
ORIGINAL ARTICLE

Epidemiological modelling of the health and economic effects
of COVID-19 control in Australia’s second wave

R. Quentin Grafton1
& John Parslow2

& Tom Kompas3 & Kathryn Glass4 & Emily Banks4

Received: 2 January 2021 /Accepted: 8 June 2021
# The Author(s) 2021

Abstract
Background We investigated the public health and economy outcomes of different levels of social distancing to control a ‘second
wave’ outbreak in Australia and identify implications for public health management of COVID-19.
Methods Individual-based and compartment models were used to simulate the effects of different social distancing and detection
strategies on Australian COVID-19 infections and the economy from March to July 2020. These models were used to evaluate
the effects of different social distancing levels and the early relaxation of suppression measures, in terms of public health and
economy outcomes.
Results The models, fitted to observations up to July 2020, yielded projections consistent with subsequent cases and showed that
better public health outcomes and lower economy costs occur when social distancing measures are more stringent, implemented
earlier and implemented for a sufficiently long duration. Early relaxation of suppression results in worse public health outcomes
and higher economy costs.
Conclusions Better public health outcomes (reduced COVID-19 fatalities) are positively associated with lower economy costs
and higher levels of social distancing; achieving zero community transmission lowers both public health and economy costs
compared to allowing community transmission to continue; and early relaxation of social distancing increases both public health
and economy costs.
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Introduction

Australia recorded its first case of COVID-19 on 25 January
2020 from a person who had flown from China on 19 January
(Hunt 2020). Initial national daily cases peaked at 458 on 28
March 2020 and, thereafter, declined due to border measures
for overseas arrivals, self-quarantine, wide-spread testing and
contact tracing, and social distancing outside of households

that changed the frequency, the numbers and the nature of
physical contacts (Australian Department of Health 2020a).
By 9 June 2020, there were only two new recorded cases in
Australia.

At the end of May, in the Australian state of Victoria, a
‘second wave’ of COVID-19 began following an outbreak
from hotel quarantine. Additional public healthmeasures were
reinstituted in the second half of June in Victoria, including a
‘stage 3’ lockdown in the state capital, Melbourne, and the
nearby Mitchell Shire, on 9 July for a 6-week period. These
measures slowed the growth in infections (Saul et al. 2020)
but failed to stop an increase in COVID-19 infections. On 5
August 2020, when new daily cases peaked at 687 in Victoria,
there were approximately 20,000 reported cumulative cases in
Australia, of which some 11,000 had recovered; with 250
COVID-19 fatalities (162 in Victoria) (Australian
Department of Health 2020b).

A highly stringent lockdown, with mandated social dis-
tancing measures, began in Victoria in early August 2020.
These measures were gradually relaxed from mid-September
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as infections were effectively suppressed (Blakely et al. 2020)
followed a ‘Roadmap for Reopening’ pre-determined by the
14-day average of new daily cases (Victorian Department of
Health and Social Services 2020). Major relaxation of social
distancing measures occurred on 27 October (step 3) and 22
November (last step) (Grafton et al. 2020). On 6 December
2020, Victoria returned to ‘COVID-normal’ because no new
cases had been diagnosed since 31 October.

Key public health and economy questions facing Australia,
and the world, in relation to supressing COVID-19 infections
are:What levels of social distancing are required to adequately
reduce infections associated with a ‘second wave’ of COVID-
19 infections?What is the probability of achieving elimination
(defined as no community transmission (Group of 8
Universities 2020)) with various levels of lockdown and du-
ration? What are the public health and economy costs of dif-
ferent stringency levels of social distancing?

Our contribution is to show: (1) Epidemiological model-
ling, undertaken at the peak of the second wave, can provide a
reasonable approximation of the actual suppression outcomes
(cases) associated with highly stringent social distancing; (2)
A combination of epidemiological models, coupled with
economy cost measures, show that public health outcomes
are associated with lower economy costs; (3) Different epide-
miological (individual based, deterministic compartment and
stochastic compartment) models can be complementary and
provide comparable simulated results; (4) the importance of a
sufficiently long enough duration of social distancing, if elim-
ination of community transmission is the goal; and (5) the
public health dangers of outbreaks from quarantine even with
very low levels of occurrence.

Materials and methods

Model description

The simulation model used here is one of a suite of epidemi-
ological models developed to support the study and manage-
ment of the COVID-19 outbreak in Australia. The suite builds
on a stochastic individual-based or agent-based model (IBM),
which follows infected individuals through multiple stages
and alternative fates as the disease progresses. Individual-
based models are flexible but are computationally expensive
to run when the number of individuals becomes large. This
makes IBM more difficult to undertake rigorous statistical
calibration, or to run large ensembles to quantify stochastic
variation. Thus, we developed a more computationally effi-
cient analogue of the IBM: a stochastic compartment model
(SCM) which followed daily cohorts of infected individuals
through the same stages and fates. For extremely demanding
computations, including Monte Carlo-based Bayesian infer-
ence, the SCM was approximated by a simpler deterministic

compartment model (DCM) that follows daily cohorts
through the same stages and fates, except that probabilistic
transitions are replaced by proportional allocations.

The model suite represents the public health measures im-
plemented in Australia in an attempt to prevent or limit out-
breaks. These measures include: testing; contact tracing; self-
quarantine/self-isolation of detected cases and contacts; bor-
der controls (self-quarantine and then hotel quarantine of
overseas arrivals); and social distancing directives. Our model
suite predicts the number of new infected cases each day as a
result of transmission from current infectious cases, taking
into account the effects of self-isolation and self-quarantine.

