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Abstract

Natural products and their derivatives offer a rich source of chemical and biological diversity; 

however, traditional engineering of their biosynthetic pathways to improve yields and access to 

unnatural derivatives requires a precise understanding of their enzymatic processes. High-

throughput screening platforms based on allosteric transcription-factor based biosensors can be 

leveraged to overcome the screening bottleneck to enable searching through large libraries of 

pathway/strain variants. Herein, the development and application of engineered allosteric 

transcription factor-based biosensors is described that enable optimization of precursor 

availability, product titers, and downstream product tailoring for advancing the natural product 

bioeconomy. We discuss recent successes for tailoring biosensor design, including 

computationally-based approaches, and present our future outlook with the integration of cell-free 

technologies and de novo protein design for rapidly generating biosensor tools.
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Introduction

Natural products represent privileged scaffolds for the development of pharmaceuticals, as 

well as numerous high-value commodity and industrial chemicals in the growing 

bioeconomy. Industrial strategies to produce these secondary metabolites (e.g. alkaloids, 

phenylpropanoids, polyketides, and terpenoids) combine various approaches including 

chemical synthesis, biocatalysis, and extraction from natural sources [1]. As industries shift 

towards increasingly environmentally sustainable and cost-effective methods, it is no 

surprise that the enzyme industry reported a total added value of $106 billion to the US 

economy in 2016 [2].

Microbial metabolism has been harnessed to provide access to natural products and their 

analogues via chemo- and regioselective modification of complex organic scaffolds that is 

otherwise often challenging to achieve through traditional synthetic methods. However, 

engineering of enzymes, metabolic pathways, and microbial hosts are often required to 

optimize substrate scope, cofactor recycling, catalytic rate, substrate tolerance, and 

productivity within stringent industrial conditions [1]. The framework of synthetic biology’s 

iterative “design-build-test” cycle has enabled rapid engineering of microbial metabolism, 

leading to significant improvements in the design and construction of libraries. However, 

screening these libraries for variants with desired properties remains a critical bottleneck and 

highlights the need for high-throughput approaches that provide a rapid link between 

genotype and phenotype [3,4]. Genetically-encoded biosensors based on allosteric 

transcription factors (aTFs) that detect the structure and report the titer of a given natural 

product allow for the programmable high-throughput screening and selection of genetic 

constructs, host strains, and experimental growth conditions (Fig. 1).

Ubiquitous in nature, aTFs activate or repress transcriptional machinery to regulate gene 

expression in response to environmental stimuli. The ligand-binding domain (LBD) of 

metabolite-responsive aTFs selectively bind effector molecules, which results in an 

allosterically induced conformational change that modulates transcription through the 

interactions of the aTF DNA-binding domain (DBD) and its cognate DNA operator 
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sequence (Fig. 2a). Characterization of these proteins has resulted in the development of 

diverse aTF-based tools. The properties of these regulatory factors, including their inducer 

specificity as well as their various transfer functions as defined by the Hill equation, 

including sensitivity (K1/2), dynamic range (ON-OFF), and cooperativity (n), can be tailored 

to yield an optimized biosensor. aTFs respond to effector structures and are therefore 

completely agnostic to biological activity or mechanism of action of the natural product. 

Coupled with the ability to engineer aTFs with exquisite effector selectivity, aTFs present a 

unique opportunity to develop biosensors for a variety of natural products with molecular 

precision sufficient to guide the regulation and engineering of complex biosynthetic systems. 

Recent reports have leveraged these platforms for dynamic pathway regulation to balance 

the flux of intermediates and final products. In tandem with strain development, modularized 

gene expression, dynamic regulation, and other metabolic engineering strategies, engineered 

enzymes can be exploited to produce high-value natural products and their derivatives [5]. 

Herein, this review highlights the advancements in biosensor-guided approaches to natural 

product engineering over the last two years, with a special emphasis on aTF platforms for 

optimizing precursors, pathways, final titers, and post-assembly tailoring. Finally, we reflect 

on the future outlook of these tools.

