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SUMMARY

Trial-to-trial variability is a reflection of the circuitry and cellular physiology that make up a 

neuronal network. A pervasive yet puzzling feature of cortical circuits is that despite their complex 

wiring, population-wide shared spiking variability is low dimensional. Previous model cortical 

networks cannot explain this global variability, and rather assume it is from external sources. We 

show that if the spatial and temporal scales of inhibitory coupling match known physiology, 

networks of model spiking neurons internally generate low-dimensional shared variability that 

captures population activity recorded in vivo. Shifting spatial attention into the receptive field of 

visual neurons has been shown to differentially modulate shared variability within and between 

brain areas. A top-down modulation of inhibitory neurons in our network provides a parsimonious 

mechanism for this attentional modulation. Our work provides a critical link between observed 

cortical circuit structure and realistic shared neuronal variability and its modulation.

In Brief

Population-wide fluctuations of neural population activity are widely observed in cortical 

recordings. Huang et al. show that wave dynamics in spatially ordered recurrent networks give rise 
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to low-dimensional shared variability, which can be suppressed by depolarizing inhibitory 

neurons.

INTRODUCTION

The trial-to-trial variability of neuronal responses gives a critical window into how the 

circuit structure connecting neurons determines brain activity (Kass et al., 2018; Shadlen and 

Newsome, 1998; Doiron et al., 2016). This idea, combined with the widespread use of 

population recordings, has prompted deep interest in how variability is distributed over a 

population (Cohen and Kohn, 2011; Kohn et al., 2016). There has been a proliferation of 

datasets in which the shared variability over a population is low dimensional (Lin et al., 

2015; Rabinowitz et al., 2015; Ecker et al., 2014; Williamson et al., 2016; Schölvinck et al., 

2015), meaning that neuronal activity waxes and wanes as a group. In accord, one-

dimensional measures such as local field potentials (Kelly et al., 2010; Middleton et al., 

2012) and summed population firing rates (Okun et al., 2015; Schölvinck et al., 2015) can 

predict a majority of pairwise correlations. Further, the synthesis of diverse population 

datasets paints a picture in which low-dimensional shared variability is a signature of 

cognitive state, such as overall arousal, task engagement, and attention (Doiron et al., 2016; 

Schmitz and Duncan, 2018), as well as predictive of behavioral performance (Ni et al., 

2018). Such low-dimensional dynamics portend a theory for the genesis and modulation of 

shared population variability in recurrent cortical networks.

Theories of cortical variability can be broadly separated into two categories: ones in which 

variability is internally generated through recurrent network interactions and ones in which 

variability originates external to the network. Networks of spiking neuron models where 

strong excitation is balanced by opposing recurrent inhibition produce high single-neuron 

variability through internal mechanisms (Shadlen and Newsome, 1998; van Vreeswijk and 

Sompolinsky, 1996; Amit and Brunei, 1997). However, these networks famously enforce an 

asynchronous state and as such fail to explain population-wide shared variability (Renart et 

al., 2010). This lack of success is contrasted with the ease of producing arbitrary correlation 

structure from external sources. Indeed, many past cortical models assume a global 

fluctuation from an external source and accurately capture the structure of population data 

(Doiron et al., 2016; Ponce-Alvarez et al., 2013; Wimmer et al., 2015; Kanashiro et al., 

2017; Hennequin et al., 2018). However, these phenomenological models begin with an 

assumption of low-dimensional variability from an unobserved source to explain the 

variability in a recorded population. In this way, these models are some-what circular, 

begging the question of what the mechanisms underlying the assumed external variability 

are. Thus, while neuronal variability has a rich history of study, there remains an 

impoverished mechanistic understanding of the low-dimensional structure of population-

wide variability (Latham, 2016).

Determining whether output variability is internally generated through network interactions 

or externally imposed upon a network is a difficult problem, in which single-area population 

recordings may preclude any definitive solution. In this study we consider attention-

mediated shifts in population variability obtained from simultaneous recordings of neuron 
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pairs both within and between visual areas. In particular, attention reduces within area 

correlations (area V4; Cohen and Maunsell, 2009) while simultaneously increasing between 

area correlations (areas V1 and MT; Ruff and Cohen, 2016a). We show that such differential 

correlation modulation is a difficult constraint to satisfy with a model in which fluctuations 

are strictly external to the network. Nevertheless, as discussed above, contemporary 

recurrent network models are at a loss to explain population-wide variability. A central goal 

of this study is to put forth a new circuit-based theory of low-dimensional variability in 

recurrent networks and explore how plausible modulation schemes can differentially control 

within and between area correlations.

The asynchronous solution of classical balanced networks necessitates that inhibition 

dynamically tracks and cancels any correlations stemming from recurrent excitation (Renart 

et al., 2010). This requirement has forced theorists to assume that the time course of 

inhibitory synapses is faster than that of excitatory synapses (Renart et al., 2010; Rosenbaum 

and Doiron, 2014; Rosenbaum et al., 2017; Monteforte and Wolf, 2012; van Vreeswijk and 

Sompolinsky, 1996). However, this is at odds with recorded synaptic physiology, in which 

excitatory conductances rise and decay faster than inhibitory ones (Geiger et al., 1997; Salin 

and Prince, 1996; Xiang et al., 1998; Angulo et al., 1999). Recently, we have extended the 

theory of balanced networks to include a spatial component to network architecture 

(Rosenbaum et al., 2017; Pyle and Rosenbaum, 2017; Rosenbaum and Doiron, 2014) and 

found network solutions in which firing rate balance and asynchronous dynamics are 

decoupled from one another (Rosenbaum et al., 2017). In this study, we consider multi-area 

models of spatially distributed balanced networks and show that when inhibition has slower 

kinetics than excitation in these networks, matching physiology, they internally produce low-

dimensional population-wide variability. Unlike networks that lack spatial structure, these 

networks produce spiking activity that robustly captures the rich diversity of firing rate and 

correlation structure of real population recordings. Further, attention-mediated top-down 

modulation of inhibitory neurons in our model provides a parsimonious mechanism that 

controls population-wide variability in agreement with the within and between area 

experimental results.

There is a long-standing research program aimed at providing a circuit-based understanding 

for cortical variability (Shadlen and Newsome, 1998; van Vreeswijk and Sompolinsky, 

1996; Amit and Brunel, 1997; Rosenbaum et al., 2017; Kass et al., 2018). Our work is a 

critical advance through providing a mechanistic theory for the genesis, propagation, and 

modulation of realistic low-dimensional population-wide shared variability based on 

established circuit structure and synaptic physiology.

RESULTS

Attentional Modulation of Shared Variability within and between Cortical Areas

Multi-electrode recordings from visual area V4 during an orientation change detection task 

show that the mean spike count correlation coefficient between neuron pairs in V4 is largely 

reduced when the monkeys were cued to pay attention to the neurons’ spatial receptive field 

(Figure 1A; Cohen and Maunsell, 2009). Recently, simultaneous recordings from two visual 

areas, MT and V1, during a similar attention task (Ruff and Cohen, 2016a), show that in 
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addition to a reduction of mean spike count correlations between neuron pairs within an area 

(mean pairwise attention-related MT correlation decrease was 0.019, Wilcoxon rank-sum 

test, p = 0.017; mean pairwise attention-related V1 correlation decrease was 0.008, 

Wilcoxon rank-sum test, p = 4.9 × 10−6; Ruff and Cohen, 2016a), there is an attention-

mediated increase of spike count correlations across areas V1 and MT (Figure 1B). This 

differential modulation of within and between area correlations offers a strong constraint 

from which to build circuit models of population-wide variability.

