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Abstract

Language models have recently emerged as a powerful machine learning approach for distilling 

information from massive protein sequence databases. From readily available sequence data alone, 

these models discover evolutionary, structural, and functional organization across protein space. 

Using language models, we can encode amino acid sequences into distributed vector 

representations that capture their structural and functional properties as well as evaluate the 

evolutionary fitness of sequence variants. We discuss recent advances in protein language 

modeling and their applications to downstream protein property prediction problems. We then 

consider how these models can be enriched with prior biological knowledge and introduce an 

approach for encoding protein structural knowledge into the learned representations. The 

knowledge distilled by these models allows us to improve downstream function prediction through 

transfer learning. Deep protein language models are revolutionizing protein biology. They suggest 

new ways to approach protein and therapeutic design. However, further developments are needed 

to encode strong biological priors into protein language models and to increase their accessibility 

to the broader community.

Introduction

Proteins are molecular machines that carry out the majority of the molecular function of 

cells. They are composed of linear sequences of amino acids which fold into complex 

ensembles of 3-dimensional structures, which can range from ordered to disordered and 

undergo conformational changes; biochemical and cellular functions emerge from protein 

sequence and structure. Understanding the sequence-structure-function relationship is the 
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central problem of protein biology and is pivotal for understanding disease mechanisms and 

designing proteins and drugs for therapeutic and bioengineering applications.

The complexity of the sequence-structure-function relationship continues to challenge our 

computational modeling ability, in part because existing tools do not fully realize the 

potential of the increasing quantity of sequence, structure, and functional information stored 

in large databases. Until recently, computational methods for analyzing proteins have used 

either first principles-based structural simulations or statistical sequence modeling 

approaches that seek to identify sequence patterns that reflect evolutionary, and therefore 

functional, pressures 1-5 (Figure 1). Within these methods, structural analysis has been 

largely first principles driven while sequence analysis methods are primarily based on 

statistical sequence models, which make strong assumptions about evolutionary processes, 

but have become increasingly data driven with the growing amount of available natural 

sequence information.

Physics-based approaches use all atom energy functions 6-8 or heuristics designed for 

proteins 9 to estimate the energy of a given conformation and simulate natural motions. 

These methods are appealing, because they draw on our fundamental understanding of the 

physics of these systems and generate interpretable hypotheses. The Rosetta tool, which 

stitches together folded fragments associated with small constant-size contiguous 

subsequences, has been remarkably successful in its use of free energy estimation for protein 

folding and design 10, and molecular dynamics software such as GROMACS are widely 

used for modeling dynamics and fine-grained structure prediction 6. Statistical sampling 

approaches have also been developed that seek to sample from accessible conformations 

based on coarse grained energy functions 11-13. Rosetta has been especially successful for 

solving the design problem by using a mix of structural templates and free energy 

minimization to find sequences that match a target structure. However, despite Rosetta’s 

successes, it and similar approaches assume simplified energy models, are extremely 

computationally expensive, require expert knowledge to set up correctly, and have limited 

accuracy.

At the other end of the spectrum, statistical sequence models have proven extremely useful 

for modeling the amino acid sequences of related sets of proteins. These methods allow us to 

discover constraints on amino acids imposed by evolutionary pressures and are widely used 

for homology search 9,14-17 and for predicting residue-residue contacts in the 3D protein 

structure using covariation between amino acids at pairs of positions in the sequence 

(coevolution)1,2,18-24. Advances in protein structure prediction have been driven by building 

increasingly large deep learning systems to predict residue-residue distances from sequence 

families 3,25 and fold proteins based on the predicted distance constraints which culminated 

recently in the success of AlphaFold2 at the Critical Assessment of protein Structure 

Prediction (CASP) 14 competition 26. These methods rely on large datasets of protein 

sequences that are similar enough to be aligned with high confidence but contain enough 

divergence to confidently infer statistical couplings between positions. Accordingly, they are 

unable to learn patterns across large-scale databases of possibly unrelated proteins and have 

limited ability to draw on the increasing structure and function information available.
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Language models have recently emerged as a powerful paradigm for generative modeling of 

sequences and as a means to learn “content-aware” data representations from large-scale 

sequence datasets. Statistical language models are probability distributions over sequences 

of tokens (e.g. words or characters in natural language processing, amino acids for proteins). 

Given a sequence of tokens, a language model assigns a probability to the whole sequence. 

In natural language processing (NLP), language models are widely used for machine 

translation, question-answering, and information retrieval amongst other applications. In 

biology, profile Hidden Markov Models (HMMs) are simple language models that are 

already widely used for homology modeling and search. Language models capture complex 

dependencies between amino acids and can be trained on all protein sequences rather than 

being focused on individual families; in doing so, they have the potential to push the limits 

of statistical sequence modeling. In bringing these models to biology, we now not only have 

the ability to learn from naturally observed sequences, including across all of known 

sequence space 27,28, but are also able to incorporate existing structural and functional 

knowledge through multi-task learning. Language models learn the probability of a sequence 

occurring and this can be directly applied to predict the fitness of sequence mutations 29-31 . 

They also learn summary representations, powerful features that can be used to better 

capture sequence relationships and link sequence to function via transfer learning 27,28,32-35. 

Finally, language models also offer the potential for controlled sequence generation by 

conditioning the language model on structural36 or functional 37 specifications.

Deep language models are an exciting breakthrough in protein sequence modeling, allowing 

us to discover aspects of structure and function from only the evolutionary relationships 

present in a corpus of sequences. However, the full potential of these models has not been 

realized as they continue to benefit from more parameters, more compute power, and more 

data. At the same time, these models can be enriched with strong biological priors through 

multi-task learning.

Here, we propose that methods incorporating both large datasets and strong domain 

knowledge will be key to unlocking the full potential of protein sequence modeling. 

Specifically, physical structure-based priors can be learned through structure supervision 

while also learning evolutionary relationships from hundreds of millions of natural protein 

sequences. Furthermore, the evolutionary and structural relationships encoded allow us to 

learn functional properties of proteins through transfer learning. In this synergy, we will 

discuss these developments and present new results towards enriching large-scale language 

models with structure-based priors through multi-task learning. First, we will discuss new 

developments in deep learning and language modeling and their application to protein 

sequence modeling with large datasets. Second, we will discuss how we can enrich these 

models with structure supervision. Third, we will discuss transfer learning and demonstrate 

that the evolutionary and structural information encoded in our deep language models can be 

used to improve protein function prediction. Finally, we will discuss future directions in 

protein machine learning and large-scale language modeling.
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Protein language models distill information from massive protein sequence 

databases

Language models for protein sequence representation learning (Figure 2) have seen a surge 

of interest following the success of large-scale models in the field of natural language 

processing (NLP). These models draw on the idea that distributed vector representations of 

proteins can be extracted from generative models of protein sequences, learned from a large 

and diverse database of sequences across natural protein space, and thus can capture the 

semantics, or function, of a given sequence. Here, function refers to any and all properties 

related to what a protein does. These properties are often subject to evolutionary pressures, 

because these functions must be maintained or enhanced in order for an organism to survive 

and reproduce. These pressures manifest in the distribution over amino acids present in 

natural protein sequences and, hence, are discoverable from large and diverse enough sets of 

naturally occurring sequences.

