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Increasing evidence indicates a pivotal role of macrophages in innate immunity, which contributes to the pathogenesis of adult-
onset Still’s disease (AOSD). Despite the available reviews that summarized the pathogenic role of proinflammatory cytokines in
AOQOSD, a systematic approach focusing on the crucial role of macrophages in this disease is still lacking. This review summarizes
the updated functions of macrophages in AOSD and their implication in clinical manifestations and therapeutics. We searched
the MEDLINE database using the PubMed interface and reviewed the English-language literature as of 31 March 2021, from
1971 to 2021. We focus on the existing evidence on the pathogenic role of macrophages in AOSD and its implication in clinical
characteristics and novel therapeutics. AOSD is an autoinflammatory disease mainly driven by the innate immune response.
Among the innate immune responses, macrophage activation is a hallmark of AOSD pathogenesis. The pattern recognition
receptors (PRRs) on macrophages recognize pathogen-associated molecular patterns and damage-associated molecular patterns
and subsequently cause overproduction of proinflammatory cytokines and recruit adaptive immunity. Some biomarkers, such as
ferritin and gasdermin D, reflecting macrophage activation were elevated and correlated with AOSD activity. Given that
macrophage activation with the overproduction of proinflammatory cytokines plays a pathogenic role in AOSD, these
inflammatory mediators would be the therapeutic targets. Accordingly, the inhibitors to interleukin- (IL-) 1, IL-6, and IL-18
have been shown to be effective in AOSD treatment. Gaining insights into the pathogenic role of macrophages in AOSD can aid
in identifying disease biomarkers and therapeutic agents for this disease.

1. Introduction

Adult-onset Still's disease (AOSD) is a systemic inflamma-
tory disorder characterized by fever, rash, arthritis, liver dys-
function, lymphadenopathy, variable = multisystemic
involvement, hyperferritinemia, and even life-threatening
complications such as macrophage activation syndrome
(MAS) [1-4]. AOSD is a rare but important cause of fever
of unknown origin [5]. The reported incidence rates of
AOSD were 0.16, 0.22, and 0.4 per 100,000 persons in west

France [6], Japan [7], and northern Norway [8], respectively.
It is considered an autoinflammatory disease (AID) due to its
characteristic phenotypes and the absence of detectable auto-
antibodies [9]. The innate immune system encompasses the
germline-encoded pattern recognition receptors (PRRs),
including Toll-like receptors (TLRs) and cytosol-expressed
nucleotide-binding oligomerization- (NOD-) like receptors
(NLRs) [10], which may drive autoinflammation with
unknown etiology. Increasing evidence indicates a pivotal
role of macrophage activation in the innate immune response
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with subsequent inflammatory reactions [11], giving rise to
the clinical manifestations of AOSD. Moreover, proinflam-
matory cytokines such as interleukin- (IL-) 1, IL-6, IL-18,
and tumor necrosis factor- (TNF-) « play a pathogenic role
in AOSD [12-18], leading to an implication of new targeted
therapies [19-22]. Therefore, the biologics targeting IL-1,
IL-6, or IL-18 have been proven effective in the treatment
of AOSD [23-28].

With increasing evidence indicating an immunopatho-
genesis of AOSD, which is attributable to significant
advances in using therapeutic targets for AOSD, this review
is aimed at summarizing the current research results regard-
ing the pathogenic role of macrophage activation in AOSD
and its clinical implication in clinical characteristics and
therapeutics.

2. Materials and Methods

2.1. Literature Search. The present review focuses on the
existing evidence on the pathogenic role of the macrophage
activation and cytokine storm in AOSD and its clinical impli-
cation in therapeutics. We searched the MEDLINE database
using the PubMed interface and reviewed the English-
language literature as of 31 March 2021, from 1971 to 2021.
The search keywords for this updated review included mac-
rophage, innate immunity, immune response, inflammation,
pathogenesis, trigger factors, pathogen-associated molecular
patterns (PAMPs), damage-associated molecular patterns
(DAMPs), TLRs, inflammasomes, proinflammatory cyto-
kines, cytokine storm, MAS, clinical manifestations, AOSD,
autoinflammatory disorders, clinical implication, disease
activity, and therapeutic strategies. The relevant drugs
include corticosteroids, nonsteroidal anti-inflammatory
drugs (NSAIDs), conventional synthetic disease-modifying
antirheumatic drugs (csDMARDs), biologic DMARDs
(bDMARDs), and  targeted  synthetic = DMARDs
(tsDMARDs), mainly Janus kinase (JAK) inhibitors.

