Skip to main content
. 2021 Jun 14;12:683516. doi: 10.3389/fpls.2021.683516

FIGURE 5.

FIGURE 5

TIMING OF CAB EXPRESSION1 controls the diurnal and circadian expression of FUM2 by direct binding to its promoter. (A) Relative fumaric acid content in WT, TOC1-ox and toc1-2 plants entrained under LD cycles and then transferred for 2 days to LL before sampling at Circadian Time 7 (7 h after subjective dawn) CT7 and CT19. (B) Time course analyses of FUM1 expression in WT plants grown under LD or transferred for 2 days to LL before sampling. (C) Time course analyses of FUM2 expression in WT, TOC1-ox and toc1-2 plants grown under LD. (D) Time course analyses of FUM2 expression in WT and TOC1-ox plants grown under LD transferred for 2 days to LL before sampling. (E) Chromatin immunoprecipitation (ChIP) assays with TOC1-ox plants grown under LD and sampled at ZT7. ChIP enrichment was calculated relative to the input. Samples were incubated with an anti-MYC antibody (+α) or without antibody (-α). (F) ChIP assays with TMG plants grown under LD and sampled every 4 h over the diurnal cycle. ChIPs were performed with an anti-GFP antibody to immunoprecipitate the GFP-tagged TOC1 protein. ChIP enrichment was calculated relative to the input. The white and gray areas in panel (C) represent day and night, respectively. The white and dotted areas in panel (D) represent subjective day and subjective night, respectively. Three biological replicates were performed for all experiments, with plants grown independently, and with samples collected, processed and analyzed at different times. Two-tailed, t-test of WT Vs. TOX1ox p-values: *p < 0.05 and WT Vs. toc1-2 p-values: #< 0.05.