The ability to learn semantics emerges from the distributional hypothesis: tokens (e.g. 

words, amino acids) that occur in similar contexts tend to carry similar meanings. Language 

models only require sequences to be observed and are trained to model the probability 

distribution over amino acids using an autoregressive formulation (Figure 2a, 2b) or masked 

position prediction formulation (also called a cloze task in NLP, Figure 2c). In 

autoregressive language models, the probability of a sequence is factorized such that the 

probability of each token is conditioned only on the preceding tokens. This factorization is 

exact and is useful when sampling from the distribution or evaluating the probabilities 

themselves is of primary interest. The drawback to this formulation is that the 

representations learned for each position depend only on preceding positions, potentially 

making them less useful as contextual representations. The masked position prediction 

formulation (also known as masked language modeling) addresses this problem by 

considering the probability distribution over each token at each position conditioned on all 

other tokens in the sequence. The masked language modeling approach does not allow 

calculating correctly normalized probabilities of whole sequences but is more appropriate 

when the learned representations are the outcomes of primary interest. The unprecedented 

recent success of language models in natural language processing, e.g.Google’s BERT and 

OpenAI’s GTP-3, is largely driven by their ability to learn from billions of text entries in 

enormous online corpora. Analogously, we have natural protein sequence databases with 

100s of millions of unique sequences that continue to grow rapidly.

Recent advances in NLP have been driven by innovations in neural network architectures, 

new training approaches, increasing compute power, and increasing accessibility of huge 

text corpuses. Several NLP methods have been proposed that draw on unsupervised, now 

often called self-supervised, learning 38,39 to fit large-scale bidirectional long-short term 

recurrent neural networks (bidirectional LSTMs or biLSTMs) 40,41 or Transformers 42 and 

its recent variants. LSTMs are recurrent neural networks. These models process sequences 

one token at a time in order and therefore learn representations that capture information 

from a position and all previous positions. In order to include information from tokens 

before and after any given position, bidirectional LSTMs combine two separate LSTMs 
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operating in the forward and backward directions in each layer (e.g. as in Figure 2b). 

Although these models are able to learn representations including whole sequence context, 

their ability to learn distant dependencies is limited in practice. To address this limitation, 

transformers learn representations by explicitly calculating an attention vector over each 

position in the sequence. In the self-attention mechanism, the representation for each 

position is learned by “attending to” each position of the same sequence, well suited for 

masked language modeling (Figure 2c). In a self-attention module, the output representation 

of each element of a sequence is calculated as a weighted sum over transformations of the 

input representations at each position where the weighting itself is based on a learned 

transformation of the inputs. The attention mechanism is typically believed to allow 

transformers to learn dependencies between positions distant in the linear sequence more 

easily. Transformers are also useful as autoregressive language models.

In natural language processing, Peters et al. recognized that the hidden layers (intermediate 

representations of stack neural networks) of biLSTMs encoded semantic meaning of words 

in context. This observation has been newly leveraged for biological sequence analysis 27,28 

to learn more semantically meaningful sequence representations. The success of deep 

transformers for machine translation inspired their application to contextual text embedding, 

that is learning contextual vector embeddings of words and sentences, giving rise to the now 

widely used Bidirectional Encoder Representations from Transformers (BERT) model in 

NLP 39. BERT is a deep transformer trained as a masked language model on a large text 

corpus. As a result, it learns contextual representations of text that capture contextual 

meaning and improve the accuracy of downstream NLP systems. Transformers have also 

demonstrated impressive performance as autoregressive language models, for example with 

the Generative Pre-trained Transformer (GPT) family of models 43-45, which have made 

impressive strides in natural language generation. These works have inspired subsequent 

applications to protein sequences 32,33,46,47.

Although transformers are powerful models, they require enormous numbers of parameters 

and train more slowly than typical recurrent neural networks. With massive scale datasets 

and compute and time budgets, transformers can achieve impressive results, but, generally, 

recurrent neural networks (e.g., biLSTMs) need less training data and less compute, so 

might be more suitable for problems where fewer sequences are available, such as training 

on individual protein families, or compute budgets are tight. Constructing language models 

that achieve high accuracy with better compute efficiency is an algorithmic challenge for the 

field. An advantage of general purpose pre-trained protein models is that we only need to do 

the expensive training step once; the models can then be used to make predictions or can be 

applied to new problems via transfer learning 48, as discussed below.

Using these and other tools, protein language models are able to synthesize the enormous 

quantity of known protein sequences by training on 100s of millions of sequences stored in 

protein databases (e.g. UniProt, Pfam, NCBI 15,49,50). The distribution over sequences 

learned by language models captures the evolutionary fitness landscape of known proteins. 

When trained on tens of thousands of evolutionarily related proteins, the learned probability 

mass function describing the empirical distribution over naturally occurring sequences has 

shown promise for predicting the fitness of sequence variants 29-31. Because these models 
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learn from evolutionary data directly, they are able to make accurate predictions about 

protein function when function is reflected in the fitness of natural sequences. Riesselman et 
al. first demonstrated that language models fit on individual protein families are surprisingly 

accurate predictors of variant fitness measured in deep mutational scanning datasets 29. New 

work has since shown that the representations learned by language models are also powerful 

features for learning of variant fitness as a subsequent supervised learning task 32,34, 

building on earlier observations that language models can improve protein property 

prediction through transfer learning 27. Recently, Hie et al. used language models to learn 

evolutionary fitness of viral envelope proteins and were able to predict mutations that could 

allow the SARS-CoV-2 spike protein to escape neutralizing antibodies 30,31. As of 

publication, several variants predicted to have high escape potential have appeared in SARS-

CoV-2 sequencing efforts around the world, but viral escape has not yet been experimentally 

verified 51.

A few recent works have focused on increasing the scale of these models by adding more 

parameters and more learnable layers to improve sequence modeling. Interestingly, because 

so many sequences are available, these models continue to benefit from increased size 32. 

This parallels the general trend in natural language processing, where the number of 

parameters, rather than specific architectural choices, is the best indicator of model 

performance 52. However, ultimately, model size is limited by the computational resources 

available to train and apply these models. In NLP, models such as BERT and GPT-3 have 

become so large that only the best funded organizations with massive Graphics Processing 

Unit (GPU) compute clusters are realistically able to train and deploy them. This is 

demonstrated in some recent work on protein models where single transformer-based 

models were trained for days to weeks on hundreds of GPUs 32,46,47, costing potentially 

100s of thousands of dollars for training. Increasing the scale of these models promises to 

continue to improve our ability to model proteins, but more resource efficient algorithms are 

needed to make these models more accessible to the broader scientific community.

So far, the language models we have discussed use natural protein sequence information. 

However, they do not learn from the protein structure and function knowledge that has been 

accumulated over the past decades of protein research. Incorporating such knowledge 

requires supervised approaches.

Supervision encodes biological meaning

Proteins are more than sequences of characters: they are physical chains of amino acids that 

fold into three-dimensional structures and carry out functions based on those structures. The 

sequence-structure-function relationship is the central pillar of protein biology and 

significant time and effort has been spent to elucidate this relationship for select proteins of 

interest. In particular, the increasing throughput and ease-of-use of protein structure 

determination methods, (e.g. x-ray crystallography and cryo-EM 53,54), has driven a rapid 

increase in the number of known protein structures available in databases such as the Protein 

Data Bank (PDB) 55. There are nearly 175,000 entries in PDB as of publication and this 

number is growing rapidly. 14,000 new structures were deposited in 2020 and the rate of 

new structure deposition is increasing. We pursue the intuition that incorporating such 
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knowledge into our models via supervised learning can aid in predicting function from 

sequence, bypassing the need for solved structures.

