugate, as depicted in Fig. 6, to 
minimize pupil aberrations. The results of the field shift vectors are similar to that of the 
reflective system, other than for replacing the 2ሺെ1ሻ௝ factor due to the reflection on the mirror 
surfaces with the ൫𝑛௝ െ 1൯ due to the refraction on the lens curved surfaces, 
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For simplicity, the coefficients in Table 2 have been calculated only for zero vergence. 

 
Fig. 6. Systematic of the refractive afocal relay. Lenses are drawn with thicknesses for illustration purpose 
only. Black line represents the optical axis of the system, red line represents the marginal ray, and ℎ଴ is the 
entrance pupil radius. 

Table 2. Third order non-rotationally symmetric aberration coefficients for infinite conjugates in an afocal 
refractive relay formed by two tilted thin plano-convex lenses in terms of: half field of view (𝑯𝑭𝑶𝑽), entrance 
pupil radius (𝒉𝟎), focal length of the first lens (𝒇𝟏), magnification (𝒎ሻ and lens tilt about the local x- (𝜶) and y-
axis (𝜷). Note that 𝑩𝟐𝟐𝟎𝑴 is a scalar. 
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4. Simulation 

The optical systems described above, together with a scanning mirror with dynamic distortion, 
were evaluated using the ray tracing software OpticStudio, assuming 680 nm light. Three afocal 
relays were studied: one formed by two concave spherical mirrors, one formed by two 
commercially available plano-convex singlets (LA1725-A, Thorlabs and PLCX-50.8-412.1-C, 

Fig. 6. Systematic of the refractive afocal relay. Lenses are drawn with thicknesses for
illustration purpose only. Black line represents the optical axis of the system, red line
represents the marginal ray, and h0 is the entrance pupil radius.

Table 2. Third order non-rotationally symmetric aberration
coefficients for infinite conjugates in an afocal refractive relay
formed by two tilted thin plano-convex lenses in terms of: half

field of view (HFOV ), entrance pupil radius (h0), focal length of the
first lens (f1), magnification (m) and lens tilt about the local x- (α)

and y-axis (β). Note that B220M is a scalar.
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4. Simulation

The optical systems described above, together with a scanning mirror with dynamic distortion,
were evaluated using the ray tracing software OpticStudio, assuming 680 nm light. Three
afocal relays were studied: one formed by two concave spherical mirrors, one formed by two
commercially available plano-convex singlets (LA1725-A, Thorlabs and PLCX-50.8-412.1-C,
CVI Laser Optics, Albuquerque, NM, USA), and one formed by two achromatic doublets
(ACT508-400-A, Thorlabs, Newton, NJ, USA, and DLB-50-800PM, Laser 2000, Huntingdon
PE29 6XS, UK), all of them with f1 = 400 and f2 = 800 mm.

The dynamic distortion of the resonant scanner was simulated by inserting a Zernike fringe
phase plate at the entrance pupil plane, with the amplitude of the 6th Zernike term varying linearly
across the ±1° mechanical scanning angle, creating 0.07 or 0.28 waves of oblique astigmatism at
the field edge [10]. Five uniformly spaced field points were simulated as five different OpticStudio
configurations.

A continuous surface wavefront corrector, such as a deformable mirror, was modeled at the
exit pupil plane as a second Zernike fringe phase plate that did not vary across the field of view,
in which all coefficients up to the 8th order were allowed to change during the optimization
process. To avoid introducing unwanted piston and tilts on the deformable mirror, the following
constraints were imposed.

C1 + C4(2ρ2 − 1) = 0

C2ρcosφ + C7(3ρ2 − 2)ρcosφ = 0

C3ρsinφ + C8(3ρ2 − 2)ρsinφ = 0

(16)

where Cn is the coefficient of the Zernike polynomials Zn. These constraints lead to C1 =
C4, C2 = 0.5 C7 and C3 = 0.5 C8, which were set up in OpticStudio as pickups across all
configurations, to account for the fact that the DM affects all configurations equally.