Before we explore population variability in circuit models of cortex, we first quantify how 

variability is structured across a recorded population. Using dimensionality reduction tools, 

we partition the V4 covariance matrix into the shared variability among the population and 

the private noise to each neuron (Cunningham and Yu, 2014; Williamson et al., 2016). The 

eigenvalues of the shared covariance matrix represent the variance along each dimension (or 

latent variable), while the corresponding eigenvectors represent the projection weights of the 

latent variables onto each neuron (STAR Methods). The V4 data show a single dominant 

eigenmode (Figure 1C, left; for single-session results, see Figure S1), indicating a primarily 

one-dimensional latent structure in the population variability. The projection weight of the 

dominant eigenmode onto the individual neurons is primarily of the same sign (Figure 1C, 

middle, weights are dominant positive), meaning that the latent variable causes positive 

correlations across the population. Indeed, after subtracting the first eigenmode the mean 

residual covariances are very small (Figure 1C, right). Moreover, attention affects 

population-wide variability primarily by quenching this dominant eigenmode (Figure 1C, 

left, orange versus green) and the attentional modulation in the dominant eigenmode is 

highly correlated with the modulation in mean covariance (Figure S1C). The low-

dimensional structure of shared variability in our data is consistent with similar analysis in 

other cortices (Williamson et al., 2016; Lin et al., 2015; Ecker et al., 2014), as well as 

alternative analysis of the same V4 data using generalized point process models (Rabinowitz 

et al., 2015).

Constraints for Circuit-Based Models of Shared Variability

Armed with the V4 and V1-MT population analysis, we next explore the constraints that 

circuit models must satisfy to capture attentional modulation that differentially modulates 

the shared variability within and between cortical areas. Since the population-wide 

fluctuations are well described by a single latent variable that influences all neurons (Figure 

1C), we represent the aggregate population responses with scalar random variables: MT and 

V1 (Figure 2A).

To begin, we assume that population responses are linear in their inputs and that V1 projects 

to MT with strength γ. We suppose a hidden source of variability, H, which projects to MT 

and V1 with strength β and κ, respectively (Figure 2A); without loss of generality, we take β 
= 1. In total, we have MT = γV1 + H and V1 = X0 + κH where X0 is independent from H. 

We assume that attention acts to reduce the variability of the hidden variable, Var(H), and to 

increase the coupling strength γ.

We first consider how attention affects the covariance between MT and V1 in our model; our 

linear system gives the following:
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Cov MT, V1 = γVar V1 + κVar H . (Equation 1)

For κ > 0, an attention-mediated reduction of Var(H) acts to reduce the covariance between 

V1 and MT. This is at odds with our cortical recordings (Figure 1B). We explore the case in 

which κ = 0 to circumnavigate the tension between an increase in γ and a decrease in 

Var(H). This assumes that MT has a source of variability that is private from V1.

With κ = 0, the variance of the MT population obeys

Var MT = γ2Var V1 + Var H . (Equation 2)

The contributions to MT variability from the upstream area V1 and the hidden source H are 

clear. Further, attention drives opposing influences on Var(MT) through an increase in γ 
being countered by a decrease in Var(H). However, unlike the case of Cov(MT,V1), we 

cannot simply choose γ to be zero to mitigate this competition (because V1 would then not 

drive MT). Indeed, if the decrease in Var(H) is only moderate, then attention will increase 

both Cov(MT, V1) and Var(MT) (Figure 2B, middle), again at odds with experiments 

(Figures 1A and 1B). In total, with an assumption of H being private to MT (κ = 0), then to 

have a reduction in Var(MT) combined with an increase in Cov(MT, V1 ), we require that 

the attention-mediated suppression in the variability of H be large (Figure 2B, right). These 

arguments can be generalized over a range of parameters (Methods S1; Figure S2).

In sum, we have exposed three constraints that, if satisfied, will cause cortical circuit models 

of population-wide variability to capture the differential modulation of within and between 

area variability.

1. The shared variability across a neuronal population is low dimensional.

2. There is a source of attention-mediated population-wide variability in 

downstream areas that is private from upstream areas.

3. The attention-mediated suppression of the private variability needs to be 

substantial.

The second constraint could be produced by each cortical population being paired with an 

external variability source that projects exclusively to that area. This solution requires strong 

assumptions about how the cortex devotes and organizes biological resources to drive 

neuronal variability. In contrast, we explore the more parsimonious hypothesis whereby 

recurrently coupled networks produce low-dimensional variability through internal 

interactions, and hence variability is private to the population by construction (Figure 2C). 

Further, if the variability is internally generated, then the third constraint requires a strong 

nonlinearity to fully suppress variability in the attended state. In the next sections, we 

investigate how a physiologically realistic network of spiking neuron models can satisfy 

these three constraints.
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Population-wide Correlations with Slow Inhibition in Spatially Ordered Networks

Networks of spiking neuron models where strong excitation is balanced by opposing 

recurrent inhibition internally produce high single-neuron variability (Figure 3Ai) with a 

broad distribution of firing rates (Figure 3B, top purple curve; van Vreeswijk and 

Sompolinsky, 1996; Amit and Brunel, 1997; Renart et al., 2010). However, these networks 

enforce an asynchronous solution (Figure 3C, top purple), and as such fail to explain 

population-wide shared variability (Renart et al., 2010; Williamson et al., 2016). Typically, 

balanced networks have disordered connectivity, where connection probability is uniform 

between all neuron pairs. This approximation ignores the abundant evidence that cortical 

connectivity is spatially ordered with a connection probability falling off with the physical 

distance between neuron pairs (Levy and Reyes, 2012; Horvát et al., 2016; Mariño et al., 

2005). Recently we and others have extended the theory of balanced networks to include 

such spatially dependent connectivity (Rosenbaum et al., 2017; Rosenbaum and Doiron, 

2014; Darshan et al., 2018; Pyle and Rosenbaum, 2017). Briefly, we model a two-

dimensional lattice of integrate-and-fire neurons, meaning neuron locations tile a space with 

x and y coordinates. Each neuron receives both feedforward projections from a layer of 

external Poisson processes and recurrent projections from within the network (STAR 

Methods); the connection probability of all projections decays like a Gaussian with distance. 

If the spatial scale of feedforward inputs is narrower than the scale of recurrent projections, 

the asynchronous state no longer exists (Rosenbaum et al., 2017), giving way to a solution 

with spatially structured correlations (Figures 3Aii and 3D, purple; Video S1). Nevertheless, 

the mean correlation across all neuron pairs vanishes for large network size (Figure 3C, 

bottom purple curve), in stark disagreement with a majority of experimental studies (Cohen 

and Kohn, 2011; Doiron et al., 2016) as well as with our motivating population data (Figures 

1A and 1B).

Many previous balanced network models assume that the kinetics of inhibitory synaptic 

currents are faster than those of excitatory currents (Renart et al., 2010; van Vreeswijk and 

Sompolinsky, 1996; Lim and Goldman, 2014; Amit and Brunel, 1997), including our past 

work (Rosenbaum et al., 2017; Rosenbaum and Doiron, 2014; Pyle and Rosenbaum, 2017). 

However, this assumption is at odds with physiology in which excitatory α-amino-3-

hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors have faster kinetics than 

those of the inhibitory γ-aminobutyric acid (GABAa) receptors (Geiger et al., 1997; Xiang 

et al., 1998; Salin and Prince, 1996; Angulo et al., 1999). When the timescales of excitatory 

and inhibitory synaptic currents match experimental values in networks with disordered 

connectivity, the activity becomes pathologic, with homogeneous firing rates (Figure 3B, top 

green) and excessive synchrony (Figures 3Aiii and 3C, top green), as has been previously 

remarked (Börgers and Kopell, 2005). This consequence is likely the ad hoc justification for 

the faster inhibitory kinetics in disordered balanced model networks.

When the spatially ordered model has synaptic kinetics that match physiology, a population-

wide turbulent dynamic emerges (Figure 3Aiv; Video S2). This dynamic produces a small, 

but non-zero, mean pairwise spike count correlation across the population (rSC = 0.04), 

comparable to experiment (Figure 1A, right). Further, both firing rates and pairwise 

correlations are broadly distributed (Figures 3B and 3C, bottom green curves). Low (but 
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significant) correlation is a robust feature of spatially ordered networks. This is clear from 

the gradual rise in mean correlation with inhibitory timescale for the two-dimensional 

spatially ordered network (Figure 3D, solid curve), in contrast to the rapid rise of correlation 

to pathologic values in the disordered network (Figure 3D, dashed curve). Further, this weak 

sensitivity of correlations on inhibitory timescale is restricted to networks with two spatial 

scales (i.e., x and y), since networks constrained to one spatial dimension (i.e., neurons are 

arranged on a ring) also show excessive synchrony when the inhibitory timescale is large 

(Figure S3).