Supervised learning is the problem of finding a mathematical function to predict a target 

variable given some observed variables. In the case of proteins, supervised learning is 

commonly used to predict protein structure from sequence, protein function from sequence, 

or for other sequence annotation problems (e.g., signal peptide or transmembrane region 

annotation). Beyond making predictions, supervised learning can be used to encode specific 

semantics into learned representations. This is common in computer vision where, for 

example, pre-training image recognition models on the large ImageNet dataset is used to 

prime the model with information from natural image categories 56.

When we use supervised approaches, we encode semantic priors into our models. These 

priors are important for learning relationships that are not obvious from the raw data. For 

example, unrelated protein sequences can form the same structural fold and, therefore, are 

semantically similar. However, we cannot deduce this relationship from sequences alone. 

Supervision is required to learn that these sequences belong to the same semantic category. 

Although structure is more informative of function than sequence 57,58 and structure is 

encoded by sequence, predicting structure remains hard, particularly due to the relative 

paucity of structural relative to sequence data. Significant strides have been made recently 

with massive computing resources 26; yet there is still a long way to go before a complete 

sequence to structure mapping is possible. The degree to which such a map could or should 

be possible, even in principle, is unclear.

Evolutionary relationships between sequences are informative of structural and functional 

relationships, but only when the degree of sequence homology is sufficiently high. Above 

30% sequence identity, structure and function are usually conserved between natural 

proteins 59. Often called the “twilight zone” of protein sequence homology, proteins with 

similar structures and functions still exist below this level, but they can no longer be detected 

from sequence similarity alone and it is unclear whether their functions are conserved. 

Although it is generally believed that proteins with similar sequences form similar 

structures, there are also interesting examples of highly similar protein sequences having 

radically different structures and functions 60,61 and of sequences that can form multiple 

folds 62. Evolutionary innovation requires that protein function can change with only a few 

mutations. Furthermore, it is important to note that although structure and function are 

related, they should not be directly conflated.

These phenomena suggest that there are aspects of protein biology that may not be 

discoverable by statistical sequence models alone. Supervision that represents known protein 

structure, function, and other prior knowledge may be necessary to encode distant sequence 

relationships into learned embeddings. By analogy, cars and boats are both means of 

transportation, but we would not expect a generative image model to infer this relationship 

from still images alone. However, we can teach these relationships through supervision.

On this premise, we hypothesize that incorporating structural supervision when training 

protein language models will improve the ability to predict function in downstream tasks 
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through transfer learning. Eventually, such language models may become powerful enough 

that we can predict function directly without the need for solved structures. In the remainder 

of this Synthesis, we will explore this idea.

Multi-task language models capture the semantic organization of proteins

Here, we will demonstrate that training protein language models with self-supervision on a 

large amount of natural sequence data and with structure supervision on a smaller set of 

sequence, structure pairs enriches the learned representations and translates into 

improvements in downstream prediction problems (Figure 3). First, we generate a dataset 

that contains 76 million protein sequences from Uniref 63 and an additional 28,000 protein 

sequences with structures from the Structural Classification of Proteins (SCOP) database, 

which classifies protein sequences into a hierarchy of structural motifs based on their 

sequence and structural similarities (e.g. family, super-family, class) 64,65. Next, we train a 

bidirectional LSTM with three learning tasks simultaneously: 1) the masked language 

modeling task (Figure 3a, 2c), 2) residue-residue contact prediction (Figure 3b), and 3) 

structural similarity prediction (Figure 3c).

The fundamental idea behind this novel training scheme is to combine self-supervised and 

supervised learning approaches to overcome the shortcomings of each. Specifically, the 

masked language modeling objective (self-supervision) allows us to learn from millions of 

natural protein sequences from the Uniprot database. However, this does not include any 

prior semantic knowledge from protein structure and, therefore, has difficulty learning 

semantic similarity between divergent sequences. To address this, we consider two structural 

supervision tasks, residue-residue contact prediction and structural similarity prediction, 

trained with tens of thousands of protein structures classified by SCOP. In the residue-

residue contact prediction task, we use the hidden layers of the language model to predict 

contacts between residues within the 3D structure using a learned bilinear projection layer 

(Figure 3b). In the structural similarity prediction task, we use the hidden layers of the 

language model to predict the number of shared structural levels in the SCOP hierarchy by 

aligning the proteins in vector embedding space and using this alignment score to predict 

structural similarity from the sequence embeddings. This task is critical for encoding 

structural relationships between unrelated sequences into the model. The parameters of the 

language model are shared across the self-supervised and two supervised tasks and the entire 

model is trained end-to-end. The set of proteins with known structure is much smaller than 

the full set of known proteins in Uniprot and, therefore, by combining these tasks in a multi-

task learning approach we can learn language models and sequence representations that are 

enriched with strong biological priors from known protein structures. We refer to this model 

as the MT-(multi-task-)LSTM.

Next, we demonstrate how the trained language model can be used for protein sequence 

analysis and compare this with conventional approaches. Given the trained MT-LSTM, we 

apply it to new protein sequences to embed them into the learned semantic representation 

space (Figure 4a). Sequences are fed through the model and the hidden layer vectors are 

combined to form vector embeddings of each position of the sequences. Given a sequence of 

length L, this yields L D-dimensional vectors, where D is the dimension of the vector 
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embeddings. This allows us to map the semantic space of each residue within a sequence, 

but we can also map the semantic space of whole sequences by summarizing them into fixed 

size vector embeddings via a reduction operation. Practically, this is useful for coarse 

sequence comparisons including clustering and manifold embedding for visualization of 

large protein datasets, revealing evolutionary, structural, and functional relationships 

between sequences in the dataset (Figure 4b). In this figure, we visualize proteins in the 

SCOP dataset, colored by structural class, after embedding with our MT-LSTM. For 

comparison, we also show results of embedding using a bidirectional LSTM trained only 

with the masked language modeling objective (DLM-LSTM), which is not enriched with the 

structure-based priors. We observe that even though the DLM-LSTM model was trained 

using only sequence information, protein sequences still organize roughly by structure in 

embedding space. However, this organization is improved when we include structure 

supervision in the language model training (Figure 4b).

The semantic organization of our learned embedding space enables a direct application: we 

can search protein sequence databases for semantically related proteins by comparing 

proteins based on their vector embeddings 27. Because we embed sequences into a semantic 

representation space, we can find structurally related proteins even though their sequences 

are not closely related (Figure 4c, Supplemental Table 1). To demonstrate this, we take pairs 

of proteins in the SCOP database, not seen by our multi-task model during training, and 

calculate the similarity between these pairs of sequences using direct sequence homology-

based methods (Needleman-Wunsch alignment, HMM-sequence alignment, and HMM-

HMM alignment66-68), a popular structure-based method (TMalign 69), and an alignment 

between the sequences in our learned embedding space. We then evaluate these methods 

based on their ability to correctly find pairs of proteins that are similar at the class, fold, 

superfamily, and family level, based on their SCOP classification. We find that our learned 

semantic embeddings dramatically outperform the sequence comparison methods and even 

outperform structure comparison with TMalign when predicting structural similarity. 

Interestingly, we observe that the structural supervision component is critical for learning 

well organized embeddings at a fine-grained level, because the DLM-LSTM representations 

alone do not perform well at this task (Supplemental Table 1). Furthermore, the multi-task 

learning approach outperforms a two-step learning approach presented previously (SSA-

LSTM)27.

With the success of our self-supervised and supervised language models, we sought to 

investigate whether protein language models could improve function prediction through 

transfer learning.