This section provides an overview of the model structure
and function. Further details are provided in Appendix 1.

Disease progression

The model suite represents the key stages and possible out-
comes in the evolution of COVID-19 infection, as portrayed
in Fig. 1. Some asymptomatic COVID-19 cases never develop
symptoms, but do become infectious, although they are be-
lieved to be less infectious than symptomatic cases. Newly
infected cases in the model are immediately assigned to either
an asymptomatic category (with probability PA) or a symp-
tomatic category with probability (1-PA). Those in the symp-
tomatic category do not develop symptoms until TS days post-
infection. The timing of the onset of symptoms matters be-
cause, at least during the period considered in this study, test-
ing (and therefore detection, reporting and contact tracing) in
Australia were mostly confined to those displaying symptoms.

Both asymptomatic and symptomatic categories become
infectious after TI days. Importantly, transmission can occur
at least 1 to 2 days before symptoms became apparent (TI <
TS), hindering attempts to control COVID-19 outbreaks. In
our model suite, the infectious period ends at TF days, chosen
so as to yield appropriate values for the reproductive number
R0 and the growth rate of uncontrolled outbreaks.

A proportion of COVID-19 patients develop severe symp-
toms requiring hospital admission. In our model suite, this
occurs after TH days, with probability PH. Of those admitted
to hospital, a further proportion will develop fatal complica-
tions, with probability PM. Those with fatal complications die
with daily probability PD, starting TD days after infection. All
other patients start to recover with daily probability PR, begin-
ning TR days after infection. Our model suite only tracks cases
for a maximum period of TM days after infection after which
cases have either recovered or died. Transitions in status re-
lated to onset of symptoms, onset and cessation of infectivity,
and hospital admission occur simultaneously across all indi-
viduals in the same cohort. We developed versions of the
models which allow these transitions to be spread over win-
dows of multiple days noting that this made a negligible dif-
ference to our simulations.
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Control measures

Testing and detection of symptomatic cases occur in the mod-
el suite either through community testing, or through testing
of those in self-quarantine or self-isolation. Community test-
ing of cases self-reporting with symptomswas less effective in
the first wave in Australia (March to May), as tests were in
short supply and only contacts of overseas arrivals or known
cases were tested. In Victoria’s second wave, attendance at
community testing clinics was strongly encouraged, although
some studies suggest only a modest proportion of those with
COVID-19-like symptoms volunteered to be tested. In the
model suite, the daily probability for a symptomatic case be-
ing tested and detected as positive at a community testing
centre were allowed to increase from a low value of 0.2 in
the first wave, to a higher value PDC after June.

Testing and detection of symptomatic cases already in self-
quarantine is assumed to be more effective, and their daily
probability of detection PDSQ is set to 0.8. The model assumes
that all severe cases are tested and detected on admission to
hospital.

Contact tracing has been a key and controversial public health
measure against COVID-19 inAustralia, and its representation in
the model has been given particular attention. For each new
infected case, the IBM keeps track of the ID of the responsible
source case. If and when its source case is detected, an
(undetected) case becomes eligible to be traced, with a daily
probability PT. Once traced, cases are placed in self-quarantine
noting that all detected cases are required to self-isolate.

The representation of contact tracing in the SCM and DCM
is more challenging. In these models, only the numbers of
cases in subcategories within a daily cohort are known. Our
model suite tracks the proportions of detected cases within
source cohorts, weighted by their relative contributions to
each new cohort. They use this to calculate the proportion of
members in each daily cohort which become subject to con-
tact tracing. This calculation cannot replicate exactly the track-
ing of individual sources in the IBM, but provides a good
approximation, allowing the SCM to closely replicate ensem-
ble output from the IBM.

A highly effective contact tracing program would be ex-
pected to have values of the 24 h tracing efficiency PT close to
1. Simulations show that contact tracing can still be highly
effective with much lower values of PT because the proportion
of detected cases builds cumulatively over time. In the
Victorian second wave, contact tracing by itself was insuffi-
cient to stop growth in infections and a severe lockdown was
eventually imposed. We reproduced this fact in the model
suite by assuming that a proportion PU of infected cases were
permanently undetected and untraceable.

Contact tracing is resource intensive, especially as the num-
ber of cases increases. For each detected case, a number of
downstream contacts of order 10 must be identified,
contacted, asked to self-quarantine, and monitored for devel-
opment of symptoms, and to check compliance, for 14 days.
Thus, for 100 daily detected cases, contact tracers could have
up to 14,000 contacts under management. The Australia-wide
tracing capacity TCAP is assumed to be between 100 and 500
daily detected cases but we note that in specific jurisdictions,
such as Victoria during its second wave, the capacity could
have been below 100 new daily cases, in the absence of end-
to-end automated process for enabling and recording contact
tracing (Legal and Social Issues Committee 2020).

Australian border controls are implemented in the model as
quarantine requirements on overseas arrivals. After 17
March 2020, overseas arrivals were required to self-quarantine
at home. After 28 March they were required to enter hotel quar-
antine. The model simulations provided here are driven by re-
ported numbers of daily detected COVID-19 cases among over-
seas arrivals in Australia. Positive overseas arrivals in quarantine
are assumed to be detected immediately upon displaying symp-
toms and are represented in the model as new infectives
appearing TS days before being reported. Reported overseas
cases are assumed to be accompanied by additional undetected
asymptomatic cases, in the ratio PA:1–PA.