2.2. Study Selection. Two authors (PK Chen and DY Chen)
independently assessed the titles and abstracts of articles
identified by the literature search and retrieved the relevant
full-text articles. Both authors also evaluated the full-text
articles for eligibility and examined the selected articles’ ref-
erences for reference. We selected articles if they (1) were
probably relevant to the pathogenic role of macrophages or
macrophage-derived cytokines in AOSD and (2) were poten-
tially relevant to therapeutic agents targeting macrophage-
related cytokines in AOSD. Both authors extracted data from
these studies electronically. Our emphasis is on the updated
role of macrophages in the pathogenesis of AOSD and the
clinical implication in therapeutics by targeting the media-
tors involved in AOSD pathogenesis.

3. Results

3.1. Roles of Macrophage Activation in the Innate Immune
Responses. The innate immune system provides an early
defense to protect the host from invading foreign pathogens,
endogenous danger signals, and allergens [29]. The cells
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(monocytes, macrophages, neutrophils, natural killer cells,
and dendritic cells) of innate immunity play a crucial role
in maintaining immune homeostasis by recognizing and
removing pathogens. These cells interact with the adaptive
immune system through cytotoxic reaction or production
of antigen-specific antibodies and cytokines [30]. By the
real-time imaging platform, Kapellos et al. revealed that bone
marrow-derived macrophage priming with Th2 cytokines
such as IL-4 and IL-10 resulted in higher phagocytic function
compared with M1 polarization [31]. Macrophages promote
tissue homeostasis through regulatory and repair functions
[32] and could be divided into classically activated macro-
phages, wound healing or tissue repairing macrophages,
and regulatory macrophages based on three different homeo-
static activities [33]. Host-derived DAMPs released from
damaged tissue, dying cells, or pathogen infections can be
recognized by PRRs on macrophages and subsequently initi-
ate an immune reaction [30, 33-34]. TLRs are well known as
a type of PRRs that mediate PAMP and DAMP recognition.
Upon PAMP and DAMP recognition, TLRs recruit adapter
molecules such as myeloid differentiation primary response
88 (MyD88), activate the downstream signal cascade through
NF-«B, and drive proinflammatory cytokine expression [35].
The NLRs are a family of intracellular sensors to mediate
innate immunity and inflammation. NLRP (nucleotide-bind-
ing oligomerization domain, leucine-rich repeat, and pyrin
domain) can form multimeric protein complexes in response
to stimuli. The assembly of NLRP inflammasomes triggers
cascade-1 activation to convert pro-IL-1f and pro-IL-18 into
mature IL-18 [36-37]. NLRP inflammasomes can be acti-
vated by PAMPs such as microbial toxins and whole patho-
gens, including bacterial, viral, and fungal [38]. They can
also recognize danger molecules such as ATP, extracellular
glucose, crystals of monosodium urate, and calcium oxalate
crystals [39-42]. These observations suggest that the macro-
phages can be activated through the recognition of various
PAMPs and DAMPs by different types of PRRs.

3.2. Pathogenic Role of Innate Immunity in AOSD

3.2.1. Triggering Factors of Innate Immunity in AOSD. The
exact etiology of AOSD is not fully understood, although var-
ious infections, mainly viral infections, have been suggested
as possible causative agents [43]. The reported infectious
triggers, so-called PAMPs, include cytomegalovirus (CMV),
parvovirus B19, Epstein-Barr virus, rubella virus, Measles
morbillivirus, hepatitis virus, influenza virus, adenovirus,
human immunodeficiency virus, Mycoplasma pneumonia,
and severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) emerging in late 2019 [43-55]. We demon-
strated that parvovirus B19 nonstructural protein (NS)I
might induce IL-1f and IL-18 expression by activating
NLRP3 inflammasomes in AOSD [56]. Jia et al. recently
revealed that CMV DNA was found in the plasma of AOSD
patients with new-onset disease or relapses, and CMV infec-
tion is strongly associated with the initiation/amplification of
inflammation in AOSD [57]. Besides, Bamidis et al. reported
a patient who suffered from sequelae of COVID-19 mani-
fested as severe AOSD [55]. In consideration of infectious
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triggers, innate immunity plays a crucial role in AOSD
pathogenesis.