Transfer learning improves downstream applications

A key challenge in biology is that many problems are small data problems. Quantitative 

protein characterization assays are rarely high throughput and methods are needed that can 

generalize given only 10s to 100s of experimental measurements. Furthermore, we are often 

interested in extrapolating from data collected over a small region of protein sequence space 

to other sequences, often with little to no homology. Learned protein representations 

improve predictive ability for downstream prediction problems through transfer learning 

Bepler and Berger Page 9

Cell Syst. Author manuscript; available in PMC 2022 June 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Figure 5a). Transfer learning is the problem of applying knowledge learned from solving 

some prior tasks to a different task of interest. In other words, learning to solve task A can 

help learn to solve task B; analogously, learning how to wax cars helps to learn karate moves 

(Karate Kid, 1984). This is especially useful for tasks with little available training data, such 

as protein function prediction, because models can be pre-trained on other tasks with 

plentiful training data to improve performance through transfer learning.

Application of protein language models to downstream tasks through transfer learning was 

first demonstrated by Bepler & Berger 27. They showed that transfer learning was useful for 

structural similarity prediction, secondary structure prediction, residue-residue contact 

prediction, and transmembrane region prediction, by fitting task specific models on top of a 

pre-trained bidirectional language model. The key insight was that the sequence 

representations (vector embeddings) learned by the language model were powerful features 

for solving other prediction problems. Since then, various language model-based protein 

embedding methods have been applied to these and other protein prediction problems 

through transfer learning, including protein phenotype prediction 28,32-34, residue-residue 

contact prediction 32,70, fold recognition 33, protein-protein 71,72 and protein-drug 

interaction prediction 35,73. Recent works have shown that increasing language model scale 

leads to continued improvements in downstream applications, such as residue-residue 

contact prediction 70. We also find that increasing model size improves transfer learning 

performance.

Here, we demonstrate two use cases where transfer learning from our MT-LSTM improves 

performance on downstream tasks. First, we consider the problem of transmembrane 

prediction. This is a sequence labeling task in which we are provided with the amino acid 

sequence of a protein and wish to decode, for each position of the protein, whether that 

position is in a transmembrane (i.e., membrane spanning) region of the protein or not. This 

problem is complicated by the presence of signal peptides, which are often confused as 

transmembrane regions.

In order to compare different sequence representations for this problem, we train a small 

one-layer bidirectional LSTM with a conditional random field (BiLSTM+CRF) decoder on a 

well-defined transmembrane protein benchmark dataset74. Methods are compared by 10-fold 

cross validation. We find that the BiLSTM+CRFs with our new embeddings (DLM-LSTM 

and MT-LSTM) outperform existing transmembrane predictors and a BiLSTM+CRF using 

our previous smaller embedding model (SSA-LSTM). Furthermore, representations learned 

by our MT-LSTM model significantly outperform (paired t-test, p=0.044) the embeddings 

learned by our DLM-LSTM model on this application (Figure 5b).

Second, we demonstrate that we can accurately predict functional implications of small 

changes in protein sequence through transfer learning. An ideal model would be sensitive 

down to the single amino acid level and would group mutations with similar functional 

outcomes closely in semantic space. Recently, Luo et al. presented a method for combining 

language model-based representations with local evolutionary context-based representations 

(ECNet) and demonstrated that these representations were powerful for sequence-to-

phenotype mapping on a panel of deep mutational scanning datasets 34. In this problem, we 
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observe a relatively small set (100s-1000s) of sequence-phenotype measurement pairs and 

our goal is to predict phenotypes for unmeasured variants. Observing that these are small 

data problems, we reasoned that this is an ideal setting for Bayesian methods and that 

transfer learning will be important for achieving good performance. To this end, we propose 

a framework in which sequence variants are first embedded using our MT-LSTM and then 

phenotype predictions are made using Gaussian process (GP) regression using our 

embeddings as features. We find that we can predict the phenotypes of unobserved sequence 

variants across datasets better than existing methods (Figure 5c). Our MT-LSTM embedding 

powered GP achieves an average Spearman correlation of 0.65 with the measured 

phenotypes significantly outperforming (paired t-test, p=0.006) the next best method, 

ECNet, which reaches 0.60 average Spearman correlation.

Semi-supervised learning 75, few-shot learning 76, meta-learning 77,78, and other methods 

for rapid adaptation to new problems and domains will be key future developments for 

pushing the limit of data efficient learning. Methods that capture uncertainty (e.g., Gaussian 

processes and other Bayesian methods) will continue to be important, particularly for 

guiding experimental design. Some recent works have explored Gaussian process-based 

methods for guiding protein design with simple protein sequence representations 79-81. Hie 

et al, presented a GP-based method for guiding experimental drug design informed by deep 

protein embeddings 35. Other works have explored combining neural network and GP 

models 82,83 while still others considered non-GP-based uncertainty aware prediction 

methods for antibody design and major histocompatibility complex (MHC) peptide display 

prediction 84,85. Methods for combining multiple predictors and for incorporating strong 

priors into protein design can also help to alleviate problems that arise in the low data 

regime 86. Transfer learning and massive protein language models will play a key role in 

future protein property prediction and machine learning driven protein and drug design 

efforts.

Conclusions and Perspectives: Strong biological priors are key to 

improving protein language models

Future developments in protein language modeling and representation learning will need to 

model properties that are unique to proteins. Biological sequences are not natural language, 

and we should develop new language models that capture the fundamental nature of 

biological sequences. While demonstrably useful, existing methods based on recurrent 

neural networks and Transformers still do not fundamentally encode key protein properties 

in the model architecture and the inductive biases of these models are only roughly 

understood (Box 1).

Proteins are objects that exist in physical space. Similarly, we understand many of the 

fundamental evolutionary processes that give rise to the diversity of protein sequences 

observed today. These two elements, physics and evolution, are the key properties of 

proteins and our models might benefit from being structured explicitly to incorporate 

evolutionary and physics-based inductive biases. Early attempts at capturing physical 

properties of proteins as part of machine learning models have already demonstrated that 
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conditioning on structure improves generative models of sequence36 and significant work 

has been done in the opposite direction of machine learning-based structure prediction 

methods that explicitly incorporate constraints on protein geometries 3,5,26,87-89. However, 

new methods are needed to fuse these directions with physics-based approaches and to start 

to fully merge sequence- and structure-based models.

At the same time, current protein language models make heavily simplified phylogenetic 

assumptions. By treating each sequence as an independent draw from some prior distribution 

over sequences, current methods assume that all protein sequences arise independently in a 

star phylogeny. Conventionally, this problem is crudely addressed by filtering sequences 

based on percent identity. However, significant effort has been dedicated to understanding 

protein sequences as emerging from tree-structured evolutionary processes over time or 

coalescent processes in reverse time 90,91. Methods for inferring these latent phylogenetic 

trees continue to be of substantial interest 92-94, but are frustrated by long run times and poor 

scalability to large datasets. In the future, deep generative models of proteins might seek to 

merge these disciplines to model proteins as being generated from evolutionary processes 

other than star phylogenies.

Other practical considerations continue to frustrate our ability to develop new protein 

language models and rapidly iterate on experiments. High compute costs and murky design 

guidelines mean that developing new models is often an expensive, time consuming, and ad 

hoc process. It is not clear at what dataset sizes and levels of sequence diversity one model 

will outperform another or how many parameters a model should include. At the upper limit 

of large natural protein databases, larger models continue to yield improved performance. 

However, for individual protein families or other application specific protein data sets, the 

gold standard is to select model architectures and number of parameters via brute force 

hyperparameter search methods. Fine-tuning pre-trained models can help with this problem 

but does not fully resolve it. Sequence length also remains a challenge for these models. 