Our previous work that studied a spatially ordered model with fast inhibition identified a 

signature spatial organization for correlation, namely positive for nearby neuron pairs and 

negative for farther away neuron pairs, so that the overall correlation was small (Rosenbaum 

et al., 2017). In contrast, the spatial model with slow inhibition has positive net correlation 

across all pair distances (Figure 3E, green)–this is critical for the mean rSC to be positive. In 

sum, when realistic spatial synaptic connectivity is paired with realistic temporal synaptic 

kinetics in balanced networks, internally generated population dynamics produce spiking 

dynamics whose marginal and pairwise variability conform to experimental results. The 

spatially ordered model with slow inhibition is thus well positioned to satisfy the three 

constraints required to match how attention modulates within and between area correlations.

Attentional Modulation of Low-Dimensional Population-wide Variability

We model the V1 and MT network by extending our spatially ordered balanced networks 

with slow inhibition to include three layers: a bottom layer of independent Poisson processes 

modeling thalamus, and middle and top layers of integrate-and-fire neurons modeling V1 

and MT, respectively (Figure 4A; STAR Methods). We follow our past work with simplified 

firing rate networks (Kanashiro et al., 2017) and model a top-down attentional signal as an 

overall static depolarization to inhibitory neurons in the MT layer (Figure 4A). This mimics 

cholinergic pathways that primarily affect interneurons (Kuchibhotla et al., 2017; Kim et al., 

2016) and are thought to be engaged during attention (Schmitz and Duncan, 2018). The 

increased recruitment of inhibition during attention reduces the population-wide fluctuations 

in the MT layer (Figure 4B) and decreases pairwise spike count correlations of MT-MT 

neuron pairs (Figure 4C), while simultaneously increasing the correlation of V1-MT neuron 

pairs (Figure 4D). Further, neuron pairs with larger firing rate increases also show larger 

correlation reductions (Figure S4), in agreement with population recordings during both 

spatial and feature attention (Cohen and Maunsell, 2011). Finally, there is a slight attention-

mediated decrease of both the average firing rates of MT neurons (~3%) and MT neuron 

spike count Fano factor (~20%) (Figure S5). In total, our model and its simple 

implementation of attentional modulation capture the main aspects of the pairwise co-

variability in the V1-MT dataset (Figure 1B). However, it remains to show that our model 

does this by satisfying the three constraints identified with our heuristic model (Figure 2).

The first model constraint is that the population-wide variability must be low dimensional. 

We analyzed the spike count covariance matrix constructed from a subsampling of the spike 

trains in the third layer of our network model (n = 50 neurons). The network with slow 

inhibition produces shared variability with a clear dominant eigenmode that mimicked many 

Huang et al. Page 7

Neuron. Author manuscript; available in PMC 2021 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of the core features observed in the V4 data (Figure 4E compared with Figure 1C). The 

projection weights of the dominant mode are mostly positive (Figure 4E, middle) and the 

distribution of mean covariance across sessions is skewed to the positive side (Figure 4E, 

right). Removing the first eigenmode also results in small residual covariance (Figure 4E, 

right). Further, the top-down attentional modulation of inhibition also suppresses this 

dominant eigenmode (Figure 4E, right, orange versus green).

The agreement between model and data breaks down when inhibitory temporal kinetics and 

the spatial wiring structure are changed. When the model has fast inhibition, the shared 

variability does not have a dominant eigenmode (Figure S6A), the raw mean correlation 

coefficient is near zero (Figure S6C), and attentional modulation has a negligible effect on 

population variability (Figures S6A–S6C, orange versus green). Experimental measurements 

of local cortical circuitry show that excitation and inhibition project on similar spatial scales 

(Levy and Reyes, 2012; Mariño et al., 2005). Inhibitory projections that are broader than 

excitatory produce strong positive and negative correlations within the network, owing to a 

competitive dynamic across the network. The resultant population-wide correlations are not 

low dimensional (Figure S6F), while still being high in magnitude, as has been noted in past 

work from spiking networks with lateral inhibition (Keane and Gong, 2015; Pyle and 

Rosenbaum, 2017; Williamson et al., 2016). Nonetheless, as in the case with fast inhibition, 

the mean correlation coefficient is near zero (Figure S6H), and attentional modulation has 

only a negligible effect (Figures S6F–S6H, orange versus green).

In sum, satisfying our first constraint of shared variability having low-dimensional structure 

over the population requires inhibition that is neither faster nor anatomically broader than 

excitation–both features of real cortical circuits (Levy and Reyes, 2012; Mariño et al., 2005; 

Salin and Prince, 1996; Geiger et al., 1997; Xiang et al., 1998; Angulo et al., 1999). Further, 

a simple recruitment of inhibition through top-down drive can restore stability and quench 

low-dimensional population variability.

Relating Low-Dimensional Variability to Spatiotemporal Pattern Formation

To provide intuition about how recurrent circuitry shapes low-dimensional shared variability, 

we considered a firing rate model that incorporates both the spatial architecture and synaptic 

dynamics that are central to our spiking model (STAR Methods). While firing rate models 

lack a principled connection to spiking network models, they do produce qualitatively 

similar dynamics in recurrent networks and their simplicity makes them amenable to 

analysis techniques from dynamical systems theory (Ermentrout, 1998).

Solutions in which firing rates are constant over time are interpreted as asynchrony within 

the network, since only dynamical co-fluctuations in firing rates would model correlated 

spiking. We focus on how the stability of the asynchronous firing rate solution depends upon 

the temporal (τi) and spatial (σi) scales of inhibition. A firing rate solution is stable if the 

linearized dynamics are such that every eigenmode has eigenvalues with strictly negative 

real part. Since our network is spatially ordered, the eigenmodes are also organized in space, 

each with their own distinct wave number (spatial frequency). If the solution loses stability 

at a particular eigenmode, then the spatiotemporal dynamics of the resulting network firing 
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rates will inherit the spatial scale of that eigenmode–this process is termed spatiotemporal 

pattern formation (Cross and Hohenberg, 1993).

If τi and σi are near those of recurrent excitation, then a stable firing rate solution exists 

(Figure 5A, gray region; Figure 5B, top left, black curve with (τi = 5ms). Our past work 

explored activity within this regime (Rosenbaum et al., 2017). When τi increases and 

excitation and inhibition project with the same spatial scale (σi = σe), firing rate stability 

isfirst lost at an eigenmode with zero wave number (Figure 5B, left). This creates population 

dynamics with a broad spatial pattern, allowing variability to be shared over the entire 

network. Simulations of the three-layered spiking network model in this regime show 

turbulent dynamics that extend across the entire network (Figure 5B, right; Video S3). In 

contrast to this case, when σi increases yet inhibition projects lateral to excitation (σi > σe) 

stability is first lost at a non-zero wave number (Figure 5C, left). This creates population 

dynamics with coherence over a band of higher spatial frequencies, producing higher 

dimensional shared variability, as evident in the spatially patchy spiking dynamics of the 

three-layered spiking network in this regime (Figure 5C, right; Video S4). Thus, the spatial 

and temporal scales of inhibition determine in large part the spatiotemporal patterns of 

network activity.

In the firing rate network, we can also model attention as a depolarization to the inhibitory 

neurons, as was done in the network of spiking neuron models. In the firing rate network, 

attentional modulation expanded the stable region in the bifurcation diagram (Figure 5A, 

dashed black line). In other words, attention increased the domain of firing rate stability. 

Thus, with τi > τe chosen so that in the unattended state the network was unstable at a low 

spatial frequency yet with attention the network was in the stable regime, our model captures 

the large attention-mediated quenching of population-wide shared variability reported in the 

population recordings (Figure 1C) and network of spiking neuron models (Figure 4E).