Social distancing (SD) or lockdown measures have played
a key role in controlling both the first and second waves in
Australia. Themodel suite represents SD implicitly as changes
in the effective daily transmission rate G (new infections per
infectious case per day). The maximum transmission rate in

Fig. 1 Model suite representation
of COVID-19 progression
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the absence of social distancing is denoted by G0. The mini-
mum transmission rate achieved during the severe nation-
wide lockdown in April 2020, which ended the first wave, is
denoted by GLD. Movement data suggest there was a gradual
relaxation following the first wave, up until early July. The
extent of this relaxation of SD in early July is measured by the
parameter RSD given by (G–GLD)/(G0–GLD). In the control
scenarios described later, social distancing stringency is
characterised by the control variable SD = (G0–G)/(G0–
GLD).

Transmission

In the IBM, the number of daily new infections produced by
an infected individual is assumed to be a random variable
drawn from an over-dispersed negative binomial distribution
with mean G and dispersion coefficient k’. In the SCM, the
number of daily new infections from a pool of X infectious
individuals is then also negative binomial, with adjusted pa-
rameters G. X and k’.X. The choice of the dispersion param-
eter k’ is discussed further in the Appendix. In the DCM, the
number of new daily infections is just the expected value G.X.

Individuals have different transmission rates, depending on
their status. Cases in the asymptomatic category are assumed
to have a mean transmission rate equal to FA times that of
those in the symptomatic category. While there should be zero
transmission from cases in self-isolation or self-quarantine, in
practice some transmission occurs. The model suite assumes
the transmission rate from those in self-quarantine or self-
isolation is reduced by the ‘leakage’ factor PL.

Hotel quarantine was initially assumed to be 100% effec-
tive in preventing transmission. However, cases of transmis-
sion from within hotel quarantine contributed to Victoria’s
second wave, and multiple other cases of transmission from
within hotel quarantine have been observed since in Australia.
Accordingly, the model allows the generation of community
infected cases from within hotel quarantine with a (very low)
daily probability PQ.

All the models used in this study assume homogeneous
mixing of infected with a susceptible pool of size SUS. The
number of susceptible people, POP, is initially set to 20 mil-
lion, assuming approximately 80% of the Australian popula-
tion was initially susceptible. New infected cases are
subtracted daily from SUS, and the daily transmission rate is
multiplied by the fraction (1–SUS/POP). Given the small size
of Australian outbreaks to date, the reduction in the suscepti-
ble pool size has negligible effect on transmission rates in the
simulations presented here.

Parameter uncertainty and Bayesian inference

The model suite has 24 model parameters (Table 1). In July–
August 2020, when this study was undertaken, many of these

parameters, particularly those related to the natural history of
the disease, were considered to be well-constrained by prior
knowledge. But others, particularly those defining the effec-
tiveness of Australian control measures, were poorly
constrained. We wanted to understand the capacity of the
model to reproduce Australian observations of daily cases
prior to that time, and the extent to which those observations
could constrain the uncertain parameters, so as to reduce un-
certainty in model simulations of responses to future control
measures.

A Monte Carlo Bayesian inference procedure was, there-
fore, undertaken to fit the model to Australian observations
obtained from https://www.covid19data.com.au/ and https://
www.worldometers.info/coronavirus/#countries for the
period 20 February to 5 July 2020, noting that estimation
was completed 6 August.

A simple sample importance resample (SIR) procedure was
used to obtain the posterior distribution of parameters. An
ensemble of 200,000 simulations was generated, using inde-
pendent random samples from the prior parameter distribution
(the prior was treated as uniform on the parameter ranges
specified in Table 1, and parameters were treated as indepen-
dent in the prior). Because of the large ensemble size, the
DCM was used as a fast approximation to the SCM in this
procedure. Comparison of posterior ensembles from the SCM
and DCM suggested this provided a good approximation to
the posterior parameter distribution for both models. Both
SCM and DCM were able to reproduce the observed time
series well. (See Appendix 2 for detailed methods and results.)

Table 1 gives the maximum likelihood values of the uncer-
tain parameters. The inference procedure yielded a large
(10,000 member) random sample from the posterior parame-
ter distribution. In the model scenarios described below, pa-
rameters for each simulation were drawn randomly from this
posterior sample. This allowed us to represent the uncertainty
in model predictions due to residual parameter uncertainty, as
well as the uncertainty arising from stochastic events within
the model itself.

Model scenarios

Mandated social distancing measures were reintroduced on 9
July 2020 in Victoria, as rapidly growing daily case numbers
reached a weekly average of 100. Model simulation scenarios
(Table 2) were designed to assess the effectiveness of
implementing different levels of social distancing at that trig-
ger level. Social distancing levels in these scenarios are de-
fined by the control variable SD = (G0–G)/(G0–GLD), so
SD = 0 corresponds to no social distancing, and SD = 1 corre-
sponds to the lockdown obtaining in April 2020.

For each simulated SD level, from 0.5 to 1.0, mandated
measures remain in place for a minimum 40-day period and
then social distancing is relaxed in a linear fashion over
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60 days. These scenarios assume highly effective border con-
trols and quarantine for all new arrivals into Australia and PQ
is set to zero. Social distancing is not relaxed until there is no
recorded community transmission. Thus, each of the six sce-
narios in Table 2 assumes the goal is to achieve no community
transmission.

