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The tight relationship between ferroptotic cell death and immune response demonstrated by recent studies enlightened us to detect
the underlying roles of ferroptosis-related long noncoding RNAs (frlncRNAs) in the tumor microenvironment of bladder cancer
(BCa). We collected 121 ferroptosis regulators from previous studies. Based on their expression values, 408 cases with BCa were
clustered. The patients in different clusters showed diverse immune infiltration, immunotherapy response, and chemotherapy
effectiveness, revalidating the tight correlation with ferroptosis and tumor immunity. Through differential, coexpression,
Kaplan-Meier, Lasso, and Cox analysis, we developed a 22-IncRNA-pair signature to predict the prognosis of BCa based on
gene-pair strategy, where there is no need for definite expression values. The areas under the curves are all over 0.8. The risk
model also helped to predict immune infiltration, immunotherapeutic outcomes, and chemotherapy sensitivity. Totally, the
prognostic assessment model indicated a promising predictive value, also providing clues for the interaction between ferroptosis

and BCa immunity.

1. Introduction

Bladder cancer (BCa) is one of the most common malignan-
cies worldwide, with high morbidity and mortality [1]. More
than 500,000 new BCa cases and 200,000 BCa-related deaths
occur worldwide annually [2]. BCa has two main subtypes:
muscle-invasive BCa and nonmuscle-invasive BCa. Although
the 5-year survival rate of nonmuscle-invasive BCa is about
90%, approximately 15-20% of such cases would progress
to the muscle-invasive stage and even to distant metastasis,
which has a dismal 5-year survival rate of 5-30% [1]. Recently,
some large-scale clinical trials, such as KEYNOTE-045 and
IMvigor211, demonstrated that BCa is susceptible to immune
checkpoint inhibitors (ICIs), representing an important
advancement in the treatment of BCa [3, 4].

Ferroptosis, a form of iron-dependent and nonapoptotic
cell death, is attracting increasing attention in view of the fact
that apoptosis resistance is one of the hallmarks of tumors

[5]. Inducing tumor cell ferroptosis seems to be an attractive
and promising therapeutic strategy, especially for drug-
resistant malignancies. Recent studies have verified that ferrop-
totic tumor cells and the tumor microenvironment (TME)
could influence each other [6, 7], suggesting that the combina-
tion of ICIs and ferroptosis inducers is a promising treatment.

Long noncoding RNAs (IncRNAs), a type of RNA mole-
cule with transcripts of >200 nucleotides, participate in
tumorigenesis and cancer development not only by altering
the malignancy of cancer cells themselves but also by chang-
ing the TME, as has been reported in many studies [8]. In
recent years, the interaction between IncRNAs and ferropto-
sis has also been investigated. For instance, the IncRNA
P53RRA serves as a tumor suppressor by promoting p53
maintenance in the nucleus, thus, facilitating ferroptosis [9].

Immune-related signatures for predicting the status of
cancer immune infiltration are receiving increasing attention
with the clinical application of ICIs, as such signatures might
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help predict prognosis and immunotherapy outcomes. Because
IncRNAs are involved in the regulation of 70% of gene expres-
sion, signatures based on IncRNA expression have been inves-
tigated by many researchers. Meanwhile, some researchers
have proposed the gene-pair strategy, which focuses on the
difference between two genes regardless of the exact gene
expression, to construct a prediction model, making immune-
related signatures more widely applicable [10].

This study had three phases. First, unsupervised cluster-
ing based on known ferroptosis regulators was performed
to determine the correlation between ferroptosis and the
TME in BCa. Second, using the gene-pair strategy, we con-
structed a ferroptosis-related IncRNA (frlncRNA) signature
to predict overall survival (OS). Lastly, the diagnostic ability
of the risk score calculated by the model for immunotherapy
response, chemotherapy results, and immune infiltration was
also evaluated. From this analysis, we aimed to verify the
close association between ferroptosis and the TME and to
propose an important tool for predicting the prognosis and
immune infiltration of BCa.

2. Materials and Methods

2.1. Transcriptome Data Collection and Ferroptosis-Related
Genes. The transcription data (RNA-seq) and corresponding
clinicopathological features were downloaded from The Can-
cer Genome Atlas (TCGA) up to September 3, 2020 (https://
portal.gdc.cancer.gov/). A total of 121 ferroptosis regulators
were identified from a previous study [5]. To select IncRNAs,
the annotation file was obtained from the Ensembl database
(http://asia.ensembl.org). IncRNAs with an average expres-
sion value of <0.5 were excluded from the study. Differential
analysis was performed using the edgeR package [11], and
false discovery rate (FDR)<0.05 and [logarithmic fold
change [logFC] | >1 and 2 were set as the thresholds for
ferroptosis regulators and frIncRNAs, respectively. The
frincRNAs were screened through coexpression analysis,
with Pearson correlation coefficients >0.5 and p > 0.05 as
filtering criteria.

2.2. Unsupervised Clustering. The mRNA expression profile
of 121 ferroptosis regulators was adopted for consensus clus-
tering with the ConsensusClusterPlus R package [12] using
the K-means method. The cumulative distribution function
was implemented to detect the optimal K value, which repre-
sented the clustering number, and the result was validated
using principal component analysis (PCA) in R software.