Development and Engineering of aTF-Based Biosensors

While approaches to mine and develop endogenous aTFs into biosensors have been 

successful, there are a limited number of characterized aTFs known in nature with substrate 

scopes that are relevant to natural products (Table 1). As such, recent studies have employed 

genomic sequencing to expand the biosensor platform repertoire by identifying previously 

uncharacterized aTFs for specific final products, including the phenylpropanoid resveratrol 

[6], and the steroid progesterone [7]. However, when a suitable native aTF cannot be 

identified, the ligand specificity of an aTF can be expanded via directed evolution to create 

designer biosensor platforms (Fig. 2b) by coupling rounds of mutagenesis [8-11] with high-

throughput techniques such as fluorescence activated cell sorting (FACS) or antibiotic 

selection [6,12-14]. For example, Kasey et al engineered MphR, a promiscuous macrolide 

sensing aTF, to expand its promiscuity towards various natural and non-natural macrolides 

that were otherwise poor effectors of the wild-type MphR [12]. Similarly, a chimeric LysR 

biosensor was developed to selectively detect luteolin from three closely related flavonoids, 

naringenin, apigenin, and luteolin, by exploring a variety of chimeric detector-effector pairs 

[10]. The novel chimeric biosensor displayed stringent specificity for luteolin and is the first 

reported luteolin-specific transcriptional biosensor in Escherichia coli (E. coli) [10]. The 

protocatechuic acid (PCA) biosensor PcaV was evolved to alter its ligand specificity towards 

vanillin and other close aromatic aldehydes, generating the Van2 biosensor [11]. Mutational 

analysis revealed that the combination of mutations M113S/N114A was sufficient for the 

vanillin specificity, while I110V played an important role for the reduction of basal 

expression and stabilization [11]. The dynamic range of the Van2 biosensor with vanillin 

was 7.7-fold, while being unresponsive to the parental aromatic acid, PCA [11].

Tailoring the sensitivity and dynamic range of aTFs often relies on regulating the 

intracellular concentration of the aTF through the engineering of cis-regulatory components, 

such as the promoter or ribosome binding site (RBS), which control the rate of transcription 
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and translation, respectively. Engineering of these components can be accomplished by 

semi-rational design with tools like ‘De Novo DNA’, an open-access online RBS and operon 

calculator that predicts translation initiation rates [35]. Alternatively, this can be achieved by 

random mutagenesis and screening. For instance, the dynamic range of MphR, a macrolide-

sensing aTF, was improved 10-fold with randomized mutagenesis of the protein’s RBS 

sequence [12]. Dynamic range can also be fine-tuned by engineering the promoter sequence 

to reduce or eliminate undesired background noise, leaky expression, and varied limit of 

detection [36]. Beyond engineering of the repressor module, the sensitivity of an aTF 

biosensor can also be modulated by altering the location of the operator sequence within the 

promoter region of the reporter module [34]. However, mechanistic understanding of the 

interactions between aTFs and their corresponding regulatory components are typically not 

fully characterized or standardized. By leveraging a combination of RBS and promoter 

engineering, transcription and translation are controlled at the most fundamental level, 

enabling better control and success of aTF-biosensing platforms.

Computational Approaches to Biosensor Design

The success of aTF engineering via random or semi-random mutagenesis notwithstanding, 

computational platforms have leveraged statistical and mathematical modeling to create 

designer aTF-based biosensors and have tuned their transfer functions within complex gene 

regulatory networks. Recently, ‘design of experiments’, a statistical modeling system using 

structured, multivariate experimentation, was leveraged to map gene expression levels and 

tailor the Hill parameters of a protocatechuic acid biosensor [37]. Similarly, mathematical 

models have been applied to customize biosensor components to alter aTF biosensor 

activation thresholds, sensitivities, selectivity’s and dynamic ranges [38-40]. Quantitative 

modeling strategies, such as those developed by Swank et al, have been applied to 

characterize a library of synthetic transcription factors and their corresponding promoters, 

which were subsequently used to engineer and build de novo transcriptional regulatory 

networks [41].

Recent advances in biosensor engineering to create designer biosensors have also been 

accessed via structural modeling in silico [30]. Computational LBDs for de novo aTFs are 

expected to spur the next generation of biosensor development by providing exquisite 

affinity and selectivity for specific target molecules that model the same characteristics as 

naturally occurring aTFs [42]. As a result of improved computing power and the low cost of 

DNA synthesis, computationally designed de novo proteins are expected to revolutionize the 

next generation of biosensor development as they explore the full sequence space of possible 

amino acids [43]. For example, a small molecule biosensor was constructed from the 

computationally designed digoxigenin LBD [44]. Conditionally destabilized mutations in 

the digoxigenin LBD created a functional biosensor that is unstable unless bound to its new 

target effector, progesterone, thereby transforming a de novo LBD into a biosensor platform 

with unavailable or unknown aTFs [44]. It is anticipated that computational protein design 

and mathematical modeling will improve access to a broader range of molecular sensors, 

including those for natural products.
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Biosensor-Guided Optimization of Precursor Biosynthesis