Two suppression scenarios were also simulated (see
Table 3). In each suppression scenario, stringent social dis-
tancing measures (SD = 1.0) are imposed when the weekly
average of new daily recorded cases is 100, but relaxation is
triggered by a weekly average of 20 daily recorded cases. In
suppression scenario A, social distancing is imposed for a

Table 1 Model parameters, prior
values, and prior ranges and
maximum likelihood values for
those parameters subject to
Bayesian inference

Symbol Description Prior
value(s)

Maximum likelihood
value

TS Days to onset of symptoms 5 days

TI Days to onset of infectivity 4 days

TF Days to cessation of infectivity 8 days

TH Days to develop severe symptoms 10 days

TD Days to first deaths 12 days

TR Days to first recovery 19 days

TM Maximum period cases are active 40 days

PA Probability cases are asymptomatic [0.1 0.4] 0.32

PH Probability of hospitalisation for symptomatic cases 0.1

PM Probability of death among hospitalised cases 0.11

PD Daily probability fatally ill die after TD 0.15

PR Daily probability of recovery after TR 0.2

G0 Daily transmission rate before social distancing [0.3 0.65] 0.5

GLD Daily transmission rate at peak of March–April
lockdown

[0.05 0.25] 0.11

RSD Relaxation of social distancing=(G–GLD)/(G0–GLD) [0.7 1.0] 0.98

FA Ratio of asymptomatic to symptomatic transmission [0.1 0.4] 0.19

PDC Daily probability of detection in community [0.2 0.5] 0.36

PDSQ Daily probability of detection in self-isolation 0.8

PT Daily probability of tracing downstream contacts [0.2 0.8] 0.24

PL Daily probability of transmission from self-isolated
cases

[0.1 0.3] 0.11

PU Fraction of community hidden/uncooperative [0.1 0.6] 0.39

PQ Daily probability of quarantine breakdown 0.0 to 0.01 0

POP Total population size 20,000,000

TCAP Maximum tracing capacity in daily new cases 100–500 500

Table 2 Median (2.5%–97.5 CI) values of additional Elimination days
and Social distancing days (sum of social distancing level each day for
365 days) and number of COVID-19 deaths and associated (based on
median values) Economy costs of social distancing, Value of statistical

lives lost and Hospitalisation costs for social distancing levels SD from
0.5 to 1.0 for 365 days after implementation of social distancing when
average daily cases over the preceding 7 days exceeds 100

Social distancing level 0.5 0.6 0.7 0.8 0.9 1.0

Elimination days (#) 360 (279–366) 366 (366–366) 249 (134–366) 118 (66–190) 73 (50–107) 51 (37–75)

Social distancing days (#) 183 (155–183) 220 (220–220) 196 (116–256) 117 (78–177) 94 (75–125) 83 (71–107)

Economy costs of social distancing (billion $) 38.43 46.2 41.16 24.57 19.74 17.43

COVID-19 deaths (#) 77,020 (53,822–104,277) 28,058
(448–69,931)

267
(135–1151)

135
(80–216)

101
(68–139)

86
(61–115)

Value of statistical lives lost ($ billion) 377.40 137.48 1.31 0.66 0.49 0.42

1. Economy costs of social distancing = $210 million per social distance day.

2. Value of statistical life = $4.9 million.

3. Elimination days is the number of days until zero community transmission (elimination) is achieved. Elimination days = 366means the strategy fails to
achieve no community transmission after 365 days
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minimum of 40 days before the relaxation criteria is assessed,
while in suppression scenario B, there is no minimum period.
For both scenarios, once the relaxation criteria are met, grad-
ual relaxation to zero social distancing occurs over a 60-day
period. In each scenario, border quarantine leakage (failure)
occurs with a daily probability of 0.2% per infected arrival
from overseas (PQ = 0.002).

For each of these scenarios, the SCMwas used to generate an
ensemble of 1000 runs, drawing parameter sets randomly from
the posterior distribution produced by the Bayesian inference
procedure described above. The simulated ensemble outputs
were statistically analysed and daily percentiles calculated.

Economy costs

Economy-wide costs of the national and high stringency
social distancing that began in March 2020 are based on
Australian Bureau of Statistics (ABS) data at a Victorian
level equivalent to approximately $210 million per lock-
down day (Kompas et al. 2020). Economy costs of a lock-
down were assumed to be linear in the different levels of
mandated social distancing, noting that greater social dis-
tancing and an increased frequency of cycles of high strin-
gency social distancing followed by relaxation are likely
to more than proportionally increase economy costs.
COVID-19 related fatalities are valued at $4.9 million
per value of statistical life (VSL), sourced from Prime
Minister and Cabinet (Prime Minister and Cabinet 2020).

Results and discussion

Effects of social distancing stringency in elimination
scenarios

Results are provided in Table 2 for a period of 365 days fol-
lowing initial implementation of different levels of SD,

assuming no leakage from hotel quarantine. Stringent social
distancing, (SD = 1.0), results in elimination of community
transmission after approximately 50 days (median), and with-
in 80 days for every simulation (Fig. 2). By comparison, mod-
erate social distancing (SD = 0.7) takes some 250 days
(median) to achieve community elimination and 21% of sim-
ulations fail to eliminate community transmission within one
year. Stringent social distancing (SD = 1) results in economy
costs of $17.4B compared to $41.2B with SD = 0.7. (Table 1,
Fig. 2). The scenarios with weaker social distancing (SD of
0.5 and 0.6) result in uncontrolled COVID-19 outbreaks. For
SD of 0.5, some ensemble members achieve elimination with-
in 365 days through herd immunity but at the loss of between
54,000 and 104,000 lives (Table 1).