Two ray tracing optimization approaches were pursued for the zero vergence case, one without
the DM and one with it, both using OpticStudio’s default merit function using centroid as
reference (to ignore tilt). This merit function is a discretized version of the field-averaged
wavefront variance. As mentioned earlier, field-constant defocus induced by the tilting of the
relay elements is removed by allowing the distance after the paraxial lens at the exit pupil to vary
during the optimization process.

For the optimization across a vergence range, the same approach was pursued, first without the
DM, and then with it, always with three times the number of configurations, one per vergence.

Fig. 7. Code V (Synopsys, Pasadena, CA, USA) and OpticStudio wavefront map comparison
for a reflective afocal relay formed by two spherical mirrors illuminated with 500 nm light,
HFOV = 2◦, h0 = 2 mm, m = −2, f1 = 400 mm, α1 = α2 = 0◦, β1 = 25◦, and β2 = 45◦.
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The chosen vergences were -2.25, 0.0 and 2.25 diopters (D, inverse of meters), representing
the extremes and middle of the vergence range for an adaptive optics ophthalmoscope [4]. The
vergence was induced by placing paraxial lenses at the entrance and exit pupils with opposite
sign focal lengths and with the exit pupil paraxial lens focal length scaled by the inverse of the
magnification squared. The same DM correction was applied to all vergences and field points.

Piston and tilt were removed from all calculated wavefront maps and their root-mean-squared
(RMS) values. Oblique astigmatism is reported in all figures using the Optical Society of
America [24] and American National Standard Institutes [ANSI Z80.28-2004] conventions, in
which the 3rd Zernike term corresponds to the 6th Fringe Zernike coefficients in OpticStudio
divided by the normalization factor

√
6. Pupil distortion values, inferred from the wavefront

maps generated by OpticStudio, are not thought to be accurate and thus should be considered
just a coarse approximation. In fact, the comparison of wavefront map generated using the same
optical setups using two different ray tracing software, can provide strikingly different pupil
distortion, as illustrated in Fig. 7.

5. Results

5.1. Reflective afocal relay optimized for zero vergence

When considering the zero vergence case, the numerical minimization of the field-averaged
wavefront variance yields two solutions for each desired linear astigmatism amplitude, shown on
Table 3. These solutions show symmetries that can be gleaned from the formulae for

⇀

A222, the
dominant non-rotationally symmetric aberration, can only cancel when α1 = −α2 Similarly, the

cancellation of
⇀

B
2
222 requires β1 = 2β2 (see Table 1 with ϕv = 0).

Table 3. Numerical tilt solutions that minimize the field-averaged
third order wavefront variance in an afocal reflective telescope

formed by two concave spherical mirrors with parameters:
h0 = 2 mm, HFOV = 2◦, f1 = 400 mm, m =-2, and φv = 0. The square

root of the wavefront variances was calculated using the small angle
approximation and the exact formulae in Table 1, expressed in units

of waves.

Ad
222,x = 0.07λ Ad

222,x = 0.28λ

Solution # 1 2 1 2

α1(
◦) 0.0 -13.5 13.5 0.0 -55.9 55.9

α2(
◦) 0.0 13.5 -13.5 0.0 55.9 -55.9

β1(
◦) 0.0 19.1 19.1 0.0 76.3 76.3

β2(
◦) 0.0 9.5 9.5 0.0 38.2 38.2√︂

WvarNRS(approx) 0.023 0.007 0.007 0.093 0.027 0.027√︂
WvarNRS(exact) 0.023 0.023 0.023 0.093 2.954 2.954

The wavefronts and metrics resulting from the ray tracing can be seen in Fig. 8 and Fig. 9
for 0.07 and 0.28 waves of linear oblique astigmatism simulating the dynamic distortion of
two different resonant scanners, respectively. The top row in these figures correspond to the
rotationally symmetric initial configuration (i.e., α1 = α2 = β1 = β2 = 0), in which the dominant
aberration is the resonant scanner linear oblique astigmatism. The second rows show the
performance when the spherical mirrors are tilted as per the first solution in Table 3. The third
rows show the performance when the spherical mirror tilts are optimized by the OpticStudio
starting with zero tilts. For 0.07 waves of linear astigmatism, the tilts calculated using third
order nodal aberration theory and the paraxial approximation are within 5% of the angles found
by OpticStudio, which does not use the paraxial approximation and accounts for higher order
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aberrations. The corresponding pupil distortion is 8% for the small angle NAT prediction, 7%
for the ray tracing optimization and less than 1% for the ray tracing solution with a deformable
mirror compensating field-constant aberrations.