The DAMPs including advanced glycation end products
(AGEs), high mobility group box-1 (HMGBI), soluble
CD163 (sCD163), macrophage migration inhibitory factor
(MIF), and neutrophil extracellular trap (NET) have been
implicated in AOSD pathogenesis [1-2, 11, 58]. Accumulat-
ing evidence demonstrates a pathogenic role of advanced gly-
cation end products (AGEs) in inflammation [59-60]. Chen
et al. revealed that the AGE levels were elevated and corre-
lated with activity scores and ferritin levels in AOSD patients
[61], suggesting the involvement of AGEs in AOSD patho-
genesis. HMGB1, a member of DAMPs, is released into the
extracellular space from macrophages following inflamma-
some activation [62]. HMGBI interacts with TLR2, TLR4,
or the receptor for AGEs (RAGE) and mediates inflamma-
tory response [63]. Jung et al. demonstrated that elevated
HMGBI levels were correlated with systemic scores and C-
reactive protein (CRP) in AOSD patients and associated with
skin rash and sore throat [64]. The sCD163, a heme receptor
expressed on macrophages, is elevated and related to hyper-
ferritinemia in AOSD patients [65]. MIF, a T lymphocyte-
derived cytokine, inhibits random migration of macrophages
[66-67] and reduces anti-inflammatory actions of corticoste-
roids [68]. Increasing evidence indicates that MIF is a proin-
flammatory cytokine that can upregulate the expression of
proinflammatory mediators, including IL-1f3, IL-2, IL-6, IL-
8, TNF-a, IFN-y, and prostaglandin E2 [69]. Serum MIF
levels were elevated and correlated with disease activity in
AOSD patients [70-71]. Zou et al. also revealed highly
increased intracellular MIF in monocytes [70], suggesting
that macrophages are activated in AOSD and supporting that
AOQOSD is a disease of histiocyte-macrophage system activa-
tion [72-73]. Hu et al. showed that NET DNA from AOSD
patients exerted a potent capacity to accelerate the activation
of macrophages and increased the expression of IL-1p, IL-6,
and TNF-«a [74]. In summary, PAMPs or DAMPs can trigger
an interplay between host genetic factors and macrophage
activation, contributing to AOSD pathogenesis [1-2, 11, 58].

3.2.2. The Common Features of Macrophage Activation in
COVID-19 and AOSD. In response to COVID-19 infection,
macrophages may be activated and produce proinflamma-
tory cytokines, resulting in the development of systemic
hyperinflammation, the so-called cytokine storm [75-76]. A
variety of proinflammatory cytokines, such as IL-1p, IL-6,
IL-8, and IFN-y, were elevated in severe COVID-19 patients
[77] and active AOSD patients [12-19], suggesting a com-
mon link of the cytokine storm in the pathogenesis of both
diseases. Although Meng et al. recently revealed higher IL-6
and IL-10 in severe COVID-19 than in AOSD [78], a clear
distinction of cytokine profiles between severe COVID-19
and active AOSD is challenging and needs to be explored in
future studies.

3.2.3. Activated Macrophage-Related Mediators as the Disease
Activity Indicators in AOSD. PAMPs or DAMPs initiate mac-
rophage activation through PRRs, including TLRs, NLRP3
inflammasomes [79-82], and C-type lectin domain family

5-member A (CLEC5A)/DAP12 complex, and subsequently
cause the release of proinflammatory cytokines and activate
an adaptive immune response [29, 83]. Virus sensing can
trigger TLRs or activate the NLRP3 inflammasome, leading
to inflammatory responses in AOSD [56, 84]. Hsieh et al. also
revealed elevated expression of NLRP3 inflammasome sig-
naling molecules, which was correlated with disease activity
in AOSD patients [85]. Chen et al. demonstrated that the
levels of CLECS5A-expressing monocytes were increased
and correlated with disease activity and levels of IL-1 and
IL-18 in AOSD patients [86].

