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Implantable biomaterials are essential surgical devices, extending and improving the quality of life 

of millions of people globally. Advances in materials science, manufacturing, and in our 

understanding of the biological response to medical device implantation over several decades have 

resulted in improved safety and functionality of biomaterials. However, post-operative infection 

and immune responses remain significant challenges that interfere with biomaterial functionality 

and host healing processes. The objective of this review is to provide an overview of the biology of 

post-operative infection and the physiological response to implanted biomaterials, and to discuss 

emerging strategies utilizing local drug delivery and surface modification to improve the long-term 

safety and efficacy of biomaterials.

Graphical Abstract

Keywords

Biomaterials; bacterial adhesion; surface modification; sustained release; inflammation; infection; 
fibrosis

1. Introduction

Biomaterials are implanted in tens of millions of patients globally, with more than 13 million 

procedures occurring annually in the U.S. alone (1). Biomedical implants have been 

employed in almost every domain of surgery, ranging from microscale implants in 

microvascular and ophthalmic surgery to macroscopic devices in orthopedic and general 

surgery. Interaction between the host environment and implanted biomaterials begins 

immediately upon introduction, after which biomaterials may become coated with serum 
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proteins, aqueous humor, mucosal secretions, microbiota, and/or extracellular fluids 

depending on their location in the body (2). This makes the biomaterial surface highly 

susceptible to microbial as well as host cellular adhesion. In 1987, orthopedic surgeon, Dr. 

Anthony Gristina postulated that “a race to the surface” would result in: (1) bacterial 

adhesion to the surface of the material and proliferation into a biofilm leading to infection, 

or (2) host cell encapsulation of the biomaterial with extracellular matrix to isolate it from 

host tissues (3). Accordingly, infection and inflammation are the two primary causes of 

medical device complications and failure, both of which are mediated by cellular interaction 

with the biomaterial. Thus, it is desirable to engineer biomaterials that are both resistant to 

contamination/biofouling and can successfully integrate with host tissue. Biomaterial 

associated infections lead to an increased annual economic burden of more than $11 billion 

(4, 5). The first half of this review focuses on mechanisms involved in post-operative 

bacterial infection of long-term implants which are highly susceptible to bacterial adhesion 

and biofilm formation such as orthopedic prostheses, ureteral stents and sutures. We discuss 

advances in biomaterial design that may help prevent bacterial adhesion and proliferation. 

The latter half of this review discusses host responses to implanted biomaterials, particularly 

the role of innate immune cells and stromal cells in implant fibrosis. Recent approaches for 

modulating cellular responses to implanted biomaterials are also examined. Collectively, 

medical implants that are highly biocompatible and impervious to infection will significantly 

improve clinical outcomes and reduce healthcare costs.

2. Implants are susceptible to infection

Nearly half of all healthcare-associated infections in the U.S. occur with implanted 

biomaterials (6). Implant-associated infections increase duration of hospitalization, as well 

as rates of re-hospitalization and re-intervention (7–9). Microbiota from the patient, the 

operating room, and the surface of the implant itself have all been implicated in post-

operative infections (10, 11). Bacterial adhesins interact with host proteins that coat the 

implant’s surface, aiding in bacterial adhesion to the surface of the device. Left unchecked, 

certain species of bacteria (predominantly commensal bacteria like Staphylococcus aureus 
and Staphylococcus epidermidis) can secrete signaling molecules to communicate and alter 

their metabolic states to form a biofilm (12–14). A biofilm is a matrix composed of proteins, 

DNA, and membrane structures from dead cells that protects the bacteria within the biofilm, 

including limiting penetration of small molecule drugs (15, 16). Systemic administration of 

antibiotics is often the first-line mode of prophylaxis and treatment of infections, although 

poor bioavailability and systemic toxicity may limit efficacy (17–19). Systemic antibiotic 

therapy has been associated with risk of allergic reactions, nephritis and enteric dysbiosis 

(20). Further, the lack of patient adherence to prescribed dosing regimen further limits both 

the safety and efficacy of antibiotics (21, 22). Subtherapeutic drug exposure contributes to 

the number of bacterial species that have become resistant to widely used antibiotics such as 

gentamicin and methicillin (23–25), as well as antibacterial agents such as triclosan (26). 

Thus, rather than relying on adjunct antibiotic administration for preventing post-operative 

infections, engineering functionality into the implant itself may lead to improved surgical 

outcomes. Figure 1 provides an overview of biomaterial-associated infection and strategies 

reviewed herein. In this section, we describe mechanisms of bacterial adhesion and biofilm 
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formation, followed by approaches for engineering implantable biomaterials that provide 

local, sustained antibiotic release and/or prevent bacterial adhesion.

2.1 Mechanisms of infection

Bacteria colonize a diverse range of surfaces, including host tissues and abiotic biomaterials 

(27). Bacteria may adhere to biomaterials via non-specific interactions, such as electrostatic 

interactions with the negatively charged bacterial cell wall, or by hydrophobic interactions. 

Alternatively, bacteria may interact with host tissue in a ligand specific manner (28, 29). 