Transformers scale quadratically with sequence length, which means that in practical 

implementations long sequences need to either be excluded or truncated. New linear 

complexity attention mechanisms may help to alleviate this limitation 95,96. This problem is 

less extreme for recurrent neural networks, which scale linearly with sequence length, but 

very long sequences are still impractical for RNNs to handle and long-range sequence 

dependencies are unlikely to be learned well by these models.

Language models capture complex relationships between residues in protein sequences by 

condensing information from enormous protein sequence databases. They are a powerful 

new development for understanding and making predictions about biological sequences. 

Increasing model size, compute power, and dataset size will only continue to improve 

performance of protein language models. Already, these methods are transforming 

computational protein biology today due to their ease of use and widespread applicability. 

Furthermore, augmenting language models with protein specific properties such as structure 

and function offers one already successful route towards even richer representations and 

novel biology. However, it remains unclear how best to encode prior biological knowledge 

into the inductive bias of these models. We hope this Synthesis propels the community to 
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work towards developing purpose-built protein language models with natural inductive 

biases suited for the physical nature of proteins and how they evolve.

Methods

Bidirectional LSTM encoder with skip connections

We structure the sequence encoder of our DLM- and MT-LSTM models as a three-layered 

bidirectional LSTM with skip connections from each layer to the final output. Our LSTMs 

have 1024 hidden units in each direction of each layer. We feed a 1-hot encoding of the 

amino acid sequence as the input to the first layer. Given a sequence input, x, of length L, 

this sequence is 1-hot encoded into a matrix, O, of size Lx21 where entry oi,j = 1 if xi=j (that 

is, amino acid xi has index j) and oi,j = 0 otherwise. We then calculate H(1) = f(1)(O), H(2) = 

f(2)(H(1)), H(3) = f(3)(H(2)), and Z = [H(1) H(2) H(3)] where H(a) is the hidden units of the ath 

layer and f(a) is ath BiLSTM layer. The final output of the encoder, Z, is the concatenation of 

the hidden units of each layer along the embedding dimension.

Masked language modeling module

We use a masked language modeling objective for training on sequences only. During 

training, we randomly replace 10% of the amino acids in a sequence with either an auxiliary 

mask token or a uniformly random draw from the amino acids and train our model to predict 

the original amino acids at those positions. Given an input sequence, x, we randomly mask 

this sequence to create a new sequence, x’. This sequence is fed into our encoder to give a 

sequence of vector representations, Z. We decode these vectors into a distribution over 

amino acids at each position, p, using a linear layer. The parameters of this layer are learned 

jointly with the parameters of the encoder network. We calculate the masked language 

modeling loss as the negative log likelihood of the true amino acid at each of the masked 

positions, Lmasked = − 1
n ∑i log pi,xi where there are n masked positions indexed by i.

Residue-residue contact prediction module

We predict intra-residue contacts using a bilinear projection of the sequence embeddings. 

Given a sequence, x, with embeddings, Z, calculated using our encoder network, the bilinear 

projection calculates ZWZ⊤ + b, where W and b are learnable parameters of dimension DxD 

and 1 respectively where D is the dimension of an embedding vector. These parameters are 

fit together with the parameters of the encoder network. This produces an LxL matrix, where 

L is the length of x. We interpret the i,jth entry in this matrix as the log-likelihood ratio 

between the probability that the ith and jth residues are within 8 angstroms in the 3D protein 

structure and the probability that they are not. We then calculate the contact loss, Lcontact, as 

the negative log-likelihood of the true contacts given the predict contact probabilities.

Structure similarity prediction module

Our structure similarity prediction module follows previously described methods 21. Given 

two input sequences, X and X’ with lengths N and M, that have been encoded into vector 

representations, Z and Z’, we calculate reduced dimension projections, A = ZB and A’ = 

Z’B, where B is a DxK matrix that is trained together with the encoder network parameters. 
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K is a hyperparameter and is set to 100. Given A and A’, we calculate the inter-residue 

semantic distances between the two sequences as the manhattan distance between 

embedding at position i in the first sequence and embedding at position j in the second 

sequence, di,j = ∥Ai - A’j∥1. Given these distances, we calculate a soft alignment between the 

positions of sequences X and X’. The alignment weight between two positions, i and j, is 

defined as ci,j = αi,j + βi,j − αi,jβi,jwhere αi, j =
ki, j

∑l = 1
N ki, l

 and βi, j =
ki, j

∑l = 1
M kl, j

 and 

ki, j = e−di, j. With the inter-residue semantic distances and the alignment weights, we then 

define a global similarity between the two sequences as the negative semantic distance 

between the positions averaged over the alignment, s = − 1
C ∑i, jci, jdi, j where c = Σi,jci,j.

With this global similarity based on the sequence embeddings in hand, we need to compare 

it against a ground truth similarity in order to calculate the gradient of our loss signal and 

update the parameters. Because we want our semantic similarity to reflect structural 

similarity, we retrieve ground truth labels, t, from the SCOP database by assigning 

increasing levels of similarity to proteins based on the number of levels in the SCOP 

hierarchy that they share. In other words, we assign a ground truth label of 0 to proteins not 

in the same class, 1 to proteins in the same class but not the same fold, 2 to proteins in the 

same fold but not the same superfamily, 3 to proteins in the same superfamily but not in the 

same family, and finally 4 to proteins in the same family. We relate our semantic similarity 

to these levels of structural similarity through ordinal regression. We calculate the 

probability that two sequences are similar at a level t or higher as p(y ≥ t) = θts + bt where θt 

and bt are additional learnable parameters for t ≥ 1. We impose the constraint that θt ≥ 0 to 

ensure that increasing similarity between the embeddings corresponds to increasing numbers 

of shared levels in the SCOP hierarchy. Given these distributions, we calculate the 

probability that two proteins are similar at exactly level t as p(y = t) = p(y ≥ t)(1 − p(y ≥ t + 

1)). That is, the probability that two sequences are similar at exactly level t is equal to the 

probability they are similar at at least level t times the probability they are not similar at a 

level above t.

We then define the structural similarity prediction loss to be the negative log-likelihood of 

the observed similarity labels under this model, Lsimilarity = −log p(y = t).

Multi-task loss

We define the combined multi-task loss as a weighted sum of the language modeling, 

contact prediction, and similarity prediction losses, LMT = λmaskedLmasked + λcontactLcontact 

+ λsimilarityLsimilarity.

Training datasets

We train our masked language models on a large corpus of protein sequences, UniRef9063, 

retrieved in July 2018. This dataset contains 76,215,872 protein sequences filtered to 90% 

sequence identity. For structural supervision, we use the SCOPe ASTRAL protein dataset 

previously presented by Bepler & Berger27,64,65. This dataset contains 28,010 protein 

sequences with known structures and SCOP classifications from the SCOPe ASTRAL 2.06 
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release. These sequences are split into 22,408 training sequences and 5,602 testing 

sequences.