Small molecule primary metabolites are commonly leveraged as building blocks for the 

assembly of secondary metabolites; however, precursor deficiency can limit the productivity 

of natural product biosynthetic pathways [45] (Fig. 3a). Leveraging both native and 

engineered aTFs, several biosensor platforms have been developed for precursor detection as 

critical tools towards the long-term goals of optimizing metabolism and evolving de novo 
pathways for the production of natural products. For example, given the clinical significance 

of polyketides, there has been much interest in applying biosensor platforms to addressing 

long standing problems related to polyketide synthetic biology. Catalyzed by polyketide 

synthases (PKSs), polyketides are biosynthesized from the decarboxylative Claisen 

condensation of acyl-CoA building blocks. The potential modularity and versatility of such 

building blocks for accessing new-to-nature polyketides is driving development of 

biosensors that could be used to regulate their biosynthesis and to guide high-throughput 

engineering. Several aTFs utilize acyl-CoAs as effectors including AccR, which recognizes 

acetyl-, propionyl-, and methylcrotonyl-CoA [26], and FapR, which can detect its native 

malonyl-CoA (mCoA) as well as various C2-derivatives [46]. FapR-based biosensors have 

been used to produce oscillators that simultaneously regulate mCoA production via the 

upregulation of acetyl-CoA carboxylase and fatty acid biosynthesis [47]. Moreover, the 

newly identified promiscuity of this biosensor [46] could be leveraged for the directed 

evolution of de novo pathways to mCoA derivatives for precursor-directed biosynthesis of 

polyketide natural products.

Isoprenoids are derived from the isomeric precursors, dimethylallyl pyrophosphate 

(DMAPP) and isopentenyl pyrophosphate (IPP), to yield >80,000 unique compounds. 

Although no native transcription factor biosensor platforms have been identified for 

DMAPP, a fusion between isoprene synthase, IspS, and the DBD of AraC was developed as 

a DMAPP responsive regulator of the pBAD promoter [48]. Extending IspS applications, an 

isoprene biosensor was developed that allows monitoring the intracellular concentration of 

isoprene in single bacterial cells by modifying the TbuT transcription factor with a detection 

limit of 0.1 mM. The fluorescence signal of isoprene producing E. coli correlated to the 

amount of produced bioisoprene [49]. Isoprene biosensors could be leveraged for high-

throughput screening of isoprenoid biosynthesis and potentially be used for the design of 

artificial hemiterpene biosynthetic pathways [50].

Dynamic Metabolic Control for Pathway Optimization

Metabolic engineering can alter pathway flux to optimize cellular processes for improved 

titers of relevant natural products. However, the resulting imbalance of stringently regulated 

metabolites often imposes inherent challenges including the production of toxic 

intermediates, reduced catalytic efficiency, and inhibition of downstream pathways. 

Dynamic pathway regulation can be implemented to mitigate these effects through pathway-

specific biosensor-based strategies [51,52], pathway-independent circuits [53], or a 

combination of these strategies [54]. While metabolic engineering for pathway optimization 

has been well explored, the following examples demonstrate the importance of 

implementing biosensors for improved dynamic control.
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Introducing the mevalonate (MVA) pathway into a heterologous host often results in a flux 

imbalance of the isoprenoid precursors (IPP) and farnesyl pyrophosphate (FPP), which are 

toxic upon accumulation [55]. Previously, the expression levels of the ‘top’ three genes in 

the MVA (MvaT) (Fig. 3b) pathway have been balanced using tunable intergenic regions 

(TIGR), increasing mevalonate production by 7-fold [56]. Thus, in order to balance the 

‘lower’ part of the MVA pathway (MvaB) (Fig. 3b) and to increase the available FPP, a 

TIGR library was constructed and screened using an FPP sensor plasmid, in which Green 

Fluorescence Protein (GFP) was under the control of the E. coli rstA promoter [55]. The 

rstA promoter responds to the accumulation FPP to regulate the expression of zeaxanthin 

thus creating a crosslink between the cell’s metabolic state and the pathway expression of 

the desired product [55]. To further reduce the metabolic burden, the TIGR optimized MvaB 

pathway plasmid and MvaT pathway were assembled on a single plasmid which resulted in 

a ~28% higher zeaxanthin production [55]. Furthermore, the PgadE/ IA44 sensor, which are 

downregulated by FPP and IPP respectively, were utilized to dynamically control the TIGR-

mediated MVA pathway to prevent a toxic accumulation of precursors and further improve 

the zeaxanthin production by 1.6- and 1.7-fold [55].