2.3. Gene-Pair Strategy. The gene-pair strategy was used for
0-or-1 matrix construction, as previously reported [10]. For
instance, if the expression value of the A gene is higher than
that of the B gene, then C, which means the gene pair com-
prising A and B, is considered as 1; otherwise, C is considered
as 0. All frincRNAs were paired, and a new 0-or-1 matrix was
constructed. An frIncRNA pair was excluded from the study
if its value in all samples was 0 or 1.

2.4. Survival Analysis. Cases with a follow-up duration of <30
days were not included in the present analysis. We imple-
mented the survival R package to conduct Kaplan-Meier
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(KM) survival analysis with the log-rank test for the compar-
ison of OS between different cohorts. To simplify the model
and avoid overfitting as much as possible, Lasso—Cox regres-
sion with 10-fold cross-validation was conducted using the
glmnet package, and the threshold was set at 0.05. Univariate
and multivariate Cox analyses were performed using the sur-
vival package. The area under the curve (AUC) values were
calculated using the survival ROC package to estimate the
effectiveness of the established model.

2.5. Association with Clinicopathological Factors. To detect
whether the risk score, which was calculated using the
established model, was an independent risk factor, univariate
and multivariate Cox regression analyses were performed
using the survival R package. The clinicopathological features
were all transformed into dichotomized variables, including
risk score (high vs. low), tumor grade (high vs. low), age
(<64 vs. >64 years), sex (female vs. male), pathological T
stage (T 1-2 vs. T 3-4), N stage (NO vs. N1-3), and M stage
(MO vs. M1).

2.6. Immune Infiltration Evaluation. Different methods were
used to evaluate the immune infiltration status. The ESTI-
MATE algorithm [13] through the estimate package of R
was used to calculate the ratio of immune and stromal com-
ponents of the TME, which were quantified as ImmuneScore
and StromalScore, respectively. CIBERSORT [14] and
TIMER [15] were used to evaluate the abundance profile of
immune cells in the TME with p < 0.05 filtering.

2.7. Single-Sample GSEA (ssGSEA). The ssGSEA method was
implemented using the Gene Set Variation Analysis (GSVA)
and GSEABase packages to analyze the immune and inflam-
matory infiltration profiles. The results were visualized using
the pheatmap package.

2.8. Enrichment Analysis. Functional enrichment analysis of
IncRNAs was conducted using LncSEA (http://www licpathway
.net/LncSEA/) with FDR < 0.05 and Bonferroni < 0.05. GSEA
software (version 4.1.0) was downloaded from the GSEA
website (https://www.gsea-msigdb.org/), and GSVA was per-
formed using the GSVA R package. Hallmark gene sets v7.2
and iron metabolism-related gene sets were collected from
the Molecular Signatures Database (https://www.gsea-msigdb
.org/gsea/msigdb/). For GSVA, |logFC|>0.03 and adjusted
P <0.05 were considered as thresholds.

2.9. Transcription Factor Prediction. The JASPAR2020 [16]
and TFBSTools [17] packages were used to predict transcrip-
tion factors with sequences of 500 bp downstream to 2000 bp
upstream from the transcription start point of IncRNAs.
When the score, which was positively correlated with the
possibility of transcription binding, was >0.99, the transcrip-
tion factors were included in further analyses.

2.10. Estimating the Effectiveness of frlncRNA Signature for
Clinical Treatment. The likelihood of an immunotherapy
response was estimated using the TIDE algorithm [18]. In
addition, the association between the risk score and some
known predictors of immunotherapeutic sensitivity, such as
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CXCL9 and CXCL13 expression, was also investigated [19].
The half inhibitory concentration (IC50) values of com-
monly used chemotherapeutic drugs, such as cisplatin, doxo-
rubicin, gemcitabine, methotrexate, and vinblastine, were
obtained using the pRRophetic R package in patients with
stage > T2 BCa [20]. The survival information of patients
who had received chemotherapy and had stage> T2 BCa
was downloaded from TCGA.

3. Results

3.1. The Tight Association between Ferroptosis and BCa
Immune Infiltration. From a recent review [5], 121 ferropto-
sis regulators were identified, and the mRNA expression of
each gene was downloaded from the TCGA BCa dataset,
which included 19 paracarcinoma tissues and 408 BCa sam-
ples. The edgeR package of R software (version 4.0.3) was
used to detect the differentially expressed genes, and 20
ferroptosis regulatory factors were screened (Figure 1(a),
Supplementary Table S1; |logFC | >1, FDR < 0.05). Through
the consensus clustering algorithm, by which optimal
grouping stability could be achieved, all enrolled cases were
assigned into two groups: cluster 1 and cluster 2
(Figures 1(b)-1(d)). PCA indicated that our grouping method
was reliable (Figure 1(e)). Notably, patients in cluster 1 had a
significantly poorer prognosis than those in cluster 2
according to KM survival analysis (Figure 1(f)), p <0.05).
Mazdak et al. found that the serum iron ion level in 51
patients with BCa was significantly lower than that in 58
healthy controls, revealing the important role of iron in
tumor development [21]. Subsequent studies verified that
inhibition or activation of ferroptosis in BCa is a feasible
measure of treatment effectiveness [22]. Generally, our
analysis results again demonstrated the significant impact of
ferroptosis on BCa from the perspective of big data analysis.