In general, dynamical systems can transition through an instability point by changing any 

one of many model parameters. This suggests that tonic drive to inhibitory neurons is not the 

only mechanism that can capture the neuronal correlates of attentional modulation. For 

example, by reducing the strength of recurrent excitation, providing direct hyperpolarization 

to excitatory neurons, among other cellular and circuit modulations, our model can mimic 

the shift in network stability achieved through top-down drive to inhibition (Figure S7). 

However, despite these differing biophysical models of attention, the mechanisms all share 

an attention-mediated shift toward inhibition stabilizing runaway excitation.

Finally, our model predicts that population-wide variability is due to a dynamical instability 

that propagates spiking activity broadly over space. The sparse sampling of spiking activity 

in our neuronal recordings (<100 neurons spanning a few square millimeters of cortical 

tissue) makes a direct test of this prediction difficult. The pairwise covariance from both our 

model simulations (Figure 6A) and V4 data (Figure 6B) decreases with the distance between 

neurons in both the attended and unattended states. The large covariance for nearby neurons 

in the model is for neuron pairs that are within one spatial footprint of the excitatory and 

inhibitory coupling (distances < 0.25 in Figure 6A); the 400 mm electrode spacing in the V4 

data does not permit a sampling of small distances between neurons. For the larger distances 
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the decrease in covariance is gradual, consistent with a previous V4 population dataset 

(Smith and Sommer, 2013). Further, there is a near spatially uniform reduction of covariance 

by attention in both the model and V4 data (Figures 6A and 6B, compare orange and green). 

While these agreements between model and data are promising, a simple decay of 

covariance with distance can be replicated with many different models, notably our model 

with fast (Figure S6D) or broad (Figure S6I) inhibition.

A more stringent test of our model is to compare how the spatial dependence of pairwise 

covariance decomposes over the low-dimensional latent variable space. The loss of stability 

at the zero spatial Fourier mode in our model produces global fluctuations over the network 

(Figure 5B). In the factor analysis of the shared covariance, this is reflected by the dominant 

eigenmode being uniform across neuronal space (Figure 6C, black curve). In other words, 

this dominant latent variable projects to all neurons irrespective of their location and drives 

global correlations across the network. By contrast, the higher eigenmodes contain 

covariance structure that is spatially localized (Figure 6C, colored curves). This feature is 

specific to our model, since there is no spatial invariance of the dominant mode in the 

spiking network when inhibition is either fast (Figure S6E) or spatially broad (Figure S6J). 

Analysis of the V4 data clearly identifies a spatial invariance of the dominant eigenmode 

(Figure 5D, black curve), validating our model prediction.

Chaotic Population-wide Dynamics Reflect Internally Generated Variability

The attention-mediated differential modulation of within and between area correlations 

(Figure 1) leads us to propose our second and third model constraints–that shared variability 

has a sizable internally generated component and that attention must quench this variability. 

The third constraint requires that the mechanisms that produce internally generated 

variability sensitively depend on top-down modulations. The firing rate model captured this 

sensitivity through a spatiotemporal pattern-forming transition in network activity. However, 

the firing rate model does not internally produce trial-to-trial variability that can be 

compared to experiment, and we thus return to analysis of the network of spiking neuron 

models to probe how trial-to-trial variability is internally generated through recurrent 

coupling.

To isolate the sources of externally and internally generated fluctuations in the third layer of 

our network, we fixed the spike train realizations from the first layer (thalamic) neurons as 

well as the membrane potential states of the second layer (V1) neurons, and only the initial 

membrane potentials of the third layer (MT) neurons were randomized across trials (Figure 

7A). This produced deterministic network dynamics when conditioned on activity from the 

first two layers, and consequently any trial-to-trial variability is due to mechanics internal to 

the third layer.

The spike trains from third layer neurons in both the unattended and attended states have 

significant trial-to-trial variability despite the frozen layer one and two inputs. This is 

reflective of a well-studied chaotic network dynamic in balanced networks in which the 

spike times from individual neurons are very sensitive to perturbations that affect the spiking 

of other neurons (Monteforte and Wolf, 2012; London et al., 2010). To investigate how this 

microscopic (single neuron) variability possibly manifests as macroscopic population 
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activity, we considered the trial-to-trial variability of the population-averaged instantaneous 

firing rate. While the population firing rate is dynamic in the attended state, there is very 

little variability from trial to trial (Figure 7B, left; Figure 7D, orange). A consequence of this 

low population-wide variability is the faithful tracking of the spatiotemporal structure of 

layer two outputs by layer three responses (Figure 7B, right; Figure 7E, orange). This 

tracking reflects the higher correlation between layer two and three spiking in the attended 

state (Figure 4D), and represents the attention-mediated increase in V1 to MT coupling (g) 

in our linear model (Figure 2).

In contrast, in the unattended state there is significant population-wide recruited activity. The 

periods of spiking coherence across the network are not trial locked and rather contribute to 

sizable trial-to-trial variability of population activity (Figure 7C, left; Figure 7D, green). 

This degrades the tracking of layer two outputs (Figure 7C, right; Figure 7E, green) and 

ultimately lowers the correlation between layer two and three spiking (Figure 4D). Taken 

together, while the network model is chaotic in both the attended and unattended states, the 

chaos is population-wide only in the inhibition-deprived unattended state. Furthermore, 

since the population-wide variability is internally generated in the MT layer, our framework 

satisfies our second model constraint of private variability.

The nonlinear pattern-forming dynamics of the spatially distributed recurrent network impart 

extreme sensitivity to the population-wide internally generated variability. Indeed, in our 

model the trial-to-trial population rate variability is almost extinguished with attention 

(Figure 7D, right). In our heuristic model with hidden variable H this amounts to Var(H) 

reducing drastically with attention, which is precisely what is needed to account for the 

differential modulation of within and between area correlations (compare Figure 2B with 

Figure 7D, right). Thus, our model satisfies the third constraint we derived from our hidden 

variable model, namely that the shared variability in MT should be substantially quenched 

by attention.

DISCUSSION

There is a long-standing research program aimed at understanding how variability is an 

emergent property of recurrent networks (van Vreeswijk and Sompolinsky, 1996; Amit and 

Brunel, 1997; Monteforte and Wolf, 2012; London et al., 2010; Rosenbaum et al., 2017; 

Rosenbaum and Doiron, 2014). However, models are often restricted to simple networks 

with disordered connectivity. Consequently, in these networks population-wide activity is 

asynchronous, at odds with many experimental findings (Cohen and Kohn, 2011; Doiron et 

al., 2016). A parallel stream of research focuses on spatiotemporal pattern formation in 

neuronal populations, with a rich history in both theoretical (Ermentrout, 1998) and 

experimental contexts (Sato et al., 2012). Yet a majority of these studies consider only trial-

averaged activity, with tacit assumptions about how spiking variability emerges (but see 

Keane and Gong, 2015 and Rosenbaum et al., 2017). In this study we combined these 

modeling traditions with the goal of circuit-based understanding of the genesis and 

modulation of low-dimensional internally generated shared cortical variability.
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Population-wide Variability in Balanced Networks

Our model extends classical work in balanced cortical networks (van Vreeswijk and 

Sompolinsky, 1996; Renart et al., 2010) to include two well-accepted experimental 

observations. First, cortical connectivity has a wiring rule that depends upon the distance 

between neuron pairs (Horvát et al., 2016; Levy and Reyes, 2012). Theoretical studies that 

model distance-dependent coupling commonly assume that inhibition projects more broadly 

than excitation (Ermentrout, 1998; Compte et al., 2003; Keane and Gong, 2015). However, 

measurements of local cortical circuitry show that excitation and inhibition project on 

similar spatial scales (Levy and Reyes, 2012; Mariño et al., 2005), and long-range excitation 

is known to project more broadly than inhibition (Bosking et al., 1997). Our work shows that 

local inhibitory projections are required for internally generated population variability to be 

low dimensional (Figure S6F).