Most bacteria have evolved to survive in a community adherent to solid surfaces where 

nutrient availability tends to be highest, and there is also positive selection for bacteria that 

form biofilms as a protection (30, 31). Biofilm formation on implants presents a challenge 

for effective treatment both because of poor penetration of antibiotics and metabolic 

heterogeneity within the biofilm which can allow some cells to survive high doses of 

antibiotics (32). Such resistant bacterial cells can proliferate once they sense a decline in the 

bacterial population, causing a recurrent infection (33). Below, we discuss strategies to 

prevent infections by eliminating early planktonic bacteria or by preventing adhesion.

2.2 Sustained release technologies for prevention of infection

Numerous anatomical barriers and clearance mechanisms significantly reduce drug 

concentrations at intended locations (34, 35). Local delivery of drugs overcomes these 

challenges and is a promising alternative to systemic therapies. There is increasing use of 

polymers for manufacturing medical implants due to the tailorable textural, mechanical, and 

physical properties (36). Moreover, a wide range of natural and synthetic polymers have 

demonstrated high strength, flexibility, and durability together with a favorable safety profile 

and long-term biocompatibility (37–40). More recently, the potential for loading polymeric 

implants with therapeutics for sustained, local release to prevent infection, as well as surface 

patterning to prevent bacterial adhesion, have been explored. Specific clinical applications 

for modulating implantable biomaterials properties to prevent post-surgical infection are 

described below (Table 1).

2.2.1 Orthopedic implants—Joint replacement surgery is performed more than a 

million times annually in the U.S. (41). Prosthetic joint infection is a major cause of revision 

surgery with a recurrence rate of 16% (42). The current standard of care to treat prosthetic 

joint infections involves explanting the prosthesis and using bone cement spacers loaded 

with antibiotics as filler materials for several weeks before implanting a new prosthesis, a 

timeframe in which mobility is limited (43). To obviate the need for intermediate bone 

cement spacers, Suhardi, et al. manufactured prosthetic joint implants containing eccentric 

drug clusters, which resemble highly elongated ellipsoids (41). They demonstrated that the 

in vitro release kinetics of the drug was dependent on the eccentricity of the drug clusters. 

Polymer processing methods that result in spherical drug clusters, such as solvent casting, 

can entrap drug for longer durations resulting in slow release kinetics. The authors 

demonstrate that compression molding results in eccentric drug clusters in the polymer 

matrix, which had faster elution rates. Implants loaded with a combination of vancomycin 

and rifampin released drug in a sustained manner for up to 6 months in vitro. In a rabbit joint 

S. aureus biofilm infection model, 100% of the animals that received drug loaded prosthetic 
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joints remained uninfected at day 21, while only 20% of animals receiving vancomycin-

loaded bone cement spacers remained uninfected (41). Another strategy that has been used 

successfully in smaller load bearing implants is the use of drug-loaded polymeric coatings to 

provide local delivery of antibiotics. Ashbaugh, et al. coated Kirschner-wire implants with 

poly(lactic-co-glycolic acid) (PLGA) and poly(ε-caprolactone) (PCL) nanofibers separately 

loaded with combinations of rifampin, vancomycin, linezolid or daptomycin. Subsequently, 

they selectively melted the PCL nanofibers to create a diffusion matrix composed of PLGA 

fibers surrounded by PCL (44). This created a structure where PLGA nanofibers were 

embedded within bulk PCL. Using this strategy, drug release was tuned by selectively 

loading antibiotic combinations in either PCL, PLGA nanofibers or both. Release kinetics of 

vancomycin, daptomycin, linezolid in combination with rifampicin were studied in vitro. In 

a prosthetic joint S. aureus infection model in mice, they observed that the antibiotic-

releasing coatings successfully reduced the bacterial load in the K-wire implants as 

compared to no drug treatment. Further they showed that the systemic antibiotic exposure 

was modest, underscoring a safety benefit of locally delivered therapeutics (44). These 

results show that the use of novel manufacturing and coating methods and design of 

biomaterials which enable local and sustained delivery of drugs may provide protection 

against bacterial infections.

2.2.2 Ureteral stents—Ureteral stents are commonly used devices to maintain 

urological patency. The constitutive materials in early iterations of ureteral stents were 

synthetic polymers such as poly(ethylene) and silicones. Later versions of the stents were 

made from metals and metal-alloys such as titanium and nitinol. The most pressing issue 

concerning both metallic and polymer ureteral stents is the formation of crystalline and 

bacterial biofilms. Ureteral stents often have a limited indwelling time before removal due to 

the development of symptoms such as local pain, fever and frequent urination resulting from 

infection and biofilm formation. Nearly 90% of removed indwelling stents test positive for 

cultures of common ureteral pathogens such as Pseudomonas aeruginosa, S. aureus, 

Escherichia coli and Proteus mirabilis (45).