Some studies have reported that ferroptosis and tumor-
infiltrating immune cells could influence each other [6, 7],
prompting us to detect the changes in the immune landscape
in different clusters. First, we estimated the infiltration of
immune cells and the changes in immune-related pathways
using ssGSEA based on the reported gene sets [23].
Accordingly, a different immune landscape was found in each
ferroptosis cluster, which was verified by the ESTIMATE algo-
rithm [13], a strategy used to predict the ratios of immune and
stromal components of the TME (Figure 1(h)). GSEA showed
that cases in cluster 1 were significantly enriched in metabolic
pathways (Figure 1(i)), whereas cases in cluster 2 were mostly
enriched in immune-related functions (Figure 1(j)). As
ferroptosis-related clustering was immune-related, we detected
the association between clustering and immune cell infiltration
using the CIBERSORT algorithm [14]. We found that the dif-
ferent immune cells had different infiltration proportions
between cluster 1 and cluster 2 according to the Wilcoxon
signed-rank test (Figure 1(g)). Generally, patients in cluster 1
had a shorter survival time and relatively higher immune
infiltration, indicating an immunosuppressive environment in
this cluster.

Considering that immune checkpoints such as PDLI,
PDI1, LAG3, CTLA4, TIM-3, and TIGIT could lead to an

immunosuppressive TME, we analyzed the association
between ferroptosis-relevant clustering and the expression
of immune checkpoints. We discovered that all of the above-
mentioned genes were significantly upregulated in cluster 1
(p <0.001, Figure 1(k)). Immune checkpoints are also usually
considered predictors of the immunotherapy response of
patients with BCa, indicating that patients in cluster 1 were
more likely to benefit from ICIs, which was again validated
by the TIDE algorithm [18] (p < 0.001, Figure 1(1)). In addi-
tion to immunotherapy, we also detected the difference in
chemotherapy effectiveness between the two clusters using
the pRRophetic R package [19]. Patients in cluster 1 showed
significantly higher chemotherapy sensitivity (Figure 1(m)).
In summary, this analysis revealed the potential of
ferroptosis-related genes to predict alterations in the immune
infiltration of BCa.

3.2. Identification of Ferroptosis-Related IncRNAs (frlncRNAs).
The transcriptome data of 408 BCa samples and 19 corre-
sponding normal tissues from the TCGA website were ana-
lyzed. With the annotation file downloaded from Ensembl,
all IncRNAs were selected for expression differential analysis
using the edgeR package, and 927 IncRNAs were considered
as differentially expressed genes with filtering criteria of FDR
<0.05 and |logFC | >2 (Figure 2(a)). Meanwhile, we calcu-
lated the Pearson correlation coefficients between each
IncRNA and ferroptosis regulator, and the absolute values of
Pearson R> 0.5 and p < 0.05 were determined to be signifi-
cant (Supplementary Table S2). Ultimately, 105 IncRNAs
codetermined by differential and coexpression analyses were
identified as frIncRNAs (Figure 2(b)). Most of these 105
friIncRNAs were long intervening noncoding RNAs and
antisense IncRNAs (Figure 2(c)).

3.3. Construction of frincRNA Pairs and Prognostic Signature.
Patients with a follow-up period of <30 days were excluded
from the analysis. On the basis of the gene-pair strategy,
4298 frIncRNA pairs were identified. After KM survival anal-
ysis with a log-rank test, 125 gene pairs were extracted with
p<0.01 filtering (Supplementary Table S3), 35 of which
were also determined by Lasso regression (Figures 2(d)-
2(f)). Ultimately, 22 frincRNA pairs were included in the
prognostic model through multivariate Cox regression with
a stepwise method (Figure 2(g)). Figure 2(h) shows the
frincRNAs in the risk model and their possible targets.

3.4. Validation of the 22-frincRNA-Pair Prognostic Model.
Various methods were implemented to determine the prog-
nostic value of the established model. First, we generated
the 1-, 3-, and 5-year receiver operating curves (ROCs) of
the gene-pair signature and found that the AUCs were all
>0.8 (Figure 3(a)). After excluding cases without definite
TNM stages, we compared the AUCs for the 5-year ROC
curves of different clinicopathological parameters and risk
scores (Figure 3(b)). According to the median value of the risk
score, 197 cases were categorized into the high-risk group and
199 cases were classified as the low-risk group. The high-risk
subgroup had a significantly poorer clinical outcome than
the low-risk subgroup (p <0.001, Figure 3(c)). Higher risk
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FIGURE 1: Association between ferroptosis and immune infiltration. (a) Among 121 ferroptosis regulators, 14 were upregulated and 6 were
downregulated in BCa samples. (b) Consensus CDF values changed from k=2 to k =9. (c) Relative changes in area under CDF curve with
different k values. (d) Consensus clustering heat map of 408 BCa cases when k = 2. (e) Scatter diagram displaying the PCA results of the
expression of all genes when k= 2. (f) Kaplan-Meier survival analysis with log-rank test of BCa cases in different clusters (p < 0.05). (g)
Box plot indicating the difference in infiltration proportion of 22 different immune cells between the two clusters. (h) Heat map of
different immune-related pathways and functions. (i) GSEA for patients in cluster 1. (j) GSEA for patients in cluster 2. (k) Expression
profiles of common immune checkpoints between different clusters. (1) Difference in immunotherapy response between the two clusters.
(m) Patients in different clusters showed different chemotherapeutic sensitivity. BCa: bladder cancer; CDF: cumulative distribution
function; PCA: principal component analysis; GSEA: gene set enrichment analysis; #** p < 0.001.
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their possible target molecules, which serve as ferroptosis regulators. frincRNA: ferroptosis-related IncRNA.