The second observation is that inhibition has temporal kinetics that are slower than 

excitation (Salin and Prince, 1996; Geiger et al., 1997; Angulo et al., 1999; Xiang et al., 

1998). Past theoretical models of recurrent cortical circuits have assumed that inhibition is 

not slower than excitation (Renart et al., 2010; van Vreeswijk and Sompolinsky, 1996; 

Stringer et al., 2016; Lim and Goldman, 2014), including past work from our group 

(Rosenbaum et al., 2017; Rosenbaum and Doiron, 2014; Pyle and Rosenbaum, 2017). 

Consequently, these studies could only capture the residual correlation structure of 

population recordings once the dominant eigenmode was subtracted (Rosenbaum et al., 

2017; Williamson et al., 2016). When inhibition has kinetics that are slower than excitation, 

the asynchronous solution is unstable. In disordered networks with strong coupling, this 

causes pathologic levels of rhythmic synchrony (Figure 3Aiii), often requiring sources of 

external variability that are independent over neurons to tame network activity (Börgers and 

Kopell, 2005). In contrast, we have shown that networks with slow inhibition and neuronal 

coupling that depend upon two spatial dimensions produce spiking dynamics that are only 

weakly correlated, with firing rate and correlation values that match experiment (Figures 

3Aiv and 4). In total, by including accepted features of cortical anatomy and physiology, 

long ignored by theorists, our model network recapitulates low-dimensional population-wide 

variability to a much larger extent than previous models.

The above narrative is somewhat revisionist; there are several well-known theoretical studies 

in disordered networks in which one-dimensional population-wide correlations do emerge, 

notably in networks where rhythmic (Amit and Brunel, 1997) or “up-down” (Compte et al., 

2003; Stringer et al., 2016) dynamics are prominent. Networks with dense yet disordered 

connectivity ensure that all neuron pairs receive some shared inputs from overlapping 

presynaptic projections. In such a network, if the asynchronous state becomes unstable then 

this shared wiring will correlate spiking activity across the entire network. In other words, 

any shared variability will be one dimensional (scalar) by construction. In contrast, the 

ordered connectivity in our network is such that neuron pairs that are distant from one 

another have no directly shared presynaptic connections. Consequently, when asynchrony is 

unstable, one-dimensional population dynamics are not preordained; rather, the spatial 

network can support higher dimensional shared variability depending on the temporal and 

spatial scales of recurrent coupling (Figures S6 and 5). From the vantage of this model, we 
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discovered the conditions for recurrent architecture and synaptic physiology for low-

dimensional shared variability.

Recently, several studies have shown that networks of firing rate models with a low-rank 

perturbation of the recurrent connectivity structure can exhibit low-dimensional coherent 

chaotic dynamics (Mastrogiuseppe and Ostojic, 2018; Landau and Sompolinsky, 2018). 

Such a low-rank connectivity effectively embeds a feedforward loop in the network and thus 

drives the population activity in one direction. However, such a low-rank connectivity 

requires each neuron projects a component of its activity to the whole population, a circuit 

assumption that lacks biological evidence. In contrast, our network simply incorporates 

spatially ordered connectivity, which has been commonly observed in most cortical areas 

(Horvát et al., 2016). The recurrent wiring structure within our network is high-rank due to 

the distance-dependent connections; cell pairs that are distant from one another do not share 

presynaptic inputs. The low-dimensional variability in our model emerges from a network 

instability at zero spatial Fourier mode that produces activity that propagates broadly across 

the network through polysynaptic connections.

Internal versus External Population Variability

Our circuit model assumed that the component of population-wide variability that is subject 

to attentional modulation was internally generated within the network. While our model is a 

parsimonious explanation of the data, it does not definitively exclude mechanisms in which 

variability is inherited from outside sources. Fluctuations from external sources are an often 

assumed and straightforward mechanism for population-wide spiking variability (Doiron et 

al., 2016; Hennequin et al., 2018; Ponce-Alvarez et al., 2013; Wimmer et al., 2015; 

Kanashiro et al., 2017; Bondy et al., 2018). For instance, pupil diameter is an indicator of 

overall brain state and arousal level, and fluctuations in pupil diameter are correlated with 

the fluctuations in cholinergic and noradrenergic projections to sensory cortex (Reimer et al., 

2016). The reduction of population-wide variability reported in aroused states and during 

locomotion is likely a reflection of the quenching of these external fluctuations (McGinley et 

al., 2015). While it is tempting to extend this idea to variability modulation in selective 

attention, there are some key differences that complicate this interpretation. Whole-brain 

state is not changing when attention is directed into or out of the receptive field of a neuron, 

and thus the neuronal correlates of arousal are possibly distinct from those of attention. 

Further, the differential modulation of rSC between and within cortical areas (Figures 1A and 

1B) is difficult to explain with just a single “brain state” latent variable (Figure 2A). Rather, 

we expect that arousal would reduce both within and between area population-wide 

variability.

Nevertheless, it is popular to associate the variability within a lower area as inherited from 

top-down projections (Bondy et al., 2018; Wimmer et al., 2015). However, cooling 

experiments that inactivate top-down projections from visual areas V2 and V3 to area V1 

produce only a slight reduction in single V1 neuron variability (Gómez-Laberge et al., 

2016). In contrast, the bottom-up transfer of variability from lower to higher visual areas can 

be significant (Gómez-Laberge et al., 2016; Ruff and Cohen, 2016b). Additional multi-area 
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population recordings between connected brain regions will be needed to probe how 

correlated variability flows along bottom-up and top-down pathways.

A second way to change population output variability is to keep input fluctuations fixed and 

shift the operating point of the network through an additional static top-down modulation. 

Here “operating point” designates the mean firing rates and neuronal gains about which the 

network will filter and transfer inputs. This shift in operating point allows the nonlinearities 

inherent in spiking dynamics to change the gain of how input variability transfers to output 

variability (Doiron et al., 2016). This mechanism has been suggested for how top-down or 

bottom-up modulation affects population variability in recurrent excitatory-inhibitory 

cortical networks (Kanashiro et al., 2017; Hennequin et al., 2018). Our model of variability 

modulation is similar, since the top-down attentional signal does shift the operating point of 

our nonlinear network; however, there are some key distinctions.

In disordered networks (Kanashiro et al., 2017) or networks with only one-dimensional 

structure (Hennequin et al., 2018), an external source of fluctuations is required; otherwise, 

the network is either in the asynchronous or pathologically synchronous solution depending 

upon parameter choices (Figures 3Ai, 3Aiii, and 3D). Since these networks do not produce 

variability internally, the operating point shift merely changes how the network filters the 

external fluctuations. However, in our model the two-dimensional spatial structure supports 

rich internal chaotic network dynamics outside the asynchronous state, yet with population-

wide correlations that are a reasonable mimic of experiment (Figures 3Aiv, 3C, and 3E). 

There is no need to assume a source of external fluctuations.

Spatiotemporal chaos is a hallmark feature of systems that are far from equilibrium in 

physics, chemistry, and biology (Cross and Hohenberg, 1993). In particular, low-viscosity 

fluids produce a special brand of spatiotemporal chaotic behavior labeled turbulence, 

characterized by the presence of vortices and eddies in the fluid flow (Davidson, 2015). Like 

our network, the character of turbulent flow is very dependent upon the dimension of the 

fluid, with one-dimensional fluids not showing turbulence, and two-dimensional turbulent 

flow having larger spatial scales than the flow in full three-dimensional fluids (Davidson, 

2015). The dynamics within recurrent networks of neurons are certainly not equivalent to 

that of fluids; nevertheless, the fluid analogy to our work is tempting since the chaotic 

dynamics of our two-dimensional network have a macroscopic character that permits low, 

but non-vanishing, pairwise correlations that extend broadly over the network. The effect of 

top-down attention is to not only shift the operating point of the network but also dampen 

the macroscopic chaotic dynamics of the network. In other words, attention not only 

attenuates the transfer of population-wide variability, as in other models (Kanashiro et al., 

2017; Hennequin et al., 2018), but also quenches the variability that is to be transferred. This 

permits a near-complete attention-mediated suppression of internally generated correlations 

(Figure 7D). This extreme sensitivity allows top-down inputs to easily control the processing 

state of a network.