Protein deposits from urine are thought to enable bacterial adhesion via interaction with 

bacterial adhesins (46). Boston Scientific developed a triclosan-coated ureteral stent in 2006 

to prevent bacterial adhesion. Triclosan is a broad spectrum antibacterial agent that does not 

interfere in the normal wound healing response. In rabbits, triclosan-coated stents prevented 

a P. mirabilis infection in over 50% of animals within a week of implantation (47). However, 

common pathogens including E. coli, P. aeruginosa, and S. aureus are growing increasingly 

resistant to triclosan due to widespread use as an antiseptic over the past several decades 

(48–50), limiting the potential clinical use of triclosan-coated stents. More recently, coating 

ureteral stents with anti-bacterial peptides has been explored. Tachyplesin III conjugated to 

biomaterial surfaces has been shown to sterically inhibit bacterial adhesion and subsequent 

colonization (51). Tachyplesin III peptide coating on ureteral stents, when used in 

combination with piperacillin-tazobactam (TZP) has been shown to reduce the in vitro TZP 

minimum inhibitory concentration (MIC) against P. aeruginosa 8-fold. In a rat subcutaneous 

infection model, the combination of intraperitoneally delivered TZP and a Tachyplesin III 

peptide-coated stent reduced stent surface colonization by 400-fold. The steric hindrance/
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antifouling effect has also been shown for synthetic polymers such as poly[N-(2-

hydroxypropyl) methacrylamide] (poly(HPMA)). In a study conducted by Gomes, et al. 

(52), poly(HPMA) was conjugated to a glass surface to form brush-like structures to 

characterize the attachment and biofilm forming capacity of E. coli on bare glass, 

poly(dimethylsiloxane) (PDMS), and brush-like poly(HPMA) surfaces. They observed 80% 

reductions in both total biofilm forming cells and viable cells on the poly(HPMA) coatings 

compared to bare glass surfaces in-vitro (52). Furthermore, BMAP-28, a cathelicidin peptide 

with intrinsic antimicrobial activity, was tested by Orlando, et al as a coating alone and in 

combination with antibiotics (53). When stents coated with either vancomycin or BMAP-28 

were challenged with S. aureus, the bacterial burden was significantly reduced compared to 

uncoated stents. However, near complete elimination of infection was achieved when the 

BMAP-28-coated stents were used in conjunction with intraperitoneally administered 

vancomycin (53). Another study investigated the synergistic effects of combining antibiotics 

(54). They showed in vitro that there was an eight-fold reduction in the minimum 

bactericidal concentration of amikacin when used in combination with clarithromycin 

against adherent P. aeruginosa. In a rat model of P. aeruginosa bladder infection, they found 

that either systemically administered amikacin with an uncoated stent or clarithromycin-

coated stents provided a reduction in bacterial colonization compared to an uncoated stent 

alone. However, near elimination of infection was achieved in rats that received systemic 

amikacin in combination with clarithromycin-coated ureteral stents (54). These results 

demonstrate that sensitization of bacteria to antibiotics by deterring attachment and the use 

of combinatorial drugs are significantly advantageous in preventing ureteral infections of 

biomaterials.

2.2.3 Antibacterial sutures—Surgical site infections (SSIs) are one of the most 

common post-operative complications, and have an incidence of 5.6 per 100 surgeries in 

developing countries and 2.6 per 100 surgeries in the U.S. (55). Additionally, in procedures 

like colorectal surgeries, incidence of post-operative infection can be as high as 17.5%, even 

in developed countries (56). While sutures are routinely used for wound closure in a wide 

variety of surgical procedures, the presence of sutures at a wound site has been associated 

with infection. This has led to the investigation, development, and approval of surgical 

sutures with antibacterial properties. In 2002, Ethicon received regulatory clearance for 

coated antibacterial sutures containing triclosan in general surgery (57). However, as 

mentioned previously, there is growing concern over bacterial resistance to triclosan (26, 

48). One alternative strategy that has gained attention is employing sustained-release 

technologies to deliver antibiotics locally at the surgical site. Chen et al. (58) developed 

PCL-based levofloxacin hydrochloride coatings for silk sutures (sizes 2–0 and 0–0). The 

PCL/levofloxacin coatings demonstrated sustained release for up to 5 days in vitro, leading 

to measurable zones of inhibition against S. aureus and E. coli in agar diffusion assays for 7 

days (58). However, suture coatings may require multifilament thread and increased suture 

diameter to achieve sufficient drug release, which limits use in surgeries requiring thin 

sutures (e.g., microsurgery). For example, Ethicon’s antibacterial sutures are only available 

in diameters suitable for general surgery (70–339 μm) One potential solution is to form a 

suture entirely out of polymer with drug embedded, which is achievable via electrospinning. 

In one study, Kashiwabuchi et al. manufactured poly(L-lactide) (PLA) nanofiber sutures 
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(size 8–0) loaded with the antibiotic levofloxacin, using a wet electrospinning method. By 

incorporating poly(ethylene glycol) within the PLA nanofibers, they achieved sustained 

release kinetics of levofloxacin for over a period of 70 days in vitro. Further, agar diffusion 

tests showed that the drug released from the electrospun sutures successfully inhibited S. 
epidermidis for a period of 7 days (59).