scores were associated with more deaths and shorter survival
time (Figures 3(d) and 3(e)). Furthermore, univariate and
multivariate Cox regression analyses were conducted, and
the results revealed that the risk score was an independent
prognostic predictor of OS (Table 1). In addition, we found
that the established model was superior to ImmuneScore,
StromalScore, and ESTIMATEScore in predicting prognosis
in BCa, which could partly reflect the level of tumor immune
infiltration (Figures 3(g)-3(k)). We also randomly resampled
30% of cases from the training set as the internal validation
dataset, and the risk model also showed high efficacy in distin-
guishing cases with a low risk from those with a high risk
(Supplementary Figure S1). To validate the robustness of the

frincRNA signature, we conducted KM survival estimations
in multiple subgroups according to diverse clinicopathological
features (Supplementary Figure S2). In addition, we evaluated
the clinical associations of the risk score. We compared the
risk scores between various tumor grades and TNM stages
using the chi-square test (Figure 4(a)) and Wilcoxon signed-
rank test (Figures 4(b)-4(e)).

3.5. Functional Enrichment of the 22-frilncRNA Pair. We
implemented LncSEA [24], an online tool developed for
IncRNA enrichment analysis, to primarily assess the related
functions (Figure 3(f) and Supplementary Table S4). In the
risk model, 36 frIncRNAs were mostly enriched in BCa-
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FiGure 3: Validation of the IncRNA signature. (a) AUC of time-dependent ROC curves. (b) Comparison of 5-year ROC curves with other
clinicopathological features. (c) Kaplan-Meier survival plot for OS in cases in the high- and low-risk groups (p < 0.001). (d and e) Scatter
diagrams showing the risk scores (d) and survival status (e) of BCa cases. (f) Results of enrichment analysis using LncSEA. (g-i)
Prognostic values of ImmuneScore (g, p < 0.05), StromalScore (h, p <0.05), and ESTIMATEScore (i, p > 0.05). The optimal cutoffs were
determined using X-tile software. (j—k) The risk score was superior to ImmuneScore, StromalScore, and ESTIMATEScore in predicting OS
in univariate (j) and multivariate Cox analyses (k). AUC: area under curve; ROC: receiver operating characteristic; OS: overall survival;

BCa: bladder cancer.

TaBLE 1: Univariate and multivariate Cox analysis of the risk score.

Univariate analysis

Multivariate analysis

Covariates HR (95% CI) p value HR (95% CI) p value
Age (<64 vs. >64) 1.81 (0.97-3.37) 0.06 2.04 (1.07-3.89) 0.03
Gender (female vs. male) 1.62 (0.93-2.84) 0.09 1.40 (0.79-2.47) 0.24
Grade (low vs. high) 2.81e+07 (0-00) 1.00 5.16e+06 (0-00) 1.00
T (T 1-2vs. T 3-4) 2.61 (1.28-5.33) 0.01 1.66 (0.79-3.50) 0.18
N (NO vs. N1-3) 2.31 (1.37-3.89) <0.01 241 (1.36-4.28) <0.01
M (MO vs. M1) 2.17 (0.78-6.03) 0.14 0.87 (0.30-2.55) 0.80
Risk score (low vs. high) 6.47 (3.40-12.32) <0.01 6.41 (3.31-12.42) <0.01

HR: hazard ratio; CI: confidence interval.
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FIGURE 4: A strip chart (a) and box plots (b-f) showing the association between the risk score and tumor grades (b), pathological T stage (c), N

stage (d), and M stage (e).

related functions, indicating that the signature had a degree
of BCa specificity.

3.6. The Immune Infiltration Landscape and Immunotherapy
Results between High- and Low-Risk Groups. Various
methods were implemented to estimate the immune profiles
of cases in the low- and high-risk subgroups. On the one
hand, the Wilcoxon signed-rank test indicated that the
StromalScore, ImmuneScore, and ESTIMATEScore were
significantly higher in the high-risk cases according to the
ESTIMATE algorithm (Figure 5(a)), implying that high-risk
patients might have a more active TME. On the other hand,
seven clusters of immune and inflammatory genes were col-
lected from a previous study [25], and GSVA was imple-
mented to evaluate the immune and inflammatory response
enrichment status (Figure 5(b)). Except for interferon (IFN)
and MHC-I, IgG, HCK, MHC-II, LCK, and STATI were all
positively correlated with the risk score according to the
Wilcoxon test (Figure 5(c), p <0.05). Tumor immune het-
erogeneity might account for the disconnected relationship
between IFN and MHC-I and the risk score.