Hyperparameters and training details

We train two language models with different settings of the weights in the loss term. The 

first model, DLM-LSTM, uses only the masked language modeling objective so is trained 

with λmasked = 1, λcontact = 0, and λsimilarity = 0. The second model, MT-LSTM, uses the 

full multi-task objective with weights λmasked = 0.5, λcontact = 0.9, and λsimilarity = 0.1. The 

DLM-LSTM model was trained for 1,000,000 parameter updates using a minibatch size of 

100 using the Adam optimizer97 with a learning rate of 0.0001. The MT-LSTM model was 

also trained for 1,000,000 parameter updates using Adam with a learning rate of 0.0001, but, 

due to GPU RAM restrictions, we had to train the MT-LSTM model with smaller minibatch 

sizes of 64 for the masked language model objective and 16 for the structure-based 

objectives. Following Bepler & Berger27, we sampled pairs of proteins for the structural 

similarity prediction task with an exponential smoothing parameter, τ = 0.5, to oversample 

the relatively rare highly similar protein pairs in the dataset. During training, we applied a 

mild regularization on the structure tasks by randomly resampling positions from a uniform 

distribution over amino acids with probability 0.05.

Models were implemented using PyTorch 98 and trained on a single NVIDIA V100 GPU 

with 32GB of RAM. Training time was roughly 13 days for the DLM-LSTM model and 51 

days for the MT-LSTM model.

Protein structural similarity prediction evaluation

We evaluate protein structural similarity methods on the SCOPe ASTRAL test set described 

above (Training datasets). All methods are evaluated on 100,000 randomly sampled protein 

pairs in this dataset. For each prediction method, we calculate the predicted similarity 

between each pair using only the sequence of each protein with the exception of TMalign 

which operates on the protein structures. Because TMscore is not symmetric, we calculate 

TMscore for both comparison directions and average them together for each protein pair. We 

found this outperformed other methods of combining the two scores. For HHalign, we first 

constructed profile HMMs for each protein by iteratively searching for homologues in the 

uniprot30 database provided by the authors using HHblits 99. We then calculate the 

similarities between each pair of proteins by aligning their HMMs with HHalign. For protein 

language model embedding methods, we calculate the predicted similarity as described 

above (Structural similarity prediction module).

We compare the predicted structural similarity scores against the ground truth scores defined 

by SCOP across a variety of metrics. Accuracy is the fraction of protein pairs for which the 

similarity level is predicted exactly correctly. We also calculate the Pearson correlation 

coefficient (r) and Spearman rank correlation coefficient (ρ) between the predicted and 

ground truth similarities. Finally, we calculate the average-precision score for retrieving 

pairs of proteins at or above each level of similarity. That is, we report the average-precision 

score for each method where the positive set is proteins in the same class, in the same fold, 

in the same superfamily, or in the same family.
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Transmembrane region prediction training and evaluation

We follow the procedure for transmembrane prediction and evaluation previously described 

by Tsirigos et al and the model described by Bepler & Berger 27,74. The TOPCONS2 dataset 

contains protein sequences and transmembrane annotations for four categories of proteins: 

1) proteins with transmembrane regions (TM), 2) proteins with transmembrane regions and a 

signal peptide (TM+SP), 3) proteins without transmembrane regions or a signal peptide 

(globular), and 4) proteins without transmembrane regions but with a signal peptide 

(globular+SP). Altogether, the dataset contains 5154 proteins broken down into 286 TM, 

627 TM+SP, 2927 globular, and 1314 globular+SP proteins.

In order to compare different protein representations for transmembrane prediction, we fit a 

single layer BiLSTM followed by a conditional random field (CRF) decoder using either 1-

hot encodings of the amino acid sequence or embeddings generated by the SSA-LSTM, 

DLM-LSTM, or MT-LSTM models. The BiLSTM has 150 hidden units in each direction 

and the CRF decodes the outputs of the BiLSTM to one of four states: signal peptide, 

cytosolic region, transmembrane region, or extracellular region. In the CRF, we use the 

hidden state grammar and transitions defined by Tsirigos et al. 100 and only fit the input 

potentials. The models are trained for 10 epochs over the data with a batch size of 1 using 

the Adam optimizer97 with a learning rate of 0.0003.

We compare methods by 10-fold cross validation. We calculate prediction performance over 

proteins in the held-out set by decoding the most likely sequence of labels using the Viterbi 

algorithm and then scoring a protein as correctly predicted if 1) the protein is globular and 

we predict no transmembrane or signal peptide regions, 2) the protein is globular+SP and we 

predict that the protein starts with a signal peptide and has no transmembrane regions, 3) the 

protein is TM and we predict the correct number of transmembrane regions with at least 

50% overlap to the ground truth regions and no signal peptide, and 4) the protein is TM+SP 

is the same as TM except that we also predict that the protein starts with a signal peptide.

Sequence-to-phenotype prediction and evaluation

We retrieve the set of deep mutational scanning datasets aggregated by Riesselman et al 29 

and follow the supervised learning procedure used by Luo et al 34. These datasets contain 

phenotypic measurements of sequence variants across a variety of proteins and measured 

phenotypes. Phenotypes include enzyme function 101,102, growth 103-108, stability 109, 

peptide binding 110,111, ligase activity 112, and MIC 113.

For each dataset, we featurize the amino acid sequences of each variant as either a 1-hot 

encoding or by embedding the sequence with our MT-LSTM model. We then apply 

dimensionality reduction to these vectors using PCA down to the minimum of 1000 PCs or 

the number of data points in the dataset to improve the runtime of the learning algorithm. We 

then fit a Gaussian process (GP) regression model using the RBF kernel and fit the kernel 

hyperparameters by maximum likelihood. We implement our GP models in GPyTorch 114. 

To compare methods, we follow Luo et al and perform 5-fold cross validation on each deep 

mutational scanning dataset 34 and calculate the Spearman rank correlation coefficient 
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between our predicted phenotypes and the ground truth phenotypes on the heldout data for 

each fold.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Glossary

1-hot [embedding].
Vector representation of a discrete variable commonly used for discrete values that have no 

meaningful ordering. Each token is transformed into a V-dimensional zero vector, where V 
is the size of the vocabulary (the number of unique tokens, e.g., 20, 21, or 26 for amino acids 

depending on inclusion of missing and non-canonical amino acid tokens), except for the 

index representing the token, which is set to one.

autoregressive [language model].
Language models that factorize the probability of a sequence into a product of conditional 

probabilities in which the probability of each token is conditioned on the preceding tokens, 

p(x1…xL) = ∏i = 1
L p(xi ∣ x1…xi − 1). Examples of autoregressive language models include k-

mer (AKA n-gram) models, Hidden Markov Models, and typical autoregressive recurrent 

neural network or generative transformer language models. These models are called 

autoregressive because they model the probability of one token after another in order.

Bayesian methods.
A statistical inference approach that uses Bayes rule to infer a posterior distribution over 

model parameters given by the observed data. Because these methods describe distributions 

over parameters or functions, they are especially useful in small data regimes or other 

settings when prediction uncertainties are desirable.

cloze task.
A task in natural language processing, also known as the cloze test. The task is to fill in 

missing words given the context. For example, “The quick brown ____ jumps over the lazy 

dog.”

conditional random field.
Models the probability of a set (sequence in this case, i.e. linear chain CRF) of labels given a 

set of input variables by factorizing it into locally conditioned potentials conditioned on the 

input variables, p(y1…yL ∣ x1…xL) = p(y1 ∣ x1…xL)∏i = 2
L p(yi ∣ yi − 1, x1…xL). This is often 

simplified such that each conditional only depends on the local input variable, i.e., 

p(y1…yL ∣ x1…xL) = p(y1 ∣ x1)∏i = 2
L p(yi ∣ yi − 1, xi). Linear chain CRFs can be seen as the 

discriminative version of Hidden Markov Models.

contextual vector embedding.
Vector embeddings that include information about the sequence context in which a token 

occurs. Encoding context into vector embeddings is important in NLP, because words can 
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have different meanings in different contexts (i.e., many homonyms exist). For example, in 

the sentences, “she tied the ribbon into a bow” and “she drew back the string on her bow,” 

the word bow refers to two different objects that can only be inferred from context. In the 

case of proteins, this problem is even worse, because there are only 20 (canonical) amino 

acids and so their “meaning” is highly context dependent. This is in contrast to typical vector 

embedding methods that learn a single vector embedding per token regardless of context.

distributional hypothesis.
The observation that words that occur in similar contexts tend to have similar meanings. 