Historically, drug-loaded electrospun suture materials have failed to demonstrate sufficient 

mechanical strength as stipulated by the United States Pharmacopeia guidelines for clinical 

use (60–64). Parikh et al.(65) designed a novel electrospinning apparatus that was capable of 

manufacturing highly twisted nanofibers loaded with levofloxacin. Increasing the number of 

twists greatly improved tensile properties of the multifilament sutures. Sutures that were 

highly twisted (~1575 twists per 10 centimeters) surpassed United States Pharmacopeia 

breaking strength requirements (0.24 N) for a 28 μm absorbable suture with a maximum 

tensile strength of 0.35 N. Further, the sutures exhibited a direct dependency on the number 

of twists imparted to the nanofibers for breaking strength. This is the first report of 

electrospun suture materials demonstrating sufficiently high breaking strength required for 

use in clinic. In a rat model of corneal keratitis, the levofloxacin-loaded sutures successfully 

prevented multiple consecutive inoculations of S. Aureus over one week (see Figure 2), and 

detectable levels of levofloxacin in rat eyes for a month (65). Overall, the general approach 

of loading small molecules into polymeric suture materials to enable local and sustained 

delivery of antibiotics by means of direct loading of drug in the suture or via surface 

coatings have shown great promise in abrogating bacterial adhesion and proliferation.

2.3 Modulating material surface properties to prevent bacterial adhesion

Bacterial adhesion to materials is highly dependent on surface topography, chemistry, and 

hydrophobicity (66–68). Surface roughness has been shown to affect bacterial adhesion in 

dental implants (69), leading to many attempts to modify surface roughness to reduce the 

risk of infection (70–72). The rationale is that bacteria have evolved to detect patterns that 

are dimensionally similar to their own size (~1 μm), and thus, creating smoother surfaces 

(surface roughness <1 nm) reduces adhesion (73). For example, one study showed that 

titanium surfaces blasted with micronized aluminum oxide particles to produce a nanoscale 

surface roughness (>100 nm) had increased adhesion of bacteria derived from whole saliva. 

In contrast, naturally occurring nanopatterns, such as the self-cleaning hydrophobic surfaces 

on lotus leaves, and dragonfly and cicada wing patterns are highly resistant to bacterial 

adhesion and biofouling (74). Bhadra et al. (75) used hydrothermal etching to nanopattern 

titanium surfaces, and evaluated the attachment of S. aureus and P. aeruginosa compared to 

unmodified titanium surfaces. They noted a significant reduction in the total number of 

adherent bacteria and specifically live bacteria on the nanopatterned surfaces, indicating that 

certain nanopatterned surfaces have an inherent bactericidal nature (75).

Linklater, et al. (76) compared the bactericidal nature of dragonfly wings to a synthetic 

nanomaterial developed for use in photovoltaic applications and biosensors, termed black 

silicon (77–79). Black silicon was manufactured using a reactive ion-etching process to 

achieve nanoscale protrusions on the surface of silicon wafers. The authors then studied the 

adhesion and bactericidal properties of these surfaces using S. aureus, P. aeruginosa, and S. 
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subtilis. Nanotopographical features on black silicon resemble sharp protrusions and are 

capable of causing indentations and mechanical stress to the bacterial cell wall. The authors 

postulate that an imbalance between the hydrostatic pressure caused by the cytoplasm on the 

bacterial cell wall and the indentation stress caused by the nanopatterned substrate caused 

cell wall rupture and death of the bacteria. Further, certain bacteria such as S. subtilis are 

spore forming, and this property protects the bacteria from environmental stress and 

enhances their rigidity. Nanopatterned black silicon surfaces not only disrupted spores of S. 
subtilis, indicating an anti-adhesive nature, but also required a significantly higher number of 

bacterial cells of all three tested model organisms in order to achieve colonization of the 

material suggesting a bactericidal nature (76). Further research and validation is required in 

order to translate these technologies for clinical use.

3. Implants are susceptible to immunologic reactions

Implanted biomaterials generally illicit a chronic inflammatory response that eventually 

results in fibrosis, isolating the material from the rest of the body. This fate is common to 

materials made from natural and synthetic sources, and the speed and extent of the fibrotic 

response determines the functional lifespan of the implant. Surgical procedures and 

biomaterial implantation cause injury to the surrounding tissue, facilitating interactions with 

host proteins and cells. Non-specific protein adsorption to the material surface forms a 

“provisional matrix” which makes the microenvironment surrounding the biomaterial 

conducive to cellular adhesion (80). A complex set of infiltration, proliferation, fusion and 

degranulation events associated with various types of innate immune cells and stromal cells, 

such as smooth muscle cells and fibroblasts, culminates in fibrotic encapsulation (Figure 3). 

This physiological response to the implant is interlinked with bacterial colonization, as 

misguided host defenses can create a niche for bacterial adhesion and proliferation (10, 81). 

In particular, neutrophils and macrophages form part of an acute response to infection as 

well as abiotic implants and thus, dysregulation of their activity can result in infection, 

inflammation, and fibrosis (82, 83). In this section we provide an overview of recent 

advances in controlling the biological response to biomaterials, including providing local 

drug release, cell capture, and modifying surface topography. Lastly, we outline this 

evolution of concepts in the design and implementation of endovascular devices with 

improved surgical outcomes.