Considering that the risk score was significantly corre-
lated with tumor immune activity, we analyzed the infiltra-
tion proportion of immune cells. The TIMER algorithm
[15], which is similar to CIBERSORT, was developed to
estimate the infiltration levels of different immune cells,
including B cells, CD4 T cells, CD8 T cells, neutrophils, den-
dritic cells, and macrophages. The Wilcoxon signed-rank test
indicated that only B cells showed no significant association
with risk (Figure 5(d), p < 0.05), whereas the Spearman cor-
relation test revealed that CD8 T cells and macrophages were
positively correlated with the risk score (Figure 5(e), p < 0.05).
We also evaluated the prognostic values of the infiltration

levels of CD8+ T cells and M2 macrophages, which have been
reported to be closely associated with ferroptosis in many
other malignant tumors [6, 7], via CIBERSORT algorithm
and KM survival analysis with log-rank test in BCa, and
X-tile was used to determine the optimal cut-off. The analy-
ses results showed the patients exhibiting worse OS carried
high CD8+ T cell infiltration (Figure 5(f), p < 0.01) and low
M2 macrophage infiltration (Figure 5(g), p < 0.001).

The strong linkage between risk score and immune infil-
tration prompted us to investigate whether the risk score
could serve as an indicator of the response to ICIs. First, we
examined the expression difference of common immune
checkpoint molecules and discovered that PDLI, LAG3, and
TIM-3 were upregulated in the high-risk cohort according
to the Wilcoxon test (Figure 5(h), p < 0.05). We also found
the expression level of CXCL9 and CXCL13 was significantly
associated with the risk score (Figure 5(i), p <0.05). In
addition, using the TIDE algorithm, we predicted the immu-
notherapy clinical outcomes of the low- and high-risk
cohorts. The chi-square test revealed a significant difference
(Figure 5(j), p < 0.05). Overall, we believe that the prognosis
model could also be a potential indicator of the effectiveness
of immunotherapy.

3.7. The Linkage between Chemotherapy and Risk Score.
Emerging evidence suggests that some types of chemothera-
peutic drugs could induce malignant cancer cells to express
damage-associated molecular patterns that bind to antigen-
presenting cells, trigger a tumor-specific immune response,
and enhance the immunotherapeutic sensitivity of a malig-
nant tumor [26]. Considering the above findings, we
analyzed the association between risk and chemotherapy
sensitivity and found that the IC50 values of cisplatin and



Infiltration proportion

Disease Markers

Scorer |[T ESTIMATEScore™* _ I Risk 2
5000 - B |
2500
~2500 -1
HCK
High Low High  Low High  Low -2
Risk Risk
Risk B Low
B High Il High
B Low
(a) (b)
1gG™ HCK™ | [MHC-IT™*] [ LCK™ MHC-T STAT1*_|[ Interferon
w1
0.5 -
£
2
<>: 0.0
w
&)
-05 1 -
BN JR SNSRI | ISP | B :
5 28 5% % 28 B8 : 5 %
F 2 B =2 £ = £E 2 £ a3 £ =2 &£ =2
Risk
Risk
B3 High
B3 Low
(©
= = - &
ek EEED ek k. sHeskok LTS BI 8‘ _E‘ 2 2 —g
_ = = g g 8 &
o) + o g = __: 5
9 s
= 5 5 z a Z =
1
B_cell - - 2
_ce ‘ 007 D4 0 D O¢ 08
CD4_T_cell ‘ o6 . . 021 [ 0¢
0.4
CD8_T_cell . . 033  0.34
0.2
] é Neutrophil " ()(1 0.34 0
T T T T T T » -0.2
B_cell CD4_T _cell CD8_T_cell Neutrophil Macrophage Dendritic Dendritic M 0.24
-0.4
Risk Risk score ‘ 0.37 0.6
High

E Low Macrophage ‘I -08
-1

(d) (e)

FiGure 5: Continued.



Disease Markers

Gene expression

Survival curve (p = 1.661e-03)

Survival curve (p = 6.931e-04)

1.0 - 1.0
0.8 - 0.8
& £
g g
g 0.6 T 06
g i
=z 04 304
o o
02 - 02 -
0.0 - 0.0
T T T T T T T T T T T T
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Time (day) Time (day)
—— CD8+ T cell high infiltration ——— M2 macrophages high infiltration
——— CD8+ T cell low infiltration ——— M2 macrophages low infiltration
® (&)
PDL1** LAG3* TIM-3*** CXCL9* CXCL13**
* °
L[] < ®
® ° ®
[} ; 9 4
° ]
4 -3 -0
: .
s =1
S
3
£ 61
=%
]
L)
L
=]
S
2 4
3 -
07 0 L
High Low High Low High Low High Low High Low
Risk Risk
Risk X
- Risk
High
¢ ‘ High
- Low
- Low
(h) (i)

FiGure 5: Continued.