It is well known that ferritin is a characteristic mediator
of AOSD [1-3]. The activated macrophages can stimulate
the release of ferritin, and elevated H-ferritin expressions in
the lymph nodes and skin were correlated with the severity
of AOSD [87-88]. Beyond its iron storage role, ferritin takes
a pathogenic role in inflammation [89]. The synthesis of fer-
ritin can be upregulated in response to inflammatory cyto-
kines such as IL-18 and IL-6. Moreover, ferritin can
stimulate inflammatory pathways to amplify the inflamma-
tory process, supporting a hypothesis that ferritin may not
only act as a bystander of acute-phase reaction [90]. Ferritin
could be exported through the gasdermin D pole [91], and
full-length gasdermin D is cleaved into the N-terminal p30
fragment upon activation of inflammasomes. The p30 frag-
ment forms a pore in the cell membrane, through which
the activated IL-1$ and IL-18 are exported from the cell
[92]. Recently, Nagai et al. showed that adults or children
with Still's disease had elevated serum gasdermin D N-
terminal levels correlated with ferritin and IL-18 [93]. Fur-
thermore, the gasdermin D inhibitor could reduce the release
of pyroptosis-mediated ferritin by macrophages. In sum-
mary, increased ferritin from macrophage activation was cor-
related with disease activity of AOSD and might serve as an
activity indicator of this disease [94].

3.2.4. Inflammatory Reactions and the Related Manifestations
of AOSD. Sustained macrophage activation may lead to tissue
inflammation with increased secretion of proinflammatory
cytokines. After NLRP3 inflammasome activation, caspase
enzymes induce the overproduction of IL-1/3 and IL-18, the
hallmark cytokines of active AOSD [12-14, 16]. IL-1f and
IL-18 further promote the secretion of proinflammatory
cytokines, including IL-6, IL-8, IL-17A, and tumor necrosis
factor- (TNF-) a [95-96]. IL-1f3 can also activate macro-
phages that play a crucial role in the cytokine storm or
MAS [97-98]. In the skin, IL-18 is produced in keratinocytes,
Langerhans cells, and dermal dendritic cells and may be
related to the cutaneous manifestation of AOSD [99]. The
locally activated macrophages in the liver produce a high
amount of IL-18 and contribute to AOSD-related hepatitis
[13, 100]. With this unique feature, IL-18 is the first identified
diagnostic marker and indicator of disease activity for AOSD
(14, 101].

Chemokines such as IL-8 are produced mainly by acti-
vated macrophages and act as the chemotactic agents of
inflammatory cells. Chen et al. revealed that the serum IL-8
level was a significant predictor of persistent arthritis [13].
Furthermore, IFN-y-induced chemokines such as C-X-C



motif chemokine 9 (CXCL9), CXCL10, and CXCL11 may
contribute to inflammatory responses and cutaneous mani-
festations in AOSD [102]. IL-6 also enhances immune
response and inflammatory reactions and contributes to
AOSD pathogenesis [19-20, 103]. As a proinflammatory
cytokine, IL-6 may be responsible for fever and skin rash,
as well as the production of acute-phase proteins in AOSD
[13, 104]. Therefore, biologics targeting IL-6 or its receptor
have been proved to be effective in the treatment of AOSD.

MAS or hemophagocytic lymphohistiocytosis (HLH) is
characterized by excessive macrophage activation accompa-
nied by the cytokine storm, hemophagocytosis, and hyperfer-
ritinemia [105]. The possible trigger factors of MAS include
infections, medications used, and uncontrolled AOSD
[106-108], and it is associated with high mortality in AOSD
[109]. Besides, di Benedetto et al. reported that ferritin levels
could be used to predict the emergence of MAS in AOSD
patients [110], and AOSD and MAS were both considered
hyperferritinemic syndrome [111]. Inflammasome-derived
IL-18/IL-18 were suggested to play important roles in
MAS-associated rheumatic diseases [112]. AOSD patients
having higher IL-18 levels were more likely to develop
MAS, and their IL-18 and ferritin levels were further
increased at the time of MAS [113].