Effect of relaxation rules in suppression scenarios

Figure 3a,b compares the simulated daily new cases (median,
quartiles, 5–95 percentiles from a 1000 member ensemble)
with observations for suppression scenario A (with a mini-
mum 40 days implementation of social distancing) and sup-
pression scenario B without a minimum duration constraint.
For suppression scenario A, elimination of community trans-
mission is achieved in more than 75% of ensemble members,
and the ensemble median achieves and maintains elimination
within 100 days (Table 3). For suppression scenario B, there is
a greater than 50% chance of a second outbreak requiring
reimposition of social distancing, and a greater than 25%
chance of further cycles of outbreak and social distancing
(Fig. 3b). The median time to community elimination is twice
that for suppression scenario A (Table 3).

Even for suppression scenario A, more than 5% of the
ensemble members display continuing outbreaks. The seeding
of new infectives by rare and random failures of hotel quaran-
tine (PQ = 0.002) may contribute, but the quasi-cyclic nature
of these outbreaks suggests there is a small but non-zero risk
that relaxation after 40 days, at a trigger level of 20 daily cases,

Table 3 Median (2.5%–97.5 CI) values of additional Social distancing
days (sum of social distancing level each day for 365 days) and number of
COVID-19 deaths and associated (based on median values) Economy

costs of social distancing, Value of statistical lives lost and
Hospitalisation costs for social distancing level = 1.0 for 365 days after
implementation of social distancing

Suppression scenario A3 Suppression scenario B4

Social distancing days (#) 101 (71–210) 115 (52–225)

Economy costs of social distancing (billion $) 21.21 24.15

COVID-19 deaths (#) 124 (66–261) 190 (67–411)

Value of statistical lives lost ($ billion) 0.61 0.93

1. Economy costs of social distancing = $210 million per social distance day.

2. Value of statistical life = $4.9 million.

3. Social distancing is implemented for 40 days after which gradual relaxation over 60 days occurs once the weekly average of new daily recorded cases
declines to 20.

4. No minimum of 40 days of social distancing; gradual relaxation over 60 days occurs once the weekly average of new daily recorded cases declines to
20
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fails to achieve community elimination. This risk is clearly
much greater for suppression scenario B, which allows relax-
ation of social distancing within 40 days.

Limitations of this study

Our model suite does not allow us to fully capture the differ-
ences in transmission across multiple communities or sub-
populations as would an agent-based model. Such

transmission differences may arise from multiple factors, in-
cluding cultural reasons, housing density, and the proportion
of workers who are in the casual workforce and whomay have
financial incentives not to be tested or go to work sick.

The relationship between hidden transmission and essential
workers, not accounted for in our modelling, is relevant for the
effectiveness of social distancing. This is because, depending
on the stringency of social distancing measures, workers may
still be able to infect their workmates at their workplaces. In

Fig. 2 a Community elimination:
SD = 1.0 (day 35), trigger = 100
daily cases, PQ = 0. b Community
elimination: SD = 0.7 (day 35),
trigger = 100 daily cases, PQ = 0.
N.B: Simulations (median,
quartiles, 5–95 percentiles) are
from a 1000 members ensemble
and observed daily new local
Australian cases for SD levels.
Median (thick line), quartiles (thin
lines), 5–95 percentiles (dashed
lines), observed daily new
Australian local cases, 6 June to
15 July 2020 (*)
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recognition of this incentive problem, supplementary pay-
ments of A$1500 were provided to Victorian workers from
20 June 2020 who tested positive or who were a close contact
to someone who tested positive, and from 13 August, A$450
was provided to those who were in self-isolation awaiting test
results.

Conclusions

Our results provide robust support for a highly stringent sup-
pression strategy in relation to COVID-19 infections in

Australia. We find: one, that better public health outcomes
(reduced COVID-19 fatalities) are positively associated with
lower economy costs and higher levels of social distancing;
two, achieving zero community transmission lowers both pub-
lic health and economy costs compared to allowing commu-
nity transmission to continue; three, early relaxation of social
distancing, and in particular in the absence of a minimum
social distancing period (minimum 40 days) and with quaran-
tine leakage, increases both public health and economy costs;
four, our simulated local cases using data until 17 July, are
comparable to the actual suppression of COVID-19 in
Victoria after 5 August that had the implicit goal of

Fig. 3 a Scenario A: SD = 1.0,
suppression (40 days minimum)
& relaxation triggers 100 & 20. b
Scenario B: SD = 1.0 (day 35),
suppression & relaxation triggers
100 & 20. N.B. Ensemble
percentiles: median (thick line),
quartiles (thin lines), 5–95
percentiles (dashed lines),
observed daily new Australian
local cases, 6 June to 15 July 2020
(*). Triggers defined by daily
cases. SD begins at day 35.
Quarantine leakage, PQ = 0.002 in
2a and 2b
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community elimination and gradually relaxed SD measures at
pre-defined thresholds.

If the goal of social distancing is to achieve zero commu-
nity transmission (elimination), as in the State of Victoria, SD
levels of 0.8, 0.9 and 1.0, achieve elimination with a 100%
probability over the 365 days. SD levels of 0.5 and 0.6 fail to
achieve community elimination within the simulation period.
A SD level of 0.7 achieves elimination within 365 days in
approximately 80% of simulations. Lower levels of SD
increase both COVID-19 fatalities and economy costs. This
finding is consistent with an agent-based model for Victoria
that compares a standard lockdown (with and without masks)
with a more severe lockdown (Blakely et al. 2020) and a
national model developed for the first wave of COVID-19
infections in Australia (Chang et al. 2020).

If suppression (rather than elimination of community trans-
mission) is the goal, such that relaxation of social distancing
measures begins at a threshold relating to the weekly average
of new daily recorded cases, then lower costs are incurred
when social distancing is imposed for a minimum period that
is sufficiently long. Imposing a binding minimum number of
social distancing days per lockdown reduces the total days in
lockdown over a 12-month period and, thus, the associated
economy costs.