Fig. 8. Wavefront maps and metrics for an afocal relay formed by two spherical mirrors
for -2, -1, 0, 1, and 2° field points, with 0.07 waves of oblique astigmatism at the field edge,
assuming zero vergence (i.e., infinite conjugates).

The small angle approximation NAT calculated tilts provide a poor starting solution for
compensating the 0.28 waves of resonant scanner linear astigmatism. In fact, it increases the
wavefront RMS by more than an order of magnitude, also inducing very large pupil distortion
(77%). This is not surprising, given that the calculated tilts are too large for the small angle
approximation to be valid. Ray tracing optimization, however, reduces the linear astigmatism
while keeping all other aberrations low. In this case, the inclusion of the deformable mirror in the
optimization delivers wavefront RMS at all field points lower than λ/100 with less than λ/1000 of
linear astigmatism, and negligible pupil distortion (<1%) despite spherical mirror tilts being as
large as 40°.

5.2. Refractive afocal relay optimized for zero vergence

For a refractive afocal relay formed by two plano-convex singlets, the numerical minimization of
the field-averaged wavefront variance yields three solutions for each of the linear astigmatism
amplitudes considered (shown on Table 4). These solutions show symmetry that can be gleaned

from the formulae in Table 2 for linear and constant astigmatism (
⇀

A222 and
⇀

B
2
222), the dominant

non-rotationally symmetric aberrations, which cancel when α1 = α2 and β1 = −2β2, respectively.
These relations have opposite signs to their reflective relay equivalent.

The wavefronts and metrics resulting from the ray tracing are shown in Fig. 10–Fig. 13 for
the 0.07 and 0.28 waves of linear astigmatism, first for a relay formed by plano-convex singlet
lenses, and then for a relay formed by commercial achromatic doublets. The rows in these
figures match those from the reflective system. In the plano-convex singlet relay, the rotationally
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Fig. 9. Wavefront maps and metrics for an afocal relay formed by two spherical mirrors
for -2, -1, 0, 1, and 2° field points, with 0.28 waves of oblique astigmatism at the field edge,
assuming zero vergence (i.e., infinite conjugates).

Table 4. Numerical tilt solutions that minimize the field-averaged third order
wavefront variance in an afocal refractive telescope formed with by two thin

plano-convex lenses with parameters: h0 = 2 mm, HFOV = 2◦, f1 = 400 mm, m =-2,
n1 = n2 = 1.5136, and φv = 0. The square root of the wavefront variances was

calculated using the small angle approximation and the exact formulae in Table 1,
expressed in units of waves.

Ad
222,x = 0.07λ Ad

222,x = 0.28λ

Solution # 1 2 3 1 2 3

α1(
◦) 0 2.5 -2.5 0.0 0 12.3 -12.3 0.0

α2(
◦) 0 2.5 -2.5 0.0 0 12.3 -12.3 0.0

β1(
◦) 0 -4.4 -4.4 -3.3 0 -17.7 -17.7 -5.7

β2(
◦) 0 2.2 2.2 1.7 0 8.8 8.8 2.9√︂

WvarNRS(approx) 0.023 0.007 0.007 0.009 0.093 0.038 0.038 0.073√︂
WvarNRS(exact) 0.023 0.007 0.007 0.009 0.093 0.042 0.042 0.073
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Fig. 10. Wavefront maps and metrics for an afocal relay formed by two plano-convex lenses
for -2, -1, 0, 1, and 2° field points, with 0.07 waves of oblique astigmatism at the field edge,
assuming zero vergence (i.e., infinite conjugates).