State-dependent shifts in population-wide variability are widespread throughout cortex 

(Doiron et al., 2016) and are often a signature of cognitive control. The circuit structure of 

our network is not a special feature of the primate visual system, but rather a generic 
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property of most cortices. We thus expect that the basic mechanisms for population-wide 

variability and its modulation exposed in our study will be operative in many regions of the 

cortex, and in many animal systems.

STAR★METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Brent Doiron (bdoiron@pitt.edu).

METHOD DETAILS

Spiking neuron network—The network consists of three layers. Layer 1 is modeled by a 

population of N1 = 2,500 excitatory neurons, the spikes of which are taken as independent 

Poisson processes with a uniform rate r1 = 10 Hz. Layer 2 and Layer 3 are recurrently 

coupled networks with excitatory (α = e) and inhibitory (α = i) populations of Ne = 40,000 

and Ni = 10,000 neurons, respectively. Each neuron is modeled as an exponential integrate-

and-fire (EIF) neuron whose membrane potential is described by:

Cm
dV j

α

dt = − gL V j
α − EL + gLΔTe V jα − V T /ΔT + ljα t . (Equation 3)

Each time V j
α t  exceeds a threshold Vth, the neuron spikes and the membrane potential is 

held for a refractory period τref then reset to a fixed value Vre. Neuron parameters for 

excitatory neurons are τm = Cm/gL = 15 ms, EL = −60 mV, VT = −50 mV, Vth = −10 mV, ΔT 

= 2 mV, Vre = −65 mV and τref = 1.5 ms. Inhibitory neurons are the same except τm = 10 

ms, ΔT = 0.5 mV and τref = 0.5 ms. The total current to each neuron is:

ljα t
Cm

=
k = 1

NF Jjk
αF

N n
ηF t − tnF, k +

β = e, i k = 1

Nβ Jjk
αβ

N n
ηβ t − tnβ, k + μα, (Equation 4)

where N = Ne + Ni is the total number of the network population. Postsynaptic current is

ηβ
t = 1

τβd − τβr
e−t/τβd − e−t/τβr, t ≥ 0
0, t < 0

(Equation 5)

where τer = 1 ms, τed = ms and τir = 1 ms, τid = 8 ms. The feedforward synapses from Layer 

1 to Layer 2 have the same kinetics as the recurrent excitatory synapse, i.e., ηF
2 t = ηe t . 

The feedforward synapses from Layer 2 to Layer 3 have a fast and a slow component.

ηF
3 t = pfηe t + psηs t (Equation 6)

with pf = 0.2, ps = 0.8. ηs(t) has the same form as Equation 5 with a rise time constant 

τrS = 2 ms and a decay time constant τd
S = 100 ms. The excitatory and inhibitory neurons in 

Layer 3 receive static current μe and μi, respectively.
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Neurons on the three layers are arranged on a uniform grid covering a unit square Γ = [0, 1] 

× [0, 1]. The probability that two neurons, with coordinates x = (x1, x2) and y = (y1, y2) 

respectively, are connected depends on their distance measured periodically on Γ:

pαβ x,y = pα, βg x1 − y1; αβ g x2 − y2; αβ . (Equation 7)

Here pα, β is the mean connection probability and

g x; σ = 1
2πσ k = − ∞

∞
e− x + k 2/ 2σ2

(Equation 8)

is a wrapped Gaussian distribution. Excitatory and inhibitory recurrent connection widths of 

Layer 2 are αrec
2 : = αe

2 = αi
2 = 0.1 and feedforward connection width from Layer 1 to Layer 

2 is αffwd
2 = 0.05. The recurrent connection width of Layer 3 is αrec

3 = 0.2 and the feedforward 

connection width from Layer 2 to Layer 3 is αffwd
3 = 0.1. A presynaptic neuron is allowed to 

make more than one synaptic connection to a single postsynaptic neuron.

The recurrent connectivity of Layer 2 and Layer 3 have the same synaptic strengths and 

mean connection probabilities. The recurrent synaptic weights are Jee = 80 mV, Jei = −240 

mV, Jie = 40 mV and Jii = −300 mV. Recall that individual synapses are scaled with 1/ N
(Equation 4); so that, for instance, Jee/ N ≈ 0.36 mV. The mean connection probabilities are 

pee = 0.01, pei = 0.04, pie = 0.03, pii = 0.04. The out-degrees are 

Kee
out = 400, Kei

out = 1600, Kie
out = 300 and Kii

out = 400. The feedforward connection strengths 

from Layer 1 to Layer 2 are JeF
2 = 140 mV and JiF

2 = 100 mV with probabilities peF
2 = 0.1

and piF
2 = 0.05 (out degrees KeF2

out = 4000 and KeF2
out = 500). The feedforward connection 

strengths from Layer 2 to Layer 3 are JeF
3 = 25 mV and JiF

3 = 15 mV with mean probabilities 

peF
3 = 0.05 and piF

3 = 0.05 (out-degrees are KeF3
out = 2000 and KiF3

out = 500). Only the excitatory 

neurons in Layer 2 project to Layer 3.

The spatial models in Figures 3Aii and 3Aiv contain only Layer 1 and Layer 2. In the model 

with disordered connectivity, the connection probability between a pair of neurons is pαβ, 

independent of distance. Other parameters are the same as the spatial model. The decay time 

constant of IPSC (τid) was varied from 1 to 15 ms (Figure 3E). The rise time constant of 

IPSC (τir) is 1 ms when τid > 1 and 0.5 ms when τid = 1 ms.

The parameters used in Figures 4C and 4D are μi = [0.1, 0.15, 0.2, 0.025, 0.3, 0.35, 0.4] 

mV/ms and μE = 0 mV/ms. The mean firing rates in Layer 2 are re
2 = 19 Hz and ri

2 = 9 Hz. 

In the further analysis (Figures 4E, 5C, 5D, 6B, and 6C), we used μl = 0.2 mV/ms for the 

unattended state and μl = 0.35 mV/ms for the attended state. In simulations of the spatial 

model with broad inhibitory projection (Figure 6C), αe
3 = 0.1, αi

3 = 0.2 Other parameters 

were not changed.
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The slow component of feedforward excitation (Equation 6) allows for large spike count 

Fano factors (Figure S5), but when replaced with the same fast kinetics of recurrent 

excitation the low dimensional population-wide variability and its attentional modulation are 

qualitatively unaffected (Figure S8).

All simulations were performed on the CNBC Cluster in the University of Pittsburgh. All 

simulations were written in a combination of C and MATLAB (MATLAB R 2015a, 

MathWorks). The differential equations of the neuron model were solved using forward 

Euler method with time step 0.01 ms.

Neural field model and stability analysis—We use a two dimensional neural field 

model to describe the dynamics of population rate (Figure 6). The neural field equations are

τα
∂rα x, t

∂t = − rα + ϕα wαe ∗ re + wαi ∗ ri + μα , (Equation 9)

where rα(x, t) is the firing rate of neurons in population α = e, i near spatial coordinates x ∈ 
[0, 1] × [0, 1]. The symbol ∗ denotes convolution in space, μα is a constant external input 

and wαβ x = wαβg x; σβ  where g x; σβ  is a two-dimensional wrapped Gaussian with width 

parameter σβ, β = e, i. The transfer function is a threshold-quadratic function, ϕα(x) = 

kα[x2]+. The timescale of synaptic and firing rate responses are implicitly combined into τα. 

In networks with approximate excitatory-inhibitory balance, rates closely track synaptic 

currents (Renart et al., 2010), so τα represents the synaptic time constant of population α = 

e, i.

For constant inputs, μe and μi there exists a spatially uniform fixed point, which was 

computed numerically using an iterative scheme (Rosenbaum and Doiron, 2014). 

Linearizing around this fixed point in Fourier domain gives a Jacobian matrix at each spatial 

Fourier mode (Rosenbaum and Doiron, 2014)

J n =
−1 + gewee n /τe gewei n /τe

giwie n /τi −1 + giwii n /τi
.

where n = n1, n2  is the two-dimensional Fourier mode, wαβ n = wαβexp −2 n 2π2σβ
2  is 

the Fourier coefficient of wαβ(x) with n 2 = n1
2 + n2

2 and ga is the gain, which is equal to 

ϕ′α rα  evaluated at the fixed point. The fixed point is stable at Fourier mode n  if both 

eigenvalues of J n  have negative real part. Note that stability only depends on the wave 

number, k = n , so Turing-Hopf instabilities always occur simultaneously at all Fourier 

modes with the same wave number (spatial frequency).