Applies also to proteins due to evolutionary pressure115.

Gaussian process.
A class of models that describes distributions over functions conditioned on observations 

from those functions. Gaussian processes model outputs as being jointly normally 

distributed where the covariance between the outputs is a function of the input features. See 

Rasmussen and Williams for a comprehensive overview 116

generative model.
A model of the data distribution, p(X), joint data distribution, p(X, Y), or conditional data 

distribution, p(X∣Y = y). Usually framed in contrast to discriminative models that model the 

probability of the target given an observation, p(Y∣X = x). Here, Xis observable, for example 

the protein sequence, and Yis a target that is not observed, for example the protein structure 

or function. Conditional generative and discriminative models are related by Bayes’ 

theorem. Language models are generative models.

hidden layer.
Intermediate vector representations in a deep neural network. Deep neural networks are 

structured as layered data transformations before outputting a final prediction. The 

intermediate layers are referred to as “hidden” layers.

inductive bias.
Describes the assumptions that a model uses to make predictions for data points it has not 

seen 117. That is, the inductive bias of a model is how that model generalizes to new data. 

Every machine learning model has inductive biases, implicitly or explicitly. For example, 

protein phenotype prediction based on homology assumes that phenotypes covary over 

evolutionary relatedness. In other words, it formally models the idea that proteins that are 

more evolutionarily related are likely to share the same function. In thinking about deep 

neural networks applied to proteins, it is important to understand the inductive biases these 

models assume, because it naturally relates to the true properties of the function we are 

trying to model. However, this is challenging, because we can only roughly describe the 

inductive biases of these models 118.

language model.
Probabilistic model of whole sequences. In the case of natural language, language models 

typically describe the probability of sentences or documents. In the case of proteins, they 

model the probability of amino acid sequences. Being simply probabilistic models, language 
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models can take on many specific incarnations from column frequencies in multiple 

sequence alignments to Hidden Markov Models to Potts models to deep neural networks.

manifold embedding.
A distance preserving, low dimensional embedding of the data. The goal of manifold 

embedding is to find points low dimensional vectors, z1 … zn, such that the distances, d(zi, 

zj), are as close as possible to the distances in the original data space, d(xi, xj), given n high 

dimensional data vectors, x1…xn. t-SNE is a commonly used manifold embedding approach 

for visualization of high dimensional data.

masked language model.
The training task used by BERT and other recent bidirectional language models. Instead of 

modeling the probability of a sequence autoregressively, masked language models seek to 

model the probability of each token given all other tokens. For computational convenience, 

this is achieved by randomly masking some percentage of the tokens in each minibatch and 

training the model to recover those tokens. An auxiliary token is added to the vocabulary to 

indicate that this token has been masked.

multi-task learning.
A machine learning paradigm in which multiple tasks are learned simultaneously. The idea 

is that similarities between tasks can lead to each task being learned better in combination 

rather than learning each individually. In the case of representation learning, multi-task 

learning can also be useful for learning representations that encode information relevant for 

all tasks. Multi-task learning allows us to use the signals encoded in other training signals as 

an inductive bias when learning the goal task.

representation learning.
The problem of learning features, or intermediate data representations, better suited for 

solving a prediction problem on raw data. Deep learning systems are described as 

representation learning systems, because they learn a series of data transformations that 

make the goal task progressively easier to solve before outputting a prediction.

residue-residue contact prediction.
The task of learning which amino acid residues are in contact in folded protein structures, 

where contact is assumed to be within a small number of angstroms, often with the goal of 

constraining the search space for protein structure prediction.

self-supervised learning.
A relatively new term for methods for learning from data without labels. Generally used to 

describe methods that “automatically” create labels through data augmentation or generative 

modeling. Can be viewed as a subset of unsupervised learning focused on learning 

representations useful for transfer learning.

semantic priors.
Prior semantic understanding of a word or token, e.g., protein structure or function.

semantics.
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The meaning of a word or token. In reference to proteins, we use semantics to mean the 

“functional” purpose of a residue, or combinations of residues.

structural classification of proteins (SCOP).
A mostly manual curation of structural domains based on similarities of their sequences and 

structure. Similar databases include CATH 119.

structural similarity prediction.
Given two protein sequences, predict how similar their respective structures would be 

according to some similarity measure.

supervised learning.
A problem in machine learning. How we can learn a function to predict a target variable, 

usually denoted y, given an observed one, usually denoted x, from a set of known x, y pairs.

transfer learning.
A problem in machine learning. How we can take knowledge learned from one task and 

apply it to solve another related task. When the tasks are different but related, 

representations learned on one task can be applied to the other. For example, representations 

learned from recognizing dogs could be transferred to recognizing cats. In the case of 

proteins and language models, we are interested in applying knowledge gained from 

learning to generate sequences to predicting function. Transfer learning could also be 

applied to applying representations learned from predicting structure to function or from 

predicting one function to another function among other applications.

unsupervised learning.
A problem in machine learning that asks how we can learn patterns from unlabeled data. 

Clustering is a classic unsupervised learning problem. Unsupervised learning is often 

formulated as a generative modeling problem, where we view the data as being generated 

from some unobserved latent variable(s) that we infer jointly with the parameters of the 

model.

vector embedding.
A term used to describe multidimensional real numbered representations of data that is 

usually discrete or high dimensional, word embeddings being a classic example. Sometimes 

referred to as “distributed vector embeddings” or “manifold embeddings” or simply just 

“embeddings.” Low-dimensional vector representations of high dimensional data such as 

images or gene expression vectors as found by methods such as t-SNE are also vector 

embeddings. Usually, the goal in learning vector embeddings is to capture some semantic 

similarity between data as a function of similarity or distance in the vector embedding space.
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Box 1 ∣

Inductive bias describes the assumptions that a model uses to make predictions for data 

points it has not seen 117. That is, the inductive bias of a model is how that model 

generalizes to new data. Every machine learning model has inductive biases, implicitly or 

explicitly. For example, protein phenotype prediction based on homology assumes that 

phenotypes covary over evolutionary relatedness. In other words, it formally models the 

idea that proteins that are more evolutionarily related are likely to share the same 

function. In thinking about deep neural networks applied to proteins, it is important to 

understand the inductive biases these models assume, because it naturally relates to the 

true properties of the function we are trying to model. However, this is challenging, 

because we can only roughly describe the inductive biases of these models 118.
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Figure 1 ∣. 
Two-dimensional schematic of some recent and classical methods in protein sequence and 

structure analysis, characterized by the extent to which the approach is motivated by first 

principles (strong biological priors) vs. driven by big data. We color methods by types of 

input-output pairs. Green: sequence-sequence, purple: sequence-structure, blue: structure-

sequence, orange: structure-structure. Classical methods tend to be more strongly first 

principles driven while newer methods are increasingly data driven. Existing methods tend 

to be either data driven or first principles-based with few methods existing in between. 