Fig. 11. Wavefront maps and metrics for an afocal relay formed by two plano-convex lenses
for -2, -1, 0, 1, and 2° field points, with 0.28 waves of oblique astigmatism at the field edge,
assuming zero vergence (i.e., infinite conjugates).
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symmetric system is dominated by the linear astigmatism and other field-varying aberrations.
The tilts predicted by the small angle NAT approximation are reasonable initial solutions that
are within 20 and 32% of those found by the ray tracing optimizer for 0.07 and 0.28 waves of
linear astigmatism, respectively. The ray tracing solutions deliver λ/60 wavefront RMS or better
across the field of view, and no substantial improvement when using a deformable mirror. Pupil
distortion is negligible (<1%) in all configurations for the 0.07 waves of linear astigmatism, but
not for 0.28 waves (9%), which requires the use of a deformable mirror to achieve both good
wavefront correction and negligible pupil distortion. The achromatic doublet relay shows similar
performance to that of the plano-convex lens relays, suggesting that the singlet NAT derivations
can be used to generate initial solutions for more complex lenses. Interestingly, the refractive
element tilts are ∼3-4 times lower than their reflective equivalents to achieve the same linear
astigmatism, due to the ∼15 times larger W222,j surface coefficients and ∼2 times smaller field
displacement vectors in our application.

Fig. 12. Wavefront maps and metrics for an afocal relay formed by two achromatic doublets
(ACT508-400-A, Thorlabs, and DLB-50-800PM, Laser 2000) for -2, -1, 0, 1, and 2° field
points, with 0.07 waves of oblique astigmatism at the field edge, assuming zero vergence.

5.3. Reflective afocal relay optimized for a vergence range

The numerical minimization of the vergence and field-averaged wavefront variance, defined in
Eq. (13), yields only one solution for the desired linear astigmatism amplitude (α1 = α2 = 0,
β1 = 1.89◦, and β2 = 1.33◦). Interestingly, the small angle approximation NAT solution and
the ray tracing optimal solutions (with and without using a DM) have much smaller angles than
those for the zero vergence case, achieving a more modest level of correction that varies between
50 and 70% across vergences and field points (Fig. 14).
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Fig. 13. Wavefront maps and metrics for an afocal relay formed by two achromatic doublets
(ACT508-400-A, Thorlabs, and DLB-50-800PM, Laser 2000) for -2, -1, 0, 1, and 2° field
points, with 0.28 waves of oblique astigmatism at the field edge, assuming zero vergence.
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Fig. 14. Wavefront maps and metrics for an afocal relay formed by two spherical mirrors
for -2, -1, 0, 1, and 2° field points, with 0.07 waves of oblique astigmatism at the field edge,
for three vergences.
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6. Summary

Here we illustrated how third order nodal aberration theory can be used to estimate initial
tilting and/or decentering of optical elements to be refined by ray tracer optimizers. The first
step in this broadly applicable approach is to analytically derive the field displacement vectors
and the aberration coefficients for rotationally symmetric surfaces, together with a symbolic
calculator to obtain a small angle approximation of the field-averaged wavefront variance that is
then analytically or numerically minimized. This method, which can be applied to any pupil
and field geometries, can be thought of a generalization of that by Zhong and Gross, in which
the authors only consider a single field point [15]. Moreover, our approach is the continuous
equivalent of what ray tracer optimizers do, by minimizing merit functions that discretely sample
the continuous field-averaged wavefront variance. The main difference between the two, is that
ray tracing software traces real, rather than paraxial, rays and includes higher order aberrations.
Just like the merit function in ray tracers can be tailored to a particular optical design problem, the
function to minimize analytically (or numerically) can be equally modified, as we demonstrated
by calculating the field-averaged wavefront variance for a field of view that is a line segment and
then averaging across a vergence range. Finally, and despite the small angle approximation, the
analytical approach provides insight and can reveal all the solutions and their symmetry. This
might not be trivial to find with ray tracing optimization without systematic exploration of the
multi-dimensional design parameter space.

When the proposed design method is applied to the compensation of the dynamic distortion
of a resonant scanner, it guided us to solutions that compensate modest linear astigmatism
amplitudes using reflective or refractive afocal relays, while keeping all other aberrations well
beyond the diffraction limit (λ/14 wavefront RMS). This is of practical significance, because
it indicates that the linear astigmatism induced by resonant scanners in high resolution optical
systems can be cancelled or mitigated just by tilting existing optical elements, even if multiple
conjugates are used simultaneously.
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