Microbial production of fatty acid hydrocarbons, such as 1-alkene, which can be 

biosynthesized from activated fatty acids by polyketide synthases or from free fatty acids via 

cytochrome P450 enzymes, offer a sustainable opportunity for biofuels and olefins [57]. 

Recently, a Saccharomyces cerevisiae strain was engineered to improve the production of 1-

alkenes by eliminating competing fatty acid consumption pathways and introducing the 

desaturase-like enzyme UndB from Pseudomonas fluorescens (PfUndB) [57]. These 

cumulative mutations resulted in up to ~29 fold-improvement of 1-alkene production [57]. 

To dynamically balance cell growth and product formation, PfUndB expression was 

regulated by the GAL7 promoter, which functions under low glucose levels, thereby 

enabling a distinct growth phase and a production phase that resulted in 100% higher 1-

alkene titers [57]. Furthermore, FapR-based platforms have been used to dynamically 

control polyketide biosynthesis. For example, 6-methylsalicylic acid synthase (6-MSA) 

production capacity was increased 260% through the use of a hybrid yeast Prm1-FapR 

protein to regulate the malonyl-CoA dependent repression of fatty acid biosynthesis and the 

activation of the 6-MSA pathway genes, respectively [58].

Dynamic control has also been applied to improving titers via pathway independent 

regulatory elements, such as quorum-sensing (QS) circuits. A novel QS-based CRISPRi 

(EQCi) circuit, cell density-dependent gene regulation, was utilized in the rapamycin-

producing strain Streptomyces rapamycinicus to autonomously and dynamically regulate 

multiple gene targets at once [33]. The EQCi circuit was designed to utilize the srbA 

promoter (srbAp) from S. rapamycinicus, which is under control of SrbR, to drive dCas9 

expression [33]. At high cell density of S. rapamycinicus, the SrbR reaches a threshold in 

which it will no longer bind to srbAp, allowing for dCas9 expression, thereby switching the 

EQCi circuit on [33]. Furthermore, to improve rapamycin titers, three essential pathways 

were downregulated using this novel circuit resulting in the highest reported rapamycin titer 

of 1836 ±191 mg/L, an increase of ~660% compared to the wild-type producing strain [33]. 

Additionally, components from the lux and esaR QS systems were combined in E. coli to 

produce a single circuit to dynamically regulate a gene of interest [59]. This system was 
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applied to control the flux through the naringenin biosynthetic pathway and found that 

down-regulation of endogenous mCoA genes resulted in a 140% higher titer [59]

Biosensor-Guided Enhancements of Final Product Titers

Biosensors can also be utilized to circumvent screening bottlenecks for natural product 

pathway and enzyme engineering by providing a precise high-throughput tool for final 

product detection and titer quantification, e.g. erythritol, a secondary metabolite, using the 

engineered aTF, EryD [60]. This platform was coupled with automatic strain mutagenesis 

and screening to characterize more than 1152 strains in one week. The top producing 

engineered strain produced more than 148 g/L erythritol and is the first reported work to 

develop EryD as a high throughput biosensor.

Similarly, a rational circuit design has been coupled with selection to increase cellular 

tolerance to toxic products. The MexR transcriptional repressor, derepressed in the presence 

of pinene, was employed to regulate expression of the AcrAB-TolC efflux pump, which 

provides tolerance to toxic compounds, such as the terpene pinene, but can inhibit cell 

growth when overexpressed, thus creating a synthetic feedback loop [34]. Subsequently, a 

synthetic promoter library containing MexR binding sites was created to drive the expression 

of GFP [34]. In addition, the mexA-mexR binding sequence was isolated and incorporated 

into different regions of the library [34]. To add feedback, the variants from the promoter 

library were used to control the expression of the acrAB pump in varying levels of pinene 

[34]. In order to determine which MexR promoter class led to pinene tolerance and 

responded by turning on the efflux pumps, next generation sequencing was conducted post 

selection [34]. Under pinene treatment, there was a strong selective pressure for MexR 

binding sites that were immediately upstream of the acrAB gene in addition to a 

convergence of promoter sequences which suggested that their goal of using feedback 

control to balance pinene and pump toxicity was successful [34].