For the stability analysis in Figure 6A, τi varies from 2.5 ms to 25 ms, σi varies from 0.05 to 

0.2, and τe = 5 ms and σe = 0.1. The rest of the parameters were wee = 80, wei = − 160, 

wie = 120, wii = 200, ke = 1, ki = 1, μe = 0.48 and μi = 0.32. Depolarizing the inhibitory 

population (μl = 0.5) expands the stable region (Figure 6A, black dashed).
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QUANTIFICATION AND STATISTICAL ANALYSIS

Datasets—Each of the two datasets (recordings from V4 and recordings from V1 and MT) 

was collected from two different rhesus monkeys as they performed an orientation-change 

detection task. All animal procedures were in accordance with the Institutional Animal Care 

and Use Committee of Harvard Medical School, University of Pittsburgh and Carnegie 

Mellon University.

For analysis in Figures 1A, 1C, 5A, and 5B, data was collected with two microelectrode 

arrays implanted bilaterally in area V4 (Cohen and Maunsell, 2009). In our analysis, we 

include stimulus presentations prior to the change stimulus from correct trials, excluding the 

first stimulus in a trial to avoid adaptation effects. Spike counts during the sustained 

response (120 - 260 ms after stimulus onset) are considered for the correlation and factor 

analysis. Neurons recorded from either the left or right hemisphere in one session are treated 

separately. There are a total of 42,496 trials for 72,765 pairs from 74 recording sessions. 

Two sessions from the original study were excluded for factor analysis due to inadequate 

trials. The trial number and unit number of each session is summarized in Table S1.

For analysis in Figure 1B, data was collected with one microelectrode array implanted in 

area V1 and a single electrode or a 24-channel linear probe inserted into MT (Ruff and 

Cohen, 2016a). Again, our analysis includes full contrast stimulus presentations prior to the 

change stimulus from correct trials and excludes the first stimulus in a trial to avoid 

adaptation effects. Spike counts are measured 30 - 230 ms after stimulus onset for V1 and 50 

- 250 ms after stimulus onset for MT to account for the average visual latencies of neurons 

in both areas. There are a total of 1,631 V1-MT pairs from 32 recording sessions.

Noise correlation—To compute the noise correlation of each simulation, 500 neurons 

were randomly sampled without replacement from the excitatory population of Layer 3 and 

Layer 2 within a [0, 0.5]x[0, 0.5] square (considering periodic boundary condition). Spike 

counts were computed using a sliding window of 200 ms with 1 ms step size and the 

Pearson correlation coefficients were computed between all pairs. Neurons of firing rates 

less than 2 Hz were excluded from the computation of correlations. In Figures 4C and 4D, 

for each μ, there were 50 simulations and each simulation was 20 s long. Connectivity 

matrices and the initial states of each neuron’s membrane potential were randomized in each 

simulation. The first 1 s of each simulation was excluded from the correlation analysis. 

Standard error was computed based on the mean correlations of each simulation. For 

simulations of Figure 3E, there was one simulation of 20 s per τid and the connectivity 

matrices were randomized for each simulation. To compute the noise correlation, 1000 

neurons were randomly sampled without replacement in the excitatory population of Layer 2 

within a [0, 0.5]x[0, 0.5] square. Correlations are computed between firing rates that are 

smoothed with a Gaussian window of width 10 ms.

Factor analysis—Factor analysis assumes spike counts of n simultaneously recorded 

neurons x ∈ ℛn × 1 is a multi-variable Gaussian process

x ∼ N μ, LLT + Ψ
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where μ ∈ ℛn × 1 is the mean spike counts, L ∈ ℛn × m is the loading matrix of the m latent 

variables and Ψ ∈ ℛn × 1 is a diagonal matrix of independent variances for each neuron. We 

choose m = 5 and compute the eigenvalues of LLT, λi (i = 1,2,…,m), ranked in descending 

order. The corresponding eigenvectors are denoted as vi and the covariance components are 

λiviviT i = 1, 2, …m . The covariance matrix is approximated as

Cov x, x =
i = 1

m
λiviviT + Ψ . (Equation 10)

We compute the residual covariance after subtracting the first mode as

Q = Cov x, x − L1 × L1
T , (Equation 11)

where Cov(x, x) is the raw covariance matrix of x and L1 is the loading matrix when fitting 

with m = 1. The mean raw covariance and residual (Figures 4E and 1C, right) are the mean 

of the off-diagonal elements of Cov(x, x) and Q, respectively.

When applying factor analysis on model simulations (Figure 4E), we randomly selected 50 

excitatory neurons from Layer 3, whose firing rates were larger than 2 Hz in both the 

unattended and attended states. There were 15 simulations of 20 s each per connectivity 

matrices realization, and there were 8 realizations of connectivity matrices in total. Spike 

trains were truncated into 140 ms spike count window with a total of 2,025 counts per 

neuron. There were 80 non-overlapping sampling of neurons (10 sampling per realization of 

connectivity matrices) and we applied factor analysis on each sampling of neuron spike 

counts.

To compute the distance dependent functions of each covariance component λiviviT  (Figures 

5C and 5D), we randomly selected 500 excitatory neurons from Layer 3, whose firing rates 

were larger than 2 Hz in both the unattended and attended states. To compute the distance 

dependent functions of covariance as well as convariance components for the V4 data 

(Figures 5A and 5B), the pairs across sessions were pooled to compute the mean and SEM at 

each distance value. The distance values were discrete since neurons were recorded with an 

multi-electrode array with a distance between adjacent electrodes being 400 μm. The 

number of pairs at each distance value are shown in Table S2.

Measure internal variability—To study the chaotic population firing rate dynamics of 

Layer 3 (Figure 7), we fixed the spike trains realizations from Layer 1 neurons, the 

membrane potential states of the Layer 2 neurons and all connectivity matrices. Only the 

initial membrane potentials of Layer 3 neurons were randomized across trials. There were 

10 realizations of Layer 1 and Layer 2, each of which was 20 s long. For each simulation of 

Layer 2, 20 repetitions with different initial conditions were simulated for Layer 3. The 

connectivity matrices in Layer 3 were the same across the 20 repetitions but different for 

each realization of Layer 1 and Layer 2. The realizations of Layer 1 and Layer 2 and the 

connectivity matrices were the same for the attended and unattended states. Trial-to-trial 
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variance of Layer 3 population rates (Figure 7D) was the variance of the mean population 

rates of the Layer 3 excitatory population, smoothed by a 200 ms rectangular filter, across 

the 20 repetitions. The first second of each simulation was discarded.

DATA AND SOFTWARE AVAILABILITY

The data that support the findings of this study are available from the corresponding author 

upon request. Computer code for all simulations and data analysis can be found at https://

github.com/hcc11/SpatialNeuronNet.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Low-dimensional shared variability can be generated in spatial network 

models

• Synaptic spatial and temporal scales determine the dimensions of shared 

variability

• Depolarizing inhibitory neurons suppresses the population-wide fluctuations

• Modeling the attentional modulation of variability within and between brain 

areas
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Figure 1. Attentional Modulation of Population Variability within and between Cortical Areas
(A) Mean spike count correlation rSC per session obtained from multi-electrode array 

recording from V4 was smaller when attention was directed into the receptive fields of 

recorded neurons (n = 74 sessions, two-sided Wilcoxon rank-sum test between attentional 

states, p = 3.3 × 10−6; reproduced from Cohen and Maunsell, 2009). Gray lines are 

individual session comparisons and the red line is the mean comparison across all sessions 

(error bars represent the SEM).

(B) Same as (A) for the mean spike count correlation rSC between V1 units and MT units 

per session (n = 32 sessions, paired-sample t test, p = 0.0222; data reproduced from Ruff and 

Cohen, 2016a).