3.3. Development of New Targeted Therapies. Because AOSD
is a rare disease with a heterogeneity of the clinical course,
there is currently no concise consensus for treating AOSD.
Although corticosteroids and csDMARD:s are the standard-
of-care treatment for AOSD [22], a significant proportion
of patients showed poor therapeutic response or corticoste-
roid dependence [21, 114]. Given the pathogenic role of pro-
inflammatory cytokines in AOSD, these inflammatory
mediators would become the therapeutic targets.

3.3.1. Anti-IL-1 Therapy. Given that IL-1 is implicated in the
pathogenesis of AOSD [115-116] and its ligands and recep-
tors are secreted mainly by activated macrophages, the
administration of IL-1-blocking agents in AOSD patients
seems to be a logical therapeutic approach with a
corticosteroid-sparing effect [24-25, 117-120]. The IL-1-
blocking agents include anakinra (an IL-1R antagonist), rilo-
nacept (a soluble IL-1 trap molecule), and canakinumab
(anti-IL-1$ monoclonal antibody). The response to anakinra
therapy was rapid and sustained in most patients with AOSD
[24-25, 117-118]. An open-label randomized study showed
that anakinra induced more beneficial responses than
DMARD:s in corticosteroid-refractory AOSD patients [120].
A meta-analysis revealed that anakinra was effective in treat-
ing AOSD with a steroid-sparing effect [121]. Recently, Vas-
tert et al. demonstrated that the use of anakinra could
minimize the steroid dose and improve clinical outcomes in
children or adults with Still’s disease [122]. A systematic
review indicated that anakinra treatment was associated with
a steroid-sparing effect, and a large proportion of patients
could discontinue the use of steroids [123]. A high-dose ana-
kinra has also been successfully used to treat refractory
AOSD complicated with life-threatening MAS [124-125].
Rilonacept, an inhibitor of both IL-1a and IL-1, has a longer
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half-life than anakinra. Limited reports revealed that rilona-
cept effectively treated AOSD patients with the systemic or
articular subtype [126-127]. Although a randomized con-
trolled trial was terminated prematurely with the primary
endpoint not achieved, canakinumab treatment improved
several outcome measures in AOSD [128]. Based on the evi-
dence and consensus, Italian experts recommended that anti-
IL-1 therapy was considered relatively safe and effective in
treating refractory AOSD patients, especially the systemic
subtype patients, as either the first line or a subsequent line
of biological treatment [129].

3.3.2. Anti-IL-6 Therapy. IL-6, a pleiotropic cytokine, binds
to IL-6R and a 130kDa signal-transducing f-receptor sub-
unit (gpl30) forms a functioning hexametric structure
[130]. The activation of gp130 induces the phosphorylation
of the signal transducer and activator of transcription 1
(STAT1), STAT3, and mitogen-activated protein kinase
(MAPK) cascade and then activates proinflammatory reac-
tions [131]. The pathogenic role of IL-6 [12-13, 103] is sub-
stantiated by the successful treatment with IL-6-blocking
agents in AOSD. The IL-6 receptor antagonist, tocilizumab
(TCZ), has recently been proposed as a promising biological
agent for AOSD patients. In a case series of 14 patients with
intractable AOSD, TCZ therapy resulted in complete resolu-
tion of the clinical disease activity in 57% of patients and
markedly reduced the maintenance dose of corticosteroids
[20]. TCZ is effective in treating AOSD patients with either
the systemic or chronic articular patterns [132], including
those who were refractory to anakinra [133-135] or TNF-«
inhibitors [136-137]. Furthermore, TCZ treatment was effec-
tive for AOSD patients complicated with MAS [138]. How-
ever, macrophage activation syndrome developed following
TCZ therapy in one patient with refractory AOSD, implying
that caution should be exercised in the very active status of
this disease [139]. Based on the previous findings [132-138,
140-141], TCZ treatment is effective and well tolerated in
treating refractory AOSD patients.