Biosensors for Detecting Natural Product Tailoring Modifications

Following the biosynthesis of the natural product core structure, enzymatic tailoring 

including phosphorylation, methylation, hydroxylation, and glycosylation, are frequently 

carried out to optimize bioactivity of the mature natural product [61]. Often, the remarkable 

flexibility of downstream enzymes that tailor natural product scaffolds, including 

methyltransferases (MTs), hydroxylases, and glycosyltransferases, enables molecular 

diversity. Highly specific engineered aTFs for a modified target compound could be 

leveraged to detect natural product tailoring steps which can then be targeted via a 

biosensor-guided approach to identify new biocatalysts or to evolve existing ones. The 

application of a vanillate biosensor for reporting the regioselective methylation of catechol 

exemplifies this vision. The VanR-VanO vanillate sensor system was engineered to 

selectively detect vanillate but no other methylated regioisomers or biosynthetic precursors 

[62]. Subsequently, the biosensor was used to identify the conversion from protocatechuate 

to vanillate catalyzed by prospective O-MTs. First, deletion of the methionine biosynthesis 

regulator MetJ improved the conversion of protocatechuate to vanillate by increasing the 

pool of the methyl donor, S-adenosylmethionine (SAM). Remarkably, using the biosensor, 
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three previously uncharacterized O-MTs were identified that supported the conversion of 

protocatechuate to vanillate [62]. As achieved in the vanillate example, a single aTF-based 

biosensor to report natural product tailoring needs to discriminate between the acceptor 

substrate and the tailored product. This could be done by leveraging the aforementioned 

strategies to engineer the required selectivity into a given aTF scaffold. Alternatively, a pair 

of ratiometric biosensors could be used for this purpose. For example, a FRET-based 

ratiometric sensor that incorporates the TetR repressor protein enabled correlation of 

fluorescence and tetracycline concentration allowing for accurate quantification enabling 

homogeneous assays without washing steps [63].

Although biosensors that directly detect the tailored product are likely preferred, aTFs with 

the required selectivity might not always be available. The development of biosensors that 

detect a cofactor, precursor, or byproduct of the tailoring reaction have also begun to be 

investigated for their potential utility. An example of this is the development of a genetically 

encoded ratiometric biosensor for NADH/NAD+ based on the redox-responsive transcription 

factor Rex [64]. The sensor was successfully deployed in a proof-of-principle high-

throughput screen to enrich high NADH mutant strains that were diluted 10,000-fold in 

wild-type cells.

Conclusions and Future Outlook

Traditional engineering strategies for improving natural product titers and accessing non-

natural designer compounds are often hampered by low-throughput screening technologies. 

Yet, the emergence and development of genetically-encoded biosensors have allowed for the 

rapid screening of potentially millions of variants to enhance pathway and enzymatic 

efficiencies. Subsequently, robust high-throughput screening platforms based on aTFs have 

enabled the detection of diverse natural product classes and their small molecule building 

blocks which has spurred the application of directed evolution and metabolic engineering of 

natural product biosynthetic pathways. We envision that these strategies will be particularly 

valuable to design aTFs with a defined linear range of detection in order to engineer 

prototype microbial strains for the biosynthesis of natural products, their analogues, and 

precursors.

Despite their utility, the discovery, characterization, and optimization of aTF-based 

biosensor platforms remains a critical bottleneck to their industrial application. aTF-based 

biosensors are limited in terms of their adaptability within host microbes to modulate 

proteins or complex gene networks. The transcription factors themselves must properly fold, 

maintain solubility in vivo and be amenable to engineering efforts. Indeed, effectors of 

transcription factors must be cell-wall permeable, readily available for binding, non-toxic, 

and stable inside the cell. Furthermore, it can be difficult to identify well-characterized aTFs 

that fit specific needs (e.g., specific effector or biosynthetic system). Even when a promising 

candidate aTF is identified, it can be difficult to identify a corresponding RBS and promoter 

system to make a functional gene circuit, given the diversity of microbial regulatory 

mechanisms [67]. However, as emerging technologies are developed, biosensor engineering 

is expected to progress towards more rapid, rational, and computational-based design for the 

facile development of highly targeted biosensors for a specific molecule of interest [66]. For 
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example, the use of cell-free technology allows for quick prototyping of gene circuits for in 
vitro detection of molecules, or for future in vivo biosensor operation.