3.1 Immune cell responses to biomaterials

Immune cells are first responders that influence the nature of the microenvironment 

surrounding the biomaterial. Neutrophils are the predominant immune cell type at the site of 

implantation in the first hours (84). The role of neutrophils in generating reactive oxygen 

species (ROS) and vasodilation has been well studied (85, 86). While the primary function 

of neutrophils is to phagocytose foreign material and release inflammatory cytokines to 

recruit monocytes and macrophages, most implants are too large to be phagocytosed. In this 

case, neutrophils undergo degranulation and deposit neutrophil extracellular traps (NETs), or 

networks made from DNA, histones, and neutrophil elastase (84, 87, 88). NETs function to 

trap pathogens like bacteria and viruses and drive the sterile inflammatory response to 

implant materials. Jhunjhunwala, et al. (89) used a mouse model of peritoneal fibrosis to 

Josyula et al. Page 8

Drug Deliv Transl Res. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



examine the role of NETs in the fibrotic response to foreign materials. They implanted 

microcapsules made from alginate, glass, poly(lactic-co-glycolic)acid (PLGA) and 

poly(methyl methacrylate) (PMMA) in the peritoneal cavity of mice and observed an 

increase in histone H1 and neutrophil elastases on the surfaces of glass, PMMA and alginate 

microcapsules. Interestingly, PLGA microcapsules that degrade in 2 weeks showed lower 

levels of neutrophil recruitment as compared to PLGA microcapsules that take longer to 

degrade (89). Further, Cohen et al. (90) showed that cell adhesion has a deterministic role in 

neutrophil fate. The authors showed that neutrophil adhesion to polyethylene glycol (PEG) 

scaffolds resulted in increased secretion of ROS, matrix metalloprotease-9 (MMP-9), and 

myeloperoxidase molecules in comparison to polydimethylsiloxane PDMS scaffolds (90). 

Further studies are required to elucidate the mechanisms underlying neutrophil-biomaterial 

interactions and device centric approaches to modulate neutrophil response to biomaterials.

Macrophage plasticity and diversity in phenotypes are essential to tissue restoration, repair 

and remodeling (91, 92). Macrophages begin to accumulate on biomaterial surfaces a few 

hours after implantation, and can remain there for several months (93). Macrophage 

recruitment is thought to be mediated by monocytes to enable further recruitment of immune 

cells (94–96). Monocytes can also differentiate into macrophages of many different 

phenotypes based on physical and chemical microenvironmental cues, typically classified as 

M1 or M2. M1 macrophages are involved in secretion of proinflammatory cytokines and are 

associated with host defense (97), while subtypes of M2 macrophages are generally 

associated with constructive tissue remodeling (98, 99). Therefore, it is generally desirable 

to skew macrophages surrounding biomedical implants to an M2 phenotype. Multiple 

studies have successfully demonstrated macrophage polarization to M1/M2 phenotypes by 

using immunomodulatory small molecule therapies (100–102). Recent data in RAG-2/γ KO 

mice showed that macrophages are central to host fibrotic response and that macrophage 

depletion leads to the near absence of the foreign body reactions surrounding intraperitoneal 

implants in rodents and non-human primates (103). Further, inhibiting colony stimulating 

factor-1 (CSF-1) receptors on macrophages can lead to an equivalent effect in suppressing 

foreign body reaction to multiple classes of materials, including polymers, hydrogels, and 

glass microcapsules (Figure 4). Recent work has also implicated IL-17, a pro-inflammatory 

cytokine associated with Th-17 helper T cells and macrophage activation, in biomaterial 

mediated fibrosis (104–107). The absence of IL-17 signaling in mice was shown to mitigate 

fibrotic response to intraperitoneally implanted PCL (108).

Fibroblasts are the majority cell type in the healing stage of tissue restoration, and play a key 

role in inflammation, angiogenesis, and fibrosis. Fibroblasts are thought to be present in the 

neo-tissue for years, reprogramming their phenotype to become quiescent once tissue 

restoration is complete (109–111). Upon injury, a deluge of pro-inflammatory molecules 

activate fibroblasts present in connective tissue (112). Fibroblasts then differentiate into 

either fibrocytes, myofibroblasts or other phenotypes based on microenvironmental and 

chemical cues. Myofibroblasts are associated with highly dense ECM deposition in implant 

associated fibrosis pathologies (113, 114). Many pharmacological and materials-centric 

strategies to restrict fibroblast proliferation and activation have been successfully employed 

in preclinical models. Pitha et al. (115) detailed the use of Rho-kinase (ROCK) inhibitors 

(Y27632, fasudil, H1152) in suppressing the myofibroblast phenotype in scleral fibroblasts. 
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All three inhibitors reduced TGF-β-induced α-SMA expression and associated collagen 

contraction in primary scleral fibroblast cells in vitro. Further, in mouse models of bead-

induced glaucoma, they showed that scleral fibroblast proliferation was restricted in mice 

treated with Y27632 and fasudil by sub-conjunctival injection (115). Biomaterial properties 

including implant size, surface topography, and porosity also influence fibroblast behavior. 

Veiseh, et al. (116) injected crosslinked alginate and glass spheres of 8 different diameters 

(0.3–1.9 mm) intraperitoneally in C57BL/6 mice to study the effect of size on fibrotic 

response. Interestingly, increasing sphere diameter inversely correlated with immune cell 

recruitment and cellular overgrowth on explanted spheres after 14 days in vivo as measured 

by flow cytometry and phase contrast imaging, respectively. Furthermore, expression of 

fibrotic markers such as α-SMA, collagen 1 (COL1A1) and collagen 2 (COL1A2) genes in 

cellular deposits on the sphere surfaces was significantly downregulated for 1.8 mm spheres 

as compared to 0.3 mm spheres. Additionally, when alginate spheres either 0.5 or 1.55 mm 

diameter were implanted subcutaneously in non-human primates, the 1.55 mm spheres were 

devoid of cellular growth, whereas the 0.5 mm spheres were encapsulated in fibrotic 

capsules up to 100 μm thick (116). Taken together, these studies suggest that modulating 

fibroblast behavior either by material design or by using small molecules may deliver 

outcomes desirable for non-fibrogenic tissue remodeling.