3.3.3. Anti-IL-17 Therapy. Given the pathogenic role of IL-17
in AOSD pathogenesis [18], the administration of IL-17
inhibitors in AOSD patients seems to be a logical therapeutic
approach with a corticosteroid-sparing effect. The IL-17
inhibitors have recently been proposed as a promising bio-
logical agent for rheumatic patients [142-143]. Clinical trials
showed that anti-IL-17 antibodies significantly reduced
rheumatoid arthritis (RA) signs and symptoms and C-
reactive protein levels [144-145]. Several monoclonal
antibody-mediated IL-17 inhibition approaches for patients
with inflammatory diseases have proceeded to phase III clin-
ical trials.

3.3.4. Anti-IL-18 Therapy. IL-18, one member of the IL-1
family, is expressed on monocytes, macrophages, and den-
dritic cells [146]. The binding of IL-18 to its receptors (IL-
18Ra and IL-18Rp) triggers proinflammatory reactions. Pre-
vious studies revealed that IL-18 levels were elevated and cor-
related with disease activity in AOSD [12-14], and markedly
increased IL-18 levels were reported in AOSD patients
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complicated with MAS [112]. Given that IL-18 binding pro-
tein (IL-18BP) is an inhibitor of IL-18, a phase II clinical trial
demonstrated that IL-18BP (Tadekinig alfa) was effective and
well tolerated in treating AOSD [28]. Recently, Tadekinig alfa
has been shown to have therapeutic effects with a rapid
decrease of disease activity in active AOSD patients who were
refractory to csDMARDs [147]. These available results indi-
cate that IL-18 may be a promising therapeutic target in
AOSD.

3.3.5. Anti-TNF-a Therapy. TNF-a, an important proinflam-
matory cytokine, has been reported to be elevated in sera and
synovial membranes of AOSD patients compared with oste-
oarthritis patients or healthy subjects [13, 148]. Although

Kraetsch et al. revealed significant improvement in the clini-
cal and laboratory outcomes in 6 AOSD patients receiving
infliximab therapy [149], a recent evidence-based review
showed that TNF-« inhibitors might not be effective in
AOSD treatment [137].

3.3.6. Anti-IFN-y Therapy. Given a pathogenic role of inter-
ferons such as IFN-y in AOSD [15], the IFN-y blockade
may effectively treat AOSD with or without concomitant
MAS [150]. Recently, Gabr et al. reported that emapalumab,
an IFN-y blockade, effectively eliminated fever and improved
laboratory outcomes of a patient with AOSD complicated by
MAS [151]. Data regarding the effectiveness of the IFN-y
blockade in treating AOSD remain limited.



3.3.7. Janus Kinase (JAK) Inhibitors. Given that JAK inhibi-
tors can block multicytokines, the use of JAK inhibitors
may be feasible for AOSD treatment. Kacar et al. reported
that baricitinib, a JAK1/2 inhibitor, was effective in treating
two AOSD patients who were refractory to csDMARDs and
biological therapy [152]. The combination of baricitinib
and anakinra therapy effectively treated a patient with refrac-
tory AOSD [153]. A recent report from China revealed the
successful use of tofacitinib, a JAK1/3 inhibitor, in 14 patients
with AOSD [154]. Besides, tofacitinib therapy was effective in
treating a patient with AOSD complicated by MAS [155].

4. Conclusions

The status of hyperinflammation in AOSD, mainly driven by
an innate immune response, is characterized by an overpro-
duction of proinflammatory cytokines [1-2, 11, 58]. PAMPs
or DAMPs initiate macrophage activation through PRRs and
subsequently activate adaptive immune responses [29, 83].
The elevated levels of activated macrophage-related media-
tors may contribute to the clinical manifestations of AOSD
and act as the potential therapeutic targets [156]. Accord-
ingly, the inhibitors to IL-1, IL-6, and IL-18 have been shown
to be effective in AOSD treatment. The use of TNF-« inhib-
itors, such as infliximab, was effective for AOSD patients with
the chronic articular subtype. Through the multicytokine
blockade, JAK inhibitors were also an effective treatment
for AOSD with or without concomitant MAS. Better insights
into the pathogenic role of macrophages in AOSD can aid in
identifying disease biomarkers and novel therapeutics. Based
on the available evidence of the pivotal role of macrophage
activation in AOSD pathogenesis and its clinical implication,
we summarized the data as in Figure 1.
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