Appendix 1

Detailed model formulation

The individual-based model (IBM) represents individual in-
fected cases, which are assigned a unique sequential ID.
Changes in the status of each case are recorded as changes
in an array of quality attributes attached to each ID. The sto-
chastic compartment model (SCM) represents numbers of in-
dividual cases in daily cohorts of newly infected people. It
indexes daily cohorts by the day d they were infected. The
SCM must represent changes in status by dividing each daily
cohort into a set of labelled sub-compartments, with one sub-
compartment for eachmeaningful and feasible combination of
attributes. Changes in the status of individuals with respect to
disease progression, detection, contact tracing and quarantine
are recorded by transferring appropriate number of individuals
between sub-compartments.

The sub-compartments and associated labels for the SCM
are given in Table 4. These are sub-compartments of daily
cohorts; for example, for label SF, XSF(t,d) is the number of
cases in sub-compartment SF on day t within the cohort in-
fected on day d. The two exceptions are the compartments for
the dying and recovering: these are pooled across daily co-
horts; therefore, XFI(t) and XRD(t) represent the total number

of individuals across all relevant cohorts who are respectively
dying or recovering on day t.

The DCM has the same sub-compartments as the SCM.
The numbers of individuals in sub-compartments in the
SCM are integers, and transfers between sub-compartments
are determined by drawing integer numbers from appropriate
probability distributions. In contrast, the numbers in sub-
compartments in the DCM are rational numbers, and transfers
are computed based on expected fractions.

The transitions in status associated with disease progres-
sion, detection, contact tracing and quarantine are described
qualitatively in the body of the paper. For the most part, the
implementation of these as transfers between sub-
compartments in the SCM is straightforward. Whenever a
set of X individuals each face a probability P of change in
status the model transfers DX individuals to the corresponding
sub-compartment, with DX drawn from a binomial distribu-
tion with parameters X and P. If there are more than two
possible outcomes, a multinomial distribution is used. The
equations and conditions for probabilistic transfers among
sub-compartments are spelt out in detail in Table 5, with the
exceptions of transmission and source detection. These are
implemented as follows.

Transmission

Daily infections per individual are assumed to have a negative
binomial distribution with mean G and dispersion parameter
k’. Total infections per individual over an infectious period TL
(= TF + 1-TI) will then be negative binomial with mean G.TL,

Table 4 Sub-compartments within daily cohorts in the SCM

Label Description

SF Symptomatic/pre-symptomatic in community

AF Asymptomatic in community

SU Hidden symptomatic/pre-symptomatic

AU Hidden asymptomatic

ST Traceable symptomatic/pre-symptomatic in community

AT Traceable asymptomatic in community

SSQ Symptomatic/pre-symptomatic in self-quarantine

ASQ Asymptomatic in self-quarantine

D Detected (symptomatic) cases

SFO Overseas pre-symptomatic in community

SSQO Overseas pre-symptomatic in self-quarantine

SQ Overseas symptomatic/pre-symptomatic in hotel quarantine

AQ Overseas asymptomatic in hotel quarantine

SH Hospital patients

FI Fatally ill hospital patients

M Dead

RD Recovering detected cases
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and dispersion coefficient k = k’.TL. The sum of daily new
infections from XI sources is then negative binomial with
mean G.XI and dispersion coefficient k’.XI. It has been re-
ported that total infections per individual are highly over-
dispersed; therefore, k is set to 0.2. This means that most
infected individuals infect no-one, while rare super-spreaders
can infect 30 or more.

The number of potentially infectious sources on day t is
obtained by summing cases from all potentially infectious
cohorts X(t,d) with TI < = t – d < = TF. These sources need
to be divided into five classes, according to their contributions
to transmission:

& Free symptomatic sources:

SSF tð Þ ¼ ∑d XSF t; dð Þ þ XSU t; dð Þ þ XST t; dð Þ þ XSO t; dð Þf g; for TI <¼ t–d <¼ TF;

& Self-quarantined symptomatic sources:

SSSQ tð Þ ¼ ∑d XSSQ t; dð Þ þ XSSQO t; dð Þ� �
; for TI <

¼ t–d <¼ TF;

& Free asymptomatic sources:

SAF tð Þ ¼ ∑d XAF t; dð Þ þ XAU t; dð Þ þ XAT t; dð Þf g; for TI

<¼ t–d <¼ TF;

& Self-quarantined symptomatic sources:

SASQ tð Þ ¼ ∑d XASQ t; dð Þ; for TI <¼ t–d <¼ TF:

& Self-isolating detected sources:

SD tð Þ ¼ ∑d XD t; dð Þ; for TI <¼ t–d <¼ TF:

These sources are then weighted appropriately to calculate
their expected contribution to transmission. Contributions
from cases in self-isolation and self-quarantine at home are
multiplied by the proportion PL that breach self-isolation/
self-quarantine. Contributions from asymptomatic community
cases are multiplied by FA. These scaled contributions are then
summed to produce an infectious potential on day t, XI(t):

XI tð Þ ¼ SSF tð Þ þ PL:SSSQ tð Þ þ PL:SD tð Þ þ FA:SAF tð Þ
þ FA:PL:SASQ tð Þ:

Contact tracing

On day t, the cohort X(t,d) infected on day d has potential
source cohorts X(t,d1) with TI < = d– d1 < = TF. When the
new cohort is formed on day d, the model computes and stores
the total number of self-quarantining symptomatic sources