3.2 Engineering biomaterials to modulate immune response

Restoration of function to injured tissues is crucial to the survival of organisms. The role of 

innate and adaptive immune responses to implanted materials, particularly shaping tissue 

architecture surrounding biomaterials in becoming increasingly clear. Early responders such 

as neutrophils have a very transient presence and therefore it is difficult to understand and 

modulate their behavior with meaningful consequences. On the other hand, macrophages 

have an extended presence at implant sites and a more robust and definitive response. As a 

result, emphasis has been placed on studying macrophage responses to biomaterials. It is 

important to note that while adaptive immune cells were initially thought to be peripheral to 

immune response to biomaterials, the role of helper T-cells in determining the fate of tissue 

regenerative biomaterials has been shown to be essential (117). Surface and physical 

properties of biomaterials have been described as mediators of macrophage activation. 

Macrophages respond to physical cues both in vitro and in vivo.

McWhorter, et al. (118) studied macrophage polarization on micropatterned surfaces. They 

manufactured substrates which had either 20 or 50 μm thick alternating lines of fibronectin 

and pluronic F127 forming a micropattern. F127 is largely bioinert and deters cell adhesion, 

facilitating cellular elongation preferentially along the fibronectin components of the 

micropatterned substrate. The authors compared cell shape and markers associated with M1 

and M2 macrophage activation in cells cultured on either patterned or non-patterned 

substrates. Macrophages cultured on micropatterned substrates displayed a distinct 

elongated shape, whereas those cultured on non-patterned substrates were more rounded 

with protrusions. Micropatterned substrates also induced increased expression of 

Arginase-1, which is an M2 biomarker. Molecules that are associated with inducing M2 

polarization acted synergistically with physical cues to enhance Arignase-1 expression by up 

to 20-fold. In contrast, when macrophages on patterned substrates were exposed to classical 
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activation pathway stimulators LPS and IFN-γ, expression of iNOS which is a known 

biomarker for the M1 phenotype was only moderately increased suggesting that physical 

cues can have a protective effect against pro-inflammatory signaling molecules. Looking at 

actin microstructure, the authors found that inhibition of pathways involved in actin 

contractility lowered the expression of Arginase-1, but did not affect cell shape or spreading 

(118). This observation did not hold for cytokine mediated activation, suggesting that 

macrophages rely on cytoskeletal contractility after sensing physical cues to modulate 

polarization.

Another recent study performed by Tylek, et al. (119) showed that porosity heavily 

influenced macrophage polarization. They used a manufacturing technique called melt 

electrowriting to create three dimensional scaffolds of varying pore sizes (40–100 μm) and 

geometries (triangular, round, square shaped pores) from PCL. It was observed that a pore 

size of 40 μm induced definitive M2-like polarization in contrast to 50, 80, and 100 μm pore 

sizes. Interestingly, round geometry of the pores significantly decreased expression of the 

M2 macrophage marker CD-163 compared to rectangular, triangular, and disordered pore 

shapes. Additionally, a decrease in pore size from 100 to 40 μm significantly increased 

CD-163 expression. Further, the authors measured phagocytic activity of macrophages 

cultured on porous and 2-dimensional film scaffolds using a fluorescent bead assay, and 

observed significantly decreased phagocytic activity on all porous scaffolds at day 7 as 

compared to 2-dimensional films made from the same PCL polymer (119).

Li, et al. (120) studied composite structures made from PCL nanofibers and hyaluronic acid 

(HA) hydrogel networks as filler materials to restore tissue function and mechanical 

integrity. The composites had the combined advantages of mechanical stability, injectability 

and large matrix pore sizes which made the materials durable, easy to administer and 

capable of modulating immune cell response. In vitro cultures of macrophages in PCL-HA 

composites displayed a significantly higher degree of M2 polarization, whereas a greater 

extent of M1 polarization was observed in the HA hydrogels alone. They theorized that the 

compliant nature combined with the porous framework of the PCL-HA enabled tissue 

revascularization and cell infiltration in a model of rabbit soft tissue defect repair. 

Histological analysis showed that angiogenesis and integration with host tissue had occurred 

(120). Wolf et al. (121) studied the role of ECM in altering macrophage phenotype. In a rat 

model of abdominal muscle defects, the authors implanted polypropylene meshes coated 

with a urinary bladder ECM-derived hydrogel matrix. In the animals which received an 

ECM coated mesh, there was a reduction in the number of M1 macrophages as well as a 

reduction in the number of foreign body giant cells FBGCs on the surface of the implants at 

7, 14 and 35 days compared to uncoated meshes (121). These results offer insights into the 

significant advantages of device centric approaches to modulate host immune response. 