Recent advances utilizing cell-free transcription-translation to rapidly characterize novel 

biosensor components and aTF effector promiscuity now offer prototyping capabilities to 

quickly overcome these challenges, specifically issues with effector permeability and 

toxicity [27,65]. The application of directed evolution to tailor the effector selectivity of 

aTFs continues to provide biosensors with exquisite detection capabilities. We expect future 

trends in biosensor design to apply new, open-access computational tools that enable rational 

engineering of the intricate conformational dynamics of aTFs via homology modeling and 

molecular docking, which would otherwise be arduous using traditional engineering 

strategies. Foremost, de novo protein design is set to provide customizable aTFs biosensors 

from the start that can be applied across diverse classes of molecules. The use of these tools 

has rapidly accelerated engineering efforts to enable the generation of smart libraries to 

effectively find active-site pockets or to simply generate highly targeted biosensors for a 

specific molecule of interest. Together, these technologies underlie the foundations of 

screening throughput and genetic diversity, which are at the forefront of evolutionary 

biosensor engineering. Herein, we highlight our vision for biosensor-guided approaches 

towards natural products and their derivatives to include directed evolution of aTFs, 

advances in cell-free methods to characterize them, new applications of computational tools, 

and the deployment of engineered aTF biosensors to address longstanding problems in 

natural product biocatalysis.
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Figure 1. 
Coupling genetically-encoded aTF biosensor platforms to natural product biosynthesis and 

engineering. Natural product biosynthetic logic is frequently divided into precursor 

generation, scaffold assembly, and tailoring, thereby providing several entry points for 

detection by aTFs. A variety of biosynthetic precursors (outlined in blue) and mature natural 

products (outlined in red), have been detected by aTF-based biosensors.
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Figure 2. 
Engineering and optimizing transcription factor-based biosensors. (a) Genetic circuit of a 

biosensor platform whereby the aTF regulates the expression of downstream genes by 

binding to its cognitive operator sequence. In the presence of an inducer, the system will 

derepress, allowing for the expression of a reporter signal. The corresponding dose response 

curve describing the response as a function of effector concentration is used to evaluate the 

biosensor transfer functions, as defined by the Hill equation. (b) aTF biosensor platforms 

can be tailored for a preferred function, including (i) sensitivity, (ii) dynamic range, (iii) 

effector specificity, (iv) control over transcription and translation via promoter and RBS 

engineering, (v) tailored substrate selectivity and/or promiscuity via protein engineering.
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Figure 3. 
Basic mechanism of (a) polyketide biosynthesis catalyzed by modular Type I PKSs and (b) 

the mevalonate pathway for hemiterpene production.
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Table 1.

Examples of aTFs that respond to diverse natural products

aTF EFFECTOR NATURAL PRODUCT CLASS

HcaR Trans-cinnamic acid [15] Phenyl-propanoid; Used in manufacture of flavors, dyes and 
pharmaceuticals

ItcR Itaconic acid [16] Dicarboxylic acid; Building block for resins, paints, plastics 
and synthetic fibers

AraC Ectoine [17], triacetic acid lactone [18], mevalonate [19] Carboxamidine, polyketide byproduct, terpene precursor

BenM Cis,cis-muconic acid [20] Dicarboxylic acid; Used for the manufacture of plastics

FdeR Naringenin [21] Flavonoid

QdoR Quercetin and kaempferol [21] Flavonoid

NitR Caprolactam [22] Lactam; Used in the manufacture of plastics

AvaR1/AvaR2 Avenolide [23] Avenolide is a signaling molecule for avermectin 
biosynthesis

JadR1/JadR2 Chloroamphenicol and jadomycin B [24] Polyketides

ChnR ε-caprolactam, δ-valerolactam, and butyrolactam [25] Lactam biosynthesis

AccR Acetyl-, propionyl, methylcrotonyl-, malonyl-, and 
methylmalonyl-CoA [26]

Extender units for the biosynthesis of fatty acids and 
Polyketides

MphR Erythromycin, azithromycin, clarithromycin and 
roxithromycin [12,27]

Polyketides

TtgR Naringen, phloretin and genistein [28] Flavonoids

TetR Tetracycline, simocyclinone D8, actinorhodin [29] Tetracyclines

QacR Vanillin [30] Terpene

OtrR Oxytetracycline [31] Tetracycline

CtcS Chlortetracycline [32] Tetracycline

SrbR Rapamycin [33] Polyketide

MexR Pinene [34] Terpene
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