SSSQ(d), and the total number of detected sources SD(d),
summed over these potential source cohorts. On subsequent
days t, the same calculation can be done over the updated
source cohorts X(t,d1), to produce SSSQ(t,d), SD(t,d).
Because detection is a random process in the SCM, we do
not know exactly how many of the intervening detections,
SD(t,d) – SD(d), come from self-quarantined sources vs free
sources. However, given self-isolated symptomatic cases are
detected with high probability, it is a reasonable approxima-
tion to assume the additional detections come first from the
self-quarantined symptomatic source pool on day d, SSSQ(d),
and after that from the free source pool. The decreases in self-
quarantined sources and free sources from day d to day t are
then given by:

DELSQ t; dð Þ ¼ min SSSQ dð Þ; SD t; dð Þ–SD dð Þ� �
:DELF t; dð Þ

¼ SD t; dð Þ–SD dð Þ–DELSQ t; dð Þ:

The reduction in infectious potential since d is then:

DELXI t; dð Þ ¼ DELF t0; dð Þ þ PL:DELSQ t; dð Þ:

The fraction of cohort X(t,d) subject to downstream contact
tracing on day t should then be:

FT t; dð Þ ¼ DELXI t; dð Þ=XI dð Þ:

Individuals are moved incrementally from free to traceable
compartments in each daily update. The fraction moved each
day should be proportional to the daily increase in the trace-
able fraction, FT(t,d) – FT(t–1,d), with FT(d,d) = 0. The num-
ber to be moved is calculated as a proportion of the number
remaining. Thus, the fraction moved each day from AF to AT
and SF to ST is:

FM ¼ FT t; dð Þ–FT t−1; dð Þð Þ= 1–FT t−1; dð Þð Þ; provided FT t−1; dð Þ < 1;¼ 0 if FT t−1; dð Þ ¼ 1:

The numbers moved each day are DXST = FM.XSF(t,d),
DXAT = FM.XAF(d,t) (The SCM deals in integer numbers of
cases;therefore, DXST and DXAT are rounded to the nearest
integer. If either is less than 1, it is set to 1 with probability
DXST or DXAT, zero otherwise).

Appendix 2

Bayesian Inference

Inference Methods

Australian observations were obtained from https://www.
covid19data.com.au/ and https://www.worldometers.info/
coronavirus/#countries for the period 20 February to 5
July 2020, noting that estimation was completed 6 August.
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A simple sample importance resample (SIR) procedure was
used to obtain the posterior distribution of parameters. The
DCM was run using 200,000 independent random samples
from the prior parameter distribution (the prior was treated
as uniform on the parameter ranges specified in Table 1, and
parameters were treated as independent in the prior). For each
model run, a likelihood was calculated based on the SSQ
errors between predictions and observations. To reduce any
weekly reporting artefacts, and to allow for the DCM’s inabil-
ity to reproduce any stochastic variation in the observations,
the time series of observations and predictions were smoothed
by a running 7-day average before calculating the SSQ error.

A ln(X + 10) transform was applied to the smoothed pre-
dictions and observations before computing the SSQ resid-
uals, to give equal weight to errors at low and high case num-
bers, and to render the residuals approximately Gaussian. The
likelihood was calculated from the SSQ assuming a Gaussian

distribution of errors, with the degrees of freedom equal to the
number of observations minus the number of parameters all
divided by 7 to account for the effects of the 7-day running
average. The error variance was estimated from the minimum
SSQ corresponding to the maximum likelihood parameter set.

The resulting likelihoods were sorted into descending or-
der, along with the associated parameter vectors, and effec-
tively converted into a lookup table for a sample-based poste-
rior cumulative probability density function. This allowed for
straightforward random sampling from the posterior.
Approximately 10,000 parameter vectors had non-negligible
weight in the posterior.

Inference results

Percentiles of predicted daily detected local cases, based on an
ensemble of 200 DCM trajectories using parameter sets drawn

Table 5 Sub-compartment exchanges in SCM, in order of execution in each daily time step

Process Daily
cohorts

Compartment exchanges

Transmission TI<= d<=
TF

See Text.

Asymptomatic & hidden d=0 Given X new local cases: [XSF, XAF, XSU, XAU] is ~ multinomial (X, [(1-PA).(1-PU), PA.(1-PU), PU(1-PA),
PA.PU])

Overseas arrivals d=0 Overseas reported (symptomatic) cases XSO treated as newly infected TS days earlier. Matched by
asymptomatic cases XAO~BIN(XSO,PA/(1-PA)). For arrivals:

Before March 17: XSFO=XSO, XAF=XAF+XAO.
From March 17 to March 28: XSSQO=XSO, XASQ=XAO.
After March 28: XSQ=XSO, XAQ=XAO.

Hotel quarantine
breakdown

d=0 Hotel quarantine evasions QE~BIN(XSQ,PQ).
XSQ=XSQ – QE, XSU=XSU+QE.

Source detected d>= 1 DXST=additional symptomatic cases with detected sources. DXAT=additional asymptomatic cases with
detected sources. (See text for derivation).

XST=XST+DXST, XSF=XSF – DXST.
XAT=XAT+DXAT, XAF=XAF – DXAT.

Contact tracing d>= 1 CST~BIN(XST,PT). XST=XST – CST, XSSQ=XSSQ+CST.
CAT ~ BIN(XAT,PT). XAT=XAT – CAT, XASQ=XASQ+CAT.

Detection of overseas
cases

d=TS XD=XD+XSFO+XSSQO, XSFO=0, XSSQO=0.
YDET=YDET + XSFO+XSSQO+XSQO

Detection of cases in
self-quarantine

d>= TS DSQ~BIN(XSSQ,PDSQ). XSSQ=XSSQ – DSQ, XD=XD+DSQ.
YDET=YDET + DSQ, YDETL=YDETL + DSQ.