Tailoring physical properties of biomaterials such as surface topography, roughness and 

porosity can induce a favorable immune microenvironment which is critical for the longevity 

of functional biomaterials.
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3.3 Clinical case study: Coronary stents

Cardiovascular disease is the leading cause of death globally, accounting for nearly 18 

million deaths globally in 2017 (122). An estimated 12–29% of elderly individuals suffer 

from peripheral artery disease requiring vascular intervention (123). Vascular intervention 

technologies have undergone a gradual evolution in parallel with advances made in 

understanding physiological responses to biomaterials. Table 2 provides an overview of 

coronary stent technologies that have been studied in clinical settings. Percutaneous 

coronary intervention is one of the most widely practiced surgical procedures involving the 

use of biomaterials in the U.S. The first balloon angioplasty was performed in the 1970s 

(124). Early enthusiasm around this procedure was dampened due to the occurrence of 

adverse events, such as in stent restenosis (ISR) due to excessive proliferation of smooth 

muscle cells after injury, elastic recoil, and abrupt closure of blood vessels (125). Patients 

then needed to undergo coronary artery bypass grafting surgery to restore homeostasis, 

leading to the development and use of bare metal stents (BMS), which were approved by the 

FDA in 1993 (126). However, both ISR and thrombosis remained issues with utilization of 

BMS. BMS therefore needed to be supplemented with systemic pharmacological agents, 

such as warfarin and aspirin, to avoid thrombosis and restenosis (127). Conventional BMS 

require placement using a balloon, which dilates the wall of blood vessels by exerting radial 

mechanical stress. The procedure is also associated with significant de-endothelialization 

and acute overexertion of pressure on the intimal and medial tissue, leading to smooth 

muscle cell proliferation and vessel constriction (128). Furthermore, injury to the endothelial 

cells and intimal tissue results in the secretion of pro-inflammatory signaling molecules, 

immune cell infiltration, and thickening of the intima (129–131). Attempts have been made 

to coat BMS with biocompatible polymers, such as polyethyleneterephthalate and 

polytetrafluoroethylene, though without any impact on restenosis or thrombotic events in 

large clinical trials (132, 133). Several efforts to modify the surface properties of stent 

coatings such as the use of nanofibers to enhance surface roughness and mimic ECM 

features are in preclinical development (134).

To circumvent the issues of thrombosis and neointimal hyperplasia, stents capable of 

delivering therapeutics locally have been developed (125). Drug-eluting stents (DES) are 

composed of a metal backbone to provide structural integrity with drug-loaded polymer 

coatings to provide local, sustained drug release. The TAXUS stent was the first DES, and 

delivered the anti-mitotic drug paclitaxel (135). Around the same time, the Cypher DES 

containing the anti-proliferative and anti-inflammatory drug, sirolimus, was also developed 

(136). Both stents reduced ISR compared to BMS, supporting the potential for sustained-

release technologies (137). However, large trials showed no benefit in reducing stent-

associated mortality compared to BMS (138). The second generation of DES (Endeavour, 

Xience, Resolute, Promus) incorporated either everolimus or zotarolimus, which are 

structural analogs to sirolimus and show similarities in effective cytostatic activity. These 

drugs also show potent immunosuppressive function and are used in transplant surgery to 

prevent pathological rejection. Large clinical trials and subsequent meta-analyses showed 

that overall, second generation DES were associated with reduced overall mortality, and 

lower rates of myocardial infarction, late stent thrombosis, and ISR.
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There are however, key challenges that remain to be addressed concerning DES. Major 

among them is delayed re-endothelialization of the injured blood vessel, which is associated 

with late stage thrombosis events (130). The latest generation of stent technologies aim to 

promote the in situ cellularization of scaffolds. Endothelial progenitor cell capture stents 

(EPCCs) work by presenting a CD34 antibody on the luminal side of the stent to encourage 

EPCs binding and proliferation (139). Early studies of sirolimus-eluting EPCCs show non-

inferiority to paclitaxel-eluting stents in mitigating neointimal hyperplasia and in the 

incidence of adverse cardia events (140).

4. Concluding remarks and future perspectives

Biomaterials have substantially contributed to improving quality of life and extending 

lifespan of millions of people. Preventing biomaterial-associated infections and controlling 

host-material interactions will continue to be a critical factor for successful surgical 

outcomes. As biomaterials continue to evolve, it is becoming increasingly evident that a 

local, materials-centric approach offers distinct advantages in contrast to systemic therapies. 

Functionalizing biomaterials as drug depots to deliver high concentrations of antimicrobials 

locally, as well as employing surface modifications that deter bacteria from adhering and 

proliferating, are promising strategies to combat the increasing threat of antimicrobial drug 

resistance and circumvent issues with systemic toxicity and patient compliance. However, 

long-term surgical outcomes are often still poor due to fibrotic response, which can occur 

long after drug release has ceased. Strategies for modifying the biomaterial surface, such as 

patterning, may work to modulate the local immune cell signaling and stromal cell response 

to successfully integrate biomaterials with host tissue. We posit that the next generation of 

biomedical implants may incorporate topographical features as well as local drug delivery 

for both short- and long-term modulation of biological response. Biomaterials engineered to 

evade microbial colonization and instruct host cellular responses have great therapeutic and 

translational potential.
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Figure 1. 
Stages of biofilm formation and strategies to prevent infection. Bacteria adhere to 