15



16

Percentage (%)

2
Xpearson

p=4.88¢-05

(n=197)

High

Response

. Response

Risk

- Non_response

)

=458, p=0.032

(n=199)

Low

p=6.15e-12

Disease Markers

F1GURE 5: Evaluation of the predictive ability for immune infiltration and immunotherapy response of the risk model. (a) Cases in the high-
risk group had a higher StromalScore, ImmuneScore, and ESTIMATEScore. (b) Heat map showing different immune and inflammatory
profiles in the high- and low-risk group. (c) GSVA scores of seven clusters of immune and inflammatory genes in the high- and low-risk
groups. (d) Infiltration ratios of six immune cells in different risk groups. (e) The risk score was positively correlated with the infiltration
levels of CD8+ T cells and macrophages. (f) Patients with BCa with a low infiltration level of CD8+ T cells had unfavorable clinical
outcomes (p < 0.01). (g) Patients with BCa with a high infiltration level of M2 macrophages had poorer survival (p <0.001). (h) PDL-1,
LAG3, and TIM-3 were differentially expressed between the high- and low-risk groups. (i) The expression levels of CXCL9 and CXCLI13 in
the high-risk group were significantly higher than those in the low-risk group according to the Wilcoxon test. (j) The chi-square test
indicated that cases in the high-risk group might more likely benefit from immunotherapy. GSVA: gene set variation analysis.
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FIGURE 7: Enrichment analysis of iron metabolic pathways. (a) Chi-square test indicated that ferroptotic clustering and risk grouping were
highly correlated. (b) Patients in cluster 1 had higher risk scores. (d) Sankey diagram showing the close association between ferroptotic
clustering and risk grouping. (d and e) Heat map (d) and volcano diagram (e) indicating that seven iron metabolic pathways were
changed with risk. (f and g) Heat map (f) and volcano diagram (g) showing that seven iron metabolic pathways were differentially
enriched in cluster 1 and cluster 2. (h) Venn plot showing overlapping of cellular iron ion homeostasis. (i) GSEA of cellular iron ion
homeostasis in the high-risk group. (j) The risk score was positively correlated with the GSVA score of cellular iron ion homeostasis.

GSEA: gene set enrichment analysis; GSVA: gene set variation analysis.

gemcitabine were negatively correlated with risk (Figure 6(a)),
according to the Wilcoxon test, whereas the IC50 value of
methotrexate had a positive association (Figure 6(a)), imply-
ing that the risk model has a potential to predict the efficacy
of chemotherapy for BCa. The evaluated risk score could also
serve as a prognostic biomarker for patients who had received
chemotherapy (p < 0.001, Figure 6(b)).

3.8. Analysis of Iron Metabolic Pathways. Under normal con-
ditions, intracellular iron balance is maintained through the
iron transport system. Increasing the uptake of iron ions or
decreasing their efflux can enhance the sensitivity of cancer

cells to oxidative damage and ferroptosis [27]. Hence, we
analyzed the changes in iron metabolism-related pathways
and functions. Although the chi-square test and Wilcoxon
signed-rank test revealed that ferroptosis-related clustering
and frincRNA-based risk grouping were highly associated
(Figures 7(a)-7(c)), the changes in iron metabolism-related
pathways were mostly different according to GSVA
(Figures 7(d)-7(g), Supplementary Tables S5 and S6). It is
noteworthy that the GSVA scores of cellular iron ion
homeostasis were significantly altered in both risk grouping
and ferroptosis clustering (Figure 7(h)), and the results
were validated using GSEA (Figure 7(i)). The significantly



Disease Markers

positive Spearman correlation between the GSVA score and the
risk score verified the importance of maintaining cellular iron
homeostasis for the occurrence of ferroptosis (Figure 7(j)),
also validating our risk model as ferroptosis related.

3.9. The Functional Prediction of the Crucial frincRNA Pair.
The gene-pair strategy focuses on the relative expression
levels of two genes, and high prognostic and diagnostic values
of the relative expression level imply that the two genes might
be involved in the same molecular mechanism through a
mutual interaction. The present study investigated the
mechanisms using AC090825.1 and MAGI2-AS3, which com-
prised the frincRNA pair with the highest hazard ratio, as
examples. Despite the relatively lower expression of
AC090825.1 and MAGI2-AS3 in BCa samples (Supplementary
Figure 3a, b), the difference was significantly higher than that
in paracarcinoma tissues (Supplementary Figure 3c). In
addition, we found that patients had poorer survival
when AC090825.1 was more highly expressed than MAGI2-
AS3 (Supplementary Figure 3d). Moreover, AC090825.1 and
MAGI2-AS3 expression had a significant association in both
paracarcinoma tissues and BCa samples (Supplementary
Figure 3e, p<0.05). Recent studies have postulated that
IncRNAs regulate their target genes by interacting with
transcription factors. Accordingly, we predicted the
transcription factor of frlncRNAs and their target genes
(Supplementary Tables S7-S10) and constructed a regulatory
network (Supplementary Figure 3f). HOXD4, ZNF354C,
GSX2, NR2C2, MEIS1, and HOXC4 were codetermined by
the transcription factor prediction (Supplementary Figure 3g)
and coexpressed with two frlncRNAs (Supplementary
Figure 3h, R> 0.3, p <0.05), implying the possible biological
functions of AC090825.1 and MAGI2-AS3.