Detection of cases in
community

d>= Ts DSF~BIN(XSF,PDC). XSF=XSF– DSF, XD=XD+DSF.
DST~BIN(XST,PDC). XST=XST– DST, XD=XD+DST.
YDET=YDET + DSF+DST, YDETL=YDETL + DSF+DST.

Hospitalisation d=TH For each of X=XSF, XSSQ, XST, XSU, XD, XSQ

DH~BIN(X,PH). XSH=XSH+DH, YH=YH+DH.
For CC=SF, SSQ, ST, SU, D: XCC=XCC – DH.
For CC=SF, SSQ, ST, SU: YDET=YDET + DH, YDETL=YDETL + DH.

Fatally ill d=TD DFI~BIN(XSH,PM). XSH=XSH – DFI, XFI=XFI+DFI.

Death TD<= d<=
TM

DD~BIN(XFI,PD). XFI=XFI – DD, XM=XM+DD.
YM=YM+DD.

Recovery TC<= d<=
TM

DRD~BIN(XD,PR). XD=XD – DRD, XRD=XRD+DRD.
DRH~BIN(XSH,PR). XSH=XSH – DRH, XRD=XRD+DRH.
YRD=YRD+DRD+DRH.
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randomly from the posterior, are compared with the observa-
tions in Fig. 4. The fit is good, but we observe that the model
does not adequately capture the steep rise in reported cases in

the state of Victoria in late June – early July 2020. Percentiles
for an equivalent ensemble from the SCM are shown in Fig. 5.
The median predictions for the SCM and DCM agree closely.

Fig. 4 Daily new Australian
cases of local origin from 20
February 2020. Observations in
black. Percentiles for a posterior
ensemble from the DCM: median
(blue), quartiles (red), 2.5 and
97.5 percentiles (green)

Fig. 5 Daily new Australian
cases of local origin from 20
February 2020. Observations in
black; percentiles for a posterior
ensemble from the SCM: median
(blue), quartiles (red), 2.5 and
97.5 percentiles (green)
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The SCM ensemble shows additional spread due to stochastic
effects, and the observed steep increase in detected local cases

in late June – early July 2020 does lie within the inter-quartile
credibility interval for the stochastic model.

Fig. 6 Cumulative COVID-19
fatalities for Australia starting 20
February 2020. Observations in
black; percentiles for a posterior
ensemble from the SCM: median
(blue), quartiles (red), 2.5 and
97.5 percentiles (green)

Fig. 7 Cumulative COVID-19
recoveries for Australia starting
20 February 2020. Observations
in black; percentiles for a
posterior ensemble from the
SCM: median (blue), quartiles
(red), 2.5 and 97.5 percentiles
(green)
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SCM posterior ensemble predictions of cumulative deaths
are compared with observations in Fig. 6. The chosen param-
eter values for TD, PM and PD (Table 2) provide a good ap-
proximation to the timing and magnitude of observed cumu-
lative deaths through the ‘first wave’. The second wave out-
break in Victoria that began inMay 2020 started in a relatively
younger demographic of workers and students, and only later
spread into aged care homes beginning in July 2020 that re-
sulted in over 90% of the Victoria second-wave fatalities.

The chosen values for parameters TR and PR (Table 2)
leads to reasonable agreement in the timing of predicted and
observed recoveries (Fig. 7), given some reporting anomalies
in the observations. The median model prediction slightly
over predicts recoveries, but given the good fit to daily cases,
this may be because of incomplete official reporting of
recoveries.

The marginal posterior pdfs for the parameters, calculated
from the posterior weighted sample, are plotted as histograms

Fig. 8 a Marginal posterior pdfs
for parameters subject to
Bayesian inference. b Marginal
posterior pdfs for parameters
subject to Bayesian inference
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in Fig. 8. The parameters fall into three groups with respect to
the information provided by the observations. The parameters
G0 and GLD are highly informed, with posterior values re-
stricted to a narrow range. The parameters RSD, PU and PL
are moderately informed, with RSD biased to high values
between 0.8 and 1, PU to high values from 0.4 to 0.6 and PL
biased towards low values from 0.1 to 0.2. The remaining
parameters seem to be effectively uninformed, with little dif-
ference between prior and posterior.

The posterior distribution carries additional information
in the form of correlations among parameters (Fig. 9). A
strong negative correlation between GLD and PU suggests
the model is relying partly on contact tracing to bring about
the steep decline in local cases in March–April 2020. High
values of PU (high levels of untraceable cases) weaken con-
tact tracing, and more effective social distancing (lower
GLD) is then required to match observations. There are also
moderate negative correlations between RSD and PU, and
betweenG0,GLD andPL,with similar explanations.Aweak-
er positive correlation between G0 and PT suggests contact
tracing reduces net transmissions prior to implementation of
social distancing. The positive correlation between PU and
PL may be an indirect result of their mutual strong negative
correlations with transmission coefficients.

The DCM provides a relatively tight fit to observations
despite some of the parameters being relatively poorly in-
formed. This may be partly attributed to trade-offs among

parameters, reflected in the correlation structure, although
poorly informed and weakly correlated parameters such as
PA and FA presumably have little influence on model
predictions.

Our intent here was to provide decision-makers with a re-
alistic picture of the uncertainty around the potential outcomes
of alternative control strategies. We contend that scenario en-
sembles from the SCM, based on random samples from this
posterior, provide a realistic picture of model uncertainty giv-
en prior knowledge and Australian observations to 5
July 2020.
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