biomaterial surfaces via non-specific adhesion and proliferate to form biofilms. Modifying 

surface properties of the biomaterial such as biocidal patterning and polymer conjugation 

have been shown to be effective in preventing biomaterial associated infections in animal 

models. Biomaterials can also act as drug depots which can release bactericidal small 

molecules locally circumventing systemic delivery barriers.
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Figure 2. 
(A) Antibiotic-eluting ophthalmic sutures prevent S. aureus infection in a rat model of 

corneal keratitis (** indicates p<0.01). (B) Scanning electron micrographs (scalebars 

represent 2 μm) of commercial nylon sutures (top), 8% (middle) and 16% Levofloxacin 

loaded nanofiber sutures (bottom) explanted from the corneal stroma after bacterial 

challenge with S. aureus. (C) H&E stained corneal tissue showing reduced inflammation in 

eyes which received drug eluting suture 48 h after bacterial inoculation. (D) Breaking 

strength of drug loaded sutures scaled with suture diameter. Dashed green lines indicate 
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minimum breaking strength requirement for absorbable sutures of 10–0, 9–0 and, 8–0 

diameters. Modified with permission from [68].
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Figure 3. 
Local cellular response to implanted biomaterials. Proteins from blood or extracellular fluids 

adsorb to biomaterial surfaces upon implantation. Innate immune cells like neutrophils and 

monocytes adhere to protein coated surfaces through non-specific binding interactions. 

Neutrophils undergo degranulation and deposit neutrophil extracellular traps. Monocytes 

differentiate into macrophages which can fuse to form giant cells in an attempt to 

phagocytose biomaterials. Crosstalk between immune cells and stromal cells is an important 

step in wound healing and is a promising target for engineering biomaterials that can 

modulate host response.

Josyula et al. Page 24

Drug Deliv Transl Res. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
(A) Colony stimulating factor-1 receptor inhibition (CSF1R inh.) mitigated fibrotic 

overgrowth on intraperitoneally injected alginate spheres in mice as compared to vehicle 

only and CXCL13 neutralized wild type mice. (B) Histological examination of 

intraperitoneal alginate spheres in non-human primates. (C) Macrophage populations (green) 

and fibrosis associated α-smooth muscle actin (red) around explanted alginate spheres from 

non-human primates as visualized by confocal imaging. Modified with permission from 

[113].
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Table 1.

Summary of manufacturing methods, materials and active ingredients used in implants described in section 

2.2.1–2.2.3.

Device Implant material Processing method Active ingredient Clinical application Reference

Prosthetic joint LDPE Compression molding Rifampin, 
Vancomycin Recurrent PJI prevention [41]

Kirschner Wire PLGA, PCL Electrospinning

Vancomycin, 
Daptomycin, 

Linezolid, 
Rifampin

Preventing infection after bone 
fractures [44]

Ureteral stent Biosoft® polymer 
blend - Tachyplesin III Preventing ureteral stent 

infection [51]

Device coating Poly(HPMA)
Surface-initiated atom 

transfer radical 
polymerization

None Urinary catheter coating to 
prevent biofilm formation [52]

Device coating Biosoft® polymer 
blend Dip coating Vancomycin, 

BMAP-28
Ureteral stent coating to 

prevent bacterial adhesion [53]

Antibacterial suture Nylon, Polyglactin High temperature 
extrusion Triclosan Preventing post-operative 

infection-general surgery [57]

Antibacterial suture PCL,PEG Electrospinning Levofloxacin Preventing post-operative 
infection-ophthalmic surgery [59]

Antibacterial suture PCL Electrospinning Levofloxacin Preventing post-operative 
infection-ophthalmic surgery [65]
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Table 2.

Summary of vascular stent technologies approved for clinical use.

Device Implant Manufacturer Material Active agent Reference(s)

Bare metal stents

Vision Abbott Cobalt-Chromium None

[126,127]Rebel Boston scientific Platinum-Chromium None

Integrity Medtronic Cobalt-Chromium None

Drug eluting stents

TAXUS Boston scientific Stainless steel, SIBS. Paclitaxel

[135.136.137.138]

Cypher J&J Stainless steel, PBMA/
PEVA. Sirolimus

Xience Abbott Cobalt-Chromium, PBMA/
PVDF-HFP. Everolimus

Promus Boston scientific Platinum-Chromium, 
PBMA/PVDF-HFP. Everolimus

Endeavor Medtronic Cobalt-Chromium, 
Phosphoryl choline. Zotarolimus

Resolute Medtronic Cobalt-Chromium, biolynx. Zotarolimus

JANUS Sorin biomedica Cobalt-Chromium-
Carbofilm. Tacrolimus

Bioabsorbable vascular 
scaffolds

ABSORB Abbott PLLA, PDLLA Everolimus

[127]Synergy Boston scientific Platimun-Chromium, PLGA Everolimus

Orsiro Biotronik Cobalt-Chromium, PLLA Sirolimus

Endothelial cell capture 
stents

Genous
OrbusNiech medical 

technologies

Stainless steel, 
Polysaccharide coating CD34+ antibody

[139.140]

COMBO Stainless steel, ULG CD34 
+ antibody coating

Sirolimus, 
CD34+antibody
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