4. Discussion

In recent years, several models have been proposed to predict
the prognosis and immune infiltration of malignancies [28].
However, few studies have focused on gene-pair modeling
methods, which do not require exact gene expression levels.
In addition, most studies chose to screen immune-related
genes to predict the immune infiltration of malignancies,
whereas few studies used ferroptosis-related genes to predict
the immune infiltration status despite several reports indicat-
ing that ferroptosis and the TME could affect each other. In
this study, frincRNAs were detected to construct a rational
model based on the gene-pair strategy to predict the progno-
sis and tumor immune reaction of BCa for the first time.
First, we initially identified 121 ferroptosis regulators
from a previous study [5] and extracted transcriptome data
from the TCGA BCa dataset. After unsupervised clustering,
all enrolled cases were divided into two subgroups. We found
that the subgroups had different prognoses, immune infiltra-
tion, immunotherapy response, and chemotherapy out-
comes, implying that ferroptosis was closely correlated with
the TME in BCa, thus, supporting the relevance of construct-
ing an frIncRNA signature to predict tumor immune infiltra-
tion in future studies. Furthermore, all IncRNAs were
extracted, and friIncRNAs were determined through genomic
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difference analysis and Pearson coefficient calculation. After
pairing and differential analysis of frincRNAs, we ultimately
built a 0-or-1 matrix. Using KM survival analysis, the Lasso
algorithm, and multivariate Cox regression, 22 frlncRNA
pairs were identified. KM plot analysis, ROC curve analysis,
random sampling validation, and subgroup analysis were
performed for model verification and showed that the novel
signature is a powerful tool for BCa prognosis prediction.
Moreover, it was found that the risk score calculated using
the frIncRNA signature was significantly correlated with
immune infiltration, immunotherapeutic effectiveness, and
chemotherapeutic results. GSVA showed that cellular iron
homeostasis imbalance, which is routinely described as one
of the key mechanisms of ferroptosis, was the crucial iron
metabolism-related pathway in different subgroups, validat-
ing the clustering strategy and that the constructed risk
model is ferroptosis related.

Some researchers have contributed to the construction of
IncRNA signatures for predicting the immune infiltration
profiles of BCa. Wu et al. identified eight immune-related
IncRNAs and found that the risk score was positively corre-
lated with poor clinical outcomes and high immune infiltra-
tion [29]. By using the ESTIMATE algorithm and correlation
analysis, Yuan et al. constructed an immune-related IncRNA
signature to evaluate immune cell infiltration in the TME
[30]. The use of IncRNAs to predict tumor immune infiltra-
tion is an effective strategy because of the wide participation
of IncRNAs in biological processes [31]. Most studies have
constructed IncRNA diagnosis models based on immune-
related genes or algorithms, which is a reasonable and logical
method. However, emerging evidence has revealed a strong
association between ferroptosis and tumor immune reac-
tions. For instance, Wang et al. found that IFNy released
from CD8+ T cells could suppress the expression of
SLC7A11, thereby promoting lipid peroxidation in cancer
cells and inducing ferroptosis [6] (Figure 8). In addition, it
was reported that extracellular KRAS protein released by fer-
roptotic tumor cells and taken up by macrophages contrib-
utes to M2 macrophage polarization, thus, resulting in the
development of pancreatic tumor cells [7] (Figure 8). Simi-
larly, a low infiltration level of CD8+ T cells and a high infil-
tration level of M2 macrophages were found to be associated
with poor prognosis in patients with BCa (Figures 5(f) and
5(g)), and the infiltration ratio was significantly different
between the high- and low-risk groups (Figure 5(d)), suggest-
ing that the same biological mechanisms might exist in BCa.
The close relationship between ferroptotic cell death and the
TME prompted us to develop a ferroptosis-linked IncRNA
model for predicting prognosis and diagnosing immune infil-
tration of BCa.

The friIncRNA signature is an effective and practical tool
for predicting the prognosis of patients with BCa. Compared
with other clinical features, the novel model was able to dis-
tinguish cases with a high or low risk with higher efficacy.
Univariate and multivariate analyses revealed that the risk
score was an independent prognostic predictor. Random
resampling verification, clinical parameter association analy-
sis, and subgroup analysis validated the robustness of the
model. Notably, we used a gene-pair strategy instead of



20

Disease Markers

35
xOSY

e 290

o

o1

) CD8+ T cell
[

() ‘o
IFNy ©
(&)

~
Cystine

Tumor cell

/-\

Macrophage cell

ar body
KRAS G12D
[ ]

Autophagosome

Ferroptotic tumor cell

F1GURE 8: Dual role of ferroptosis in tumor immunity.

detecting the exact expression level to establish the predictive
model, which only required examining which gene in the pair
had a higher expression, thus, extending the application of
the risk model.