*Note that, at this time, details of AlphaFold2 have not been made public, so placement in 

Figure 1 is a rough estimate. Some methods, especially Rosetta, can perform multiple 

functions.
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Figure 2 ∣. 
Diagram of model architectures and language modeling approaches. a) Language models 

model the probability of sequences. Typically, this distribution is factorized over the 

sequence such that the probability of a token (e.g., amino acid) at position i (xi) is 

conditioned on the previous tokens. In neural language models, this is achieved by first 

computing a hidden layer (hi) given by the sequence up to position i-1 and then calculating 

the probability distribution over token xi given hi. In this example sequence, “^” and “$” 

represent start and stop tokens respectively and the sequence has length L. b) Bidirectional 

language models instead model the probability of a token conditioned on the previous and 

following tokens independently. For each token xi, we compute a hidden layer using separate 

forward and reverse direction models. These hidden layers are then used to calculate the 

probability distribution over tokens at position i conditioned on all other tokens in the 

sequence. This allows us to extract representations that capture complete sequence context. 

c) Masked language models model the probability of tokens at each position conditioned on 

all other tokens in the sequence by replacing the token at each position with an extra “mask” 

token (“X”). In these models, the hidden layer at each position is calculated from all tokens 

in the sequence which allows the model to capture conditional non-independence between 

tokens on either side of the masked token. This formulation lends itself well to transfer 

learning, because the representations can depend on the full context of each token.
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Figure 3 ∣. 
Our multi-task contextual embedding model learning framework. We train a neural network 

(NN) sequence encoder to solve three tasks simultaneously. The first task is masked 

language modeling on millions of natural protein sequences. We include two sources of 

structural supervision in a multi-task framework (MT-LSTM for Multi-Task LSTM) in order 

to encode structural semantics directly into the representations learned by our language 

model. We combine this with the masked language model objective to benefit from 

evolutionary and less available structure information (only 10s of thousands of proteins). a) 
The masked language model objective allows us to learn contextual embeddings from 

hundreds of millions of sequences. Our training framework is agnostic to the NN 

architecture, but we specifically use a three-layer bidirectional LSTM with skip connections 

(inset box) in this work in order to capture long range dependencies but train quickly. We 

can train language models using only this objective (DLM-LSTM) but can also enrich the 

model with structural supervision. b) The first structure task is predicting contacts between 

residues in protein structures using a bilinear projection of the learned embeddings. In this 
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task, the hidden layer representations of the language model are then used to predict residue-

residue contacts using a bilinear projection. That is, we model the log likelihood ratio of a 

contact between the i-th and j-th residues in the protein sequence, by ziWzj + bwhere matrix 

W and scalar b are learned parameters. c) The second source of structural supervision is 

structural similarity, defined by the Structural Classification of Proteins (SCOP) hierarchy 
120. We predict the ordinal levels of similarity between pairs of proteins by aligning the 

sequences in embedding space. Here, we embed the query and target sequences using the 

language model (Z1 and Z2) and then predict the structural homology by calculating the 

pairwise distances between the query and target embeddings (di,j) and aligning the 

sequences based on these distances.
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Figure 4 ∣. 
Language models capture the semantic organization of proteins. a) Given a trained language 

model, we embed sequences by processing them with the neural network and taking the 

hidden layer representations for each position of the sequence. This gives an LxD matrix 

containing a D-dimensional vector embedding for each position of a length L sequence. We 

can reduce this to a D-dimensional vector “summarizing” the entire sequence by a pooling 

operation. Specifically, we use averaging here. These representations allow us to directly 

visualize large protein datasets with manifold embedding techniques. b) Manifold 

embedding of SCOP protein sequences reveals that our language models learn protein 

sequence representations that capture structural semantics of proteins. We embed thousands 

of protein sequences from the SCOP database and show t-SNE plots of the embedded 

proteins colored by SCOP structural class. The masked language (unsupervised) model 

(DLM-LSTM) learns embeddings that separate protein sequences by structural class, 

whereas the multi-task language model (MT-LSTM) with structural supervision learns an 

even better organized embedding space. In contrast, manifold embedding of sequences 

directly (edit distance) produces an unintelligible mash and does not resolve structural 
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groupings of proteins. c) In order to quantitatively evaluate the quality of the learned 

semantic embeddings, we calculate the correspondence between semantic similarity 

predicted by our language model representations and ground truth structural similarities 

between proteins in the SCOP database. Given two proteins, we calculate the semantic 

similarity between them by embedding these proteins using our MT-LSTM, align the 

proteins using the embeddings, and calculate an alignment score. We compute the average-

precision score for retrieving pairs of proteins similar at different structural levels in the 

SCOP hierarchy based on this predicted semantic similarity and find that our semantic 

similarity score dramatically outperforms other direct sequence comparison methods for 

predicting protein similarity. Furthermore, our entirely sequence-based method even 

outperforms structural comparison with TMalign when predicting structural similarity in the 

SCOP database. Furthermore, we contrast our end-to-end MT-LSTM model with an earlier 

two-step language model (SSA-LSTM) and find that training end-to-end in a unified multi-

task framework improves structural similarity classification.
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Figure 5 ∣. 
Protein language models with transfer learning improve function prediction. a) Transfer 

learning is the problem of applying knowledge gained from learning to solve some task, A, 

to another related task, B. For example, applying knowledge from recognizing dogs to 

recognizing cats. Usually, transfer learning is used to improve performance on tasks with 

little available data by transferring knowledge from other tasks with large amounts of 

available data. In the case of proteins, we are interested in applying knowledge from 

evolutionary sequence modeling and structure modeling to protein function prediction tasks. 

b) Transfer learning improves transmembrane prediction. Our transmembrane prediction 

model consists of two components. First, the protein sequence is embedded using our pre-

trained language model (MT-LSTM) by taking the hidden layers of the language model at 

each position. Then, these representations are fed into a small single layer bidirectional 

LSTM (BiLSTM) and the output of this is fed into a conditional random field (CRF) to 

predict the transmembrane label at each position. We evaluate the model by 10-fold cross 

validation on proteins split into four categories: transmembrane only (TM), signal peptide 

and transmembrane (TM+SP), globular only (Globular), and globular with signal peptide 

(Globular+SP). A protein is considered correctly predicted if 1) the presence or absence of 

signal peptide is correctly predicted and 2) the number of locations of transmembrane 

regions is correctly predicted. The table reports the fraction of correctly predicted proteins in 
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each category for our model (BiLSTM+CRF) and widely used transmembrane prediction 

methods. A BiLSTM+CRF model trained using 1-hot embeddings of the protein sequence 

instead of our language model representations performs poorly, highlighting the importance 

of transfer learning for this task (Supplemental Table 2). c) Transfer learning improves 

sequence-to-phenotype prediction. Deep mutational scanning measures function for 

thousands of protein sequence variants. We consider 19 mutational scanning datasets 

spanning a variety of proteins and phenotypes. For each dataset, we learn the sequence-to-

phenotype mapping by fitting a Gaussian process regression model on top of representations 

given by our pre-trained language model. We compare three unsupervised approaches (+), 

prior works in supervised learning (∘), and our Gaussian process regression approaches with 

(□, GP (MT-LSTM)) and without (GP (1-hot)) transfer learning by 5-fold cross validation. 

Spearman rank correlation coefficients between predicted and ground truth functional 

measurements are plotted. Our GP with transfer learning outperforms all other methods, 

having an average correlation of 0.65 across datasets. The benefits of transfer learning are 

highlighted by the improvement over the 1-hot representations which only reach 0.57 

average correlation across datasets. Transfer learning improves performance on 18 out of 19 

datasets.
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