(C) Left: the first five largest eigenvalues of the shared component of the spike count 

covariance matrix from the V4 data (Cohen and Maunsell, 2009). Green, unattended; 

orange, attended; data from n = 72 sessions with 43 ± 15 neurons. Error bars are SEM. 

Middle: the vector elements for the first (dominant) eigenmode. Right: the mean covariance 

from each session in attended and unattended states before (raw) and after (residual) 

subtracting the first eigenmode (mean ± SD in black). Two-sided Wilcoxon rank-sum test 

(attended versus unattended), mean covariance, p = 1.3 × 10−3; residual, p = 0.75.
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Figure 2. Model Constraints for Shared Variability within and between Areas
(A) Left: hidden variable model for connected cortical areas, V1 and MT, where the 

response variability of MT comes from both its upstream area V1 and a hidden source H. 

Due to the low-dimensional structure of shared variability in population activity (Figure 1C), 

we use the mean population rate (black curves) to represent the population spiking activity 

from each area (blue dot rasters). Right: the hidden source H projects to MT and V1 with 

strengths β and κ, respectively. The feedforward projection strength from V1 to MT is γ.

(B) Examples of attentional changes in the variance of MT, Δ
A − U

Var MT , and the 

covariance between MT and V1, Δ
A − U

Cov MT, V1 . We consider combinations of shared H 

(κ = 1) versus private H (κ = 0) and a moderate reduction in hidden variability 

Δ
A − U

Var H = − 0.5  versus a large reduction Δ
A − U

Var H = − 1 . Attention-mediated 

simultaneous decreases in Var(MT) and increase in Cov(MT, V1) occur for private 

variability with a large reduction in hidden variability (dark gray). The other combinations 

cause a shift in the same direction for within and between area variability (light gray). Other 

model parameters are γU = 0.5, γA = 1, VarU(H) = 1, β = 1, and Var(V1) = 1, independent of 

attentional state. U, unattended; A, attended. For general analysis, see Methods S1.

(C) The differential modulation of shared variability within and between areas (Figures 1A 

and 1B) suggests the hidden variable H is internally generated within area MT and that 

attention should quench the variance of H substantially.
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Figure 3. The Spatial and Temporal Scales of Synaptic Coupling Determine Internally 
Generated Variability
(A) Networks of excitatory and inhibitory neuron models were simulated with either 

disordered connectivity (Ai and Aiii) or spatially ordered connectivity (Aii and Aiv), and 

with either fast inhibition (τi = 1 ms; Ai and Aii) or slow inhibition (τi = 8 ms; Aiii and Aiv). 

The integral of inhibitory postsynaptic current overtime is conserved as we change τi. In all 

models the timescale of excitation was τe = 5 ms. In the disordered networks, spike train 

rasters assume no particular neuron ordering. In the spatially ordered networks, three 
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consecutive spike raster snapshots are shown with a dot indicating that the neuron at spatial 

position (x, y) fired within 1 ms of the time stamp.

(B) Distributions of firing rates of excitatory neurons in the disordered (top) and spatially 

ordered (bottom) models, with faster inhibitory kinetics (purple) compared to slower 

inhibitory kinetics (green).

(C) Same as (B) for the distributions of pairwise correlations among the excitatory 

population.

(D) Mean correlation among the excitatory population as a function of the inhibitory decay 

time constant (τi).

(E) Pairwise correlation as a function of distance between neuron pairs for spatially ordered 

models with slower inhibitory kinetics (green) compared to faster inhibitory kinetics 

(purple).
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Figure 4. Top-Down Depolarization of MT Inhibitory Neurons Captures the Differential 
Attentional Modulation of Shared Variability within and across V1 and MT
(A) Thalamus, V1, and MT are modeled in a three-layer hierarchy of spatially ordered 

balanced networks. Top-down attentional modulation is modeled as a depolarization of static 

current, μl, to MT inhibitory neurons. In both V1 and MT the recurrent projections are 

broader than feedforward projections (V1, 

αffwd
2 = 0.05, αrec

2 = 0.1; MT, αffwd
3 = 0.1, αrec

3 = 0.2  and recurrent inhibition is slower than 

excitation (τi = 8 ms, τe = 5 ms).
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(B) Population averaged firing rate fluctuations from MT in the unattended state μl = 0.2, 

green) and the attended state μl = 0.35, orange).

(C) Mean spike count correlation (rSC) of excitatory neuron pairs in MT decreases with 

attentional modulation.

(D) Mean rSC between the excitatory neurons in MT and the excitatory neurons in V1 

increases with attention. Error bars are SEM.

(E) Left: the first five largest eigenvalues of the shared component of the spike count 

covariance matrix. Green, unattended; orange, attended; n = 80 sessions with 50 neurons 

each. Error bars are SEM. Middle: the vector elements for the first (dominant) eigenmode. 

Right: the mean covariance from each session in attended and unattended states before (raw) 

and after (residual) subtracting the first eigenmode (mean ± SD in black). Two-sided 

Wilcoxon rank-sum test (attended versus unattended), mean covariance, p = 1.3 × 10−21; 

residual, p = 3.5 × 10−8.
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Figure 5. Stability Analysis of a Two-Dimensional Firing Rate Model
(A) Bifurcation diagram of a firing rate model as a function of the inhibitory decay timescale 

τi and inhibitory projection width σi. The excitatory projection width and time constant are 

fixed at σe = 0.1 and τe = 5 ms respectively. Color represents the wavenumber with the 

largest real part of eigenvalue and the gray region is stable. Top-down modulation of 

inhibitory neurons modeling attention expands the stable region (black dashed).
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(B) Left: the real part of eigenvalues as a function of wavenumber for increasing τi, when σi 

= σe. Right: three consecutive spike raster snapshots of a spiking neuron network with σi = 

σe and slow inhibition (same network as in Figure 4 in the unattended state).

(C) Same as (B) for σi larger than σe. Right: spike raster snapshots of a spiking neuron 

network with broad inhibitory projections, where the excitatory and the inhibitory projection 

widths of layer 3 were αe
3 = 0.1 and αi

3 = 0.2, respectively. Other parameters were the same 

as in (B).
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Figure 6. Distance Dependence of Pairwise and Population-wide Variability
(A) Pairwise covariance of spike counts from our spiking model as a function of the distance 

between the neurons.

(B) Same as (A) but for the V4 data. Here the distance is between the electrodes that 

recorded the neuron pair.

(C) The distance dependence functions of the first five covariance components computed 

from factor analysis of the model spiking activity in the unattended state. For mode i the 

product of the eigenmode loading onto a pair of neurons is plotted as a function of the 
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distance between the neurons. To properly compare the modes, we scaled each curve by the 

eigenvalue λi for that mode.

(D) Same as (C) but for the V4 data in the unattended state. Shaded regions are SEM. See 

Table S2 for the number of pairs at each distance value for the V4 data; for the model we 

used n = 80 sessions of 500 neurons each.
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Figure 7. Chaotic Population Firing Rate Dynamics Are Quenched by Attention
(A) Schematic of the numerical experiment. The spike train realizations in layer one and the 

initial states of the membrane potential of layer two neurons are identical across trials, while 

in each trial we randomized the initial states of the layer three neuron’s membrane 

potentials.

(B) Three representative trials of the layer three excitatory population rates in the attended 

state (left, rows 1–3). Bottom row: difference of the population rates across 20 trials. Right 

(rows 1–3): snapshots of the neuron activity at time point 1,864 ms. Each dot is a spike 
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within 2 ms window from the neuron at that location. Right bottom: the synaptic current 

each layer three neuron receives from layer two at time 1,864 ms.

(C) Same as (B) for the network in the unattended state.

(D) Trial-to-trial variance of layer three population rates as a function of time. Right: mean 

variance across time.

(E) The layer three population rate tracks the layer two population rate better in the attended 

state. Both outputs and responses are smoothed with a 200 ms window.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Algorithms for simulation of spiking neuron networks This paper https://github.com/hcc11/SpatialNeuronNet

MATLAB MathWorks https://www.mathworks.com
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