Among the IncRNAs in the frincRNA signature, several
have been demonstrated to be related to immunity, ferropto-
sis, and malignancy. For instance, ADAMTS9-AS1, which
was reported to suppress the malignant phenotypes of breast
cancer cells [32], could also regulate colorectal cancer cell
proliferation and migration [33]. The gene-pair strategy also
helped disclose the underlying association between the
paired IncRNAs. AC090825.1 and MAGI2-AS3, comprising
the gene pair with the highest hazard ratio in the model, were
strongly correlated based on RNA expression levels in both
paracarcinoma tissues and tumor samples (Supplementary
Figure 3e). Although it has been reported that MAGI2-AS3
could inhibit the development of BCa cells [34], the
interplay between AC090825.1 and MAGI2-AS3 is still
unknown. Functional prediction analysis indicated that
AC090825.1 and MAGI2-AS3 might regulate their targets,
NOX4 and ZEBI, by interacting with the transcription
factors (Supplementary Figure 3f). Overall, our model
helped in identifying new biomarkers and in proposing
novel mechanisms for BCa.

To our knowledge, this is the first study to use frincRNAs
to predict the immune landscape in BCa. In addition, this
study is the first to use the gene-pair strategy to construct a

IncRNA signature for predicting the clinical outcomes of
BCa. From the perspective of model performance, the estab-
lished model had the highest AUC values among the known
prognostic models for BCa. We also identified dozens of
novel IncRNA biomarkers, such as AC090825.1, which may
be useful in further studies.

However, the present study had several limitations. The
analyzed raw data were all downloaded from TCGA, and
the external validation of the established model was inade-
quate. As a general rule, validation in a different cohort is
required for a diagnosis or prognosis model because of the
individual variations in gene expression. To reduce errors
caused by gene expression differences, we innovatively used
the gene-pair modeling method to construct an frilncRNA
signature. Random resampling, subgroup analysis, and cor-
relation analysis of clinical risk parameters were conducted
to validate the robustness of our model. Although external
validation was insufficient, these methods and the evidence
suggested that the novel model was acceptable. However,
external validation in other BCa cohorts is warranted.

5. Conclusions

We developed a novel IncRNA signature to predict the prog-
nosis and immune landscape of BCa based on the gene-pair
strategy and ferroptosis-related genes. This IncRNA signa-
ture provides new clues for identifying the regulatory
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relationship between ferroptosis and the TME and can help
clinicians estimate the prognosis, immunotherapy outcomes,
and chemotherapy response of patients with BCa.
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Supplementary Materials

Supplementary Figure S1: validation of the risk model with
resampling. Note: (a) Kaplan-Meier survival analysis of cases
in high-risk group and low-risk group (p < 0.001). (b) ROC
curves of the risk score in internal validation dataset. Supple-
mentary Figure S2: Kaplan-Meier subgroup survival analysis
in TCGA-BLCA patients. Note: (a) age <64 (p <0.001). (b)
Age>64 (p<0.001). (c) Male (p<0.001). (d) Female
(p <0.001). (e) Pathological T 1-2 stages (p < 0.001). (f) Path-
ological T 3-4 stages (p < 0.001). (g) NO stages (p < 0.001). (h)
N1-N3 stages (p <0.001). (i) MO stage (p <0.001). (j) M1
stage (p < 0.05). Supplementary Figure S3: functional predic-
tion of AC090825.1 and MAGI2-AS3. Note: (a) the expression
difference of AC090825.1 in BCa samples and paracarcinoma
tissue via Wilcoxon signed-rank test. (b) The expression dif-
ference of MAGI2-AS3 in BCa samples and paracarcinoma
tissue via Wilcoxon signed-rank test. (c) The difference values
between the expression of AC090825.1 and MAGI2-AS3 in
BCa samples and paracarcinoma samples. (d) The cases
suffered poorer survival when the expression value of
AC090825.1 was higher than that of MAGI2-AS3 (p < 0.01).
(e) The expression levels of AC090825.1 and MAGI2-AS3
were positively correlated both in BCa samples and paracarci-
noma samples. (f) Network of IncRNAs, the target genes and
their possible transcription factors. (g) UpSet diagram show-
ing 6 overlapped transcription factors. (h) The correlation net-
work of IncRNAs, the target genes and transcription factors.
BCa: bladder cancer. Supplementary Table S1: 20 ferroptosis
regulators were differentially expressed between BCa and
paracarinoma samples. Supplementary Table S2: the Pearson
correlation analysis of IncRNAs and ferroptosis regulators.
Supplementary Table S3: Kaplan-Meier survival analysis of
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the IncRNA pairs. Supplementary Table S4: enrichment
results from LncSEA website. Supplementary Table S5: GSVA
results of different clusters based on ferroptosis regulators.
Supplementary Table S6: GSVA results of different risk sub-
groups based on friIncRNA signature. Supplementary Table
S7: the prediction of the transcription factors of AC090825.1.
Supplementary Table S8: the prediction of the transcription
factors of MAGI2-AS3. Supplementary Table S9: the predic-
tion of the transcription factors of NOX4. Supplementary
Table S10: the prediction of the transcription factors of
ZEBLl. (Supplementary Materials)
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