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Abstract

The pathological aggregation of intrinsically disordered tau protein, driven by the interactions 

between microtubule-binding (MTB) domains, is associated with Alzheimer’s disease. The MTB 

domain contains either three or four repeats with sequence similarities. Compared to Amyloid β, 

many aspects of the misfolding and aggregation mechanisms of Tau are largely unknown. In this 

study, we systematically investigated the dynamics of monomer misfolding and dimerization of 

each MTB repeat using atomistic discrete molecular dynamics (DMD) simulations. Our results 

revealed all the four repeat monomers (R1–R4) were very dynamic, featuring frequent 

conformational conversion and lacking stable conformations. While R1, R2, and R4 monomers 

occasionally adopted partially helical conformations, R3 monomers frequently formed β-sheets. In 

dimerization simulations, R3 displayed the strongest aggregation propensity with high β-sheet 

contents, while R1 was the least aggregation-prone. The R2 and R4 dimers contained both helix 

and β-sheet structures. The β-sheets in R4 assemblies were dominant with β-hairpin conformation. 

In R2 and R3 dimers, inter-molecular β-sheets were mainly driven by residues around the paired 

helical filament (PHF) regions. Residues around the PHF6* in R2 and PHF6 in R3 had 

significantly higher inter-molecular contacts than other regions, suggesting that these residues play 

a key role in the amyloid aggregation of tau. Our results on the structural ensembles and early 

aggregation dynamics of each tau MTB repeat will help understand the nucleation and 

fibrillization of Tau.
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Introduction

The misfolding and pathological accumulation of intracellular tau protein and extracellular 

amyloid-β (Aβ) peptide are the two hallmarks of Alzheimer’s disease (AD)1–5. The 

microtubule-binding tau is an intrinsically disordered and highly soluble protein, which is 

widely abundant in the neurons of the human central nervous system2. There are six tau 

isoforms identified in adult human brains, consisting of a charged N-terminal region, a 

proline-rich region followed by either three or four imperfect microtubule-binding (i.e., 
MTB) repeats (i.e., 3R or 4R), and a C-terminal region6. The N-terminal and C-terminal of 

tau are significantly disordered7. The MTB repeat domains are more structured and play 

important roles in both the binding to the microtubules and the pathological aggregation into 

amyloid fibrils1, 8–10. Similar to other amyloid proteins11–13, patient-derived tau fibrils 

determined by the cryo-electron microscopy (cryo-EM) studies featured a common cross-β 
core structure with the β-strands aligned perpendicularly to the fibril axis. The β-sheet core 

regions were mainly located in the MTB repeats region14, 15. Since numerous studies 

suggest that small oligomer aggregates during early amyloid aggregation are more toxic 

mature fibrils, the characterization of monomer folding and oligomerization of the MTB 

repeats is important for understanding the mechanism of both functional binding to the 

microtubules and pathological amyloid aggregations.

Structural determination experiments, including CD, FTIR, X-ray, and NMR spectra, have 

demonstrated that all soluble tau isoforms can be described as random coil dominant with 

the lack of a stable folded structure16–20, despite some regions exhibiting a preference of 

helical or β-strand conformations21–23. Prior experimental reports revealed that the non-

native helical intermediates in the transition from random coil were directly associated with 

the filament formation of tau 4R at the start of paired helical filament (PHF) formation24, 25. 

Each repeat has been found to contribute differently to the aggregation of tau 3R and 

4R26–28. For example, the dynamic light scattering (DLS) experiment showed that R3 and 

R2&R3 repeats played a key important role in the aggregation patterns of 3R and 4R, 

respectively28, 29. The self-aggregation propensity of R1 and R4 single repeats were very 

weak, but necessary for amyloid aggregation of 4R26, 30. Many experiments, as well as 

computer simulations, found two nucleating six-residue segments, namely PHF6 

(306VQIVYK311) and PHF6* (275VQIINK280), located at the beginning of the third and 
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second repeats respectively play important roles in Tau aggregation31–34. The ion-mobility 

mass spectrometry experiment, together with computational simulation revealed that the 

fragment of residues 306–317 (i.e., Tau306–317, encompassing the PHF6 region) from R3 

repeat had a much stronger aggregation propensity than residues 273–284 (Tau273–284, 

encompassing the PHF6* region) from R2 repeat, where the heterodimers of Tau273–284-

Tau306–317 were less stable than Tau306–317 homodimers but much more stable than the 

homodimers of Tau273–284
31. CD spectra, along with NMR experiment revealed that the 

monomer of R2 repeat featured helical conformation in aqueous solutions at physiological 

pH in the presence of copper ions27. The R3 peptide adopted a mixture conformation of 

random coil and β-sheet in aqueous solutions at physiological pH35. Complementary to the 

experimental studies, the conformation of 3R and 4R repeats and their interactions with Aβ 
fibrils were studied by molecular dynamics (MD) simulations36–41. All-atom replica-

exchange molecular dynamics (REMD) simulations demonstrated both the 3R and 4R 

monomers could form dynamically helical and β-sheet conformations, where the R1 and R4 

repeats displayed high helical propensity than R3 repeat36. The 3R monomer (R1–R3–R4) 

displayed higher β-sheet propensity than the 4R monomer due to the presence of R2 not 

favorable for the β-sheet formation between R1 and R339. With most prior MD studies 

focusing on either the aggregation of short fragments (e.g., PHF6), one of the repeats, or 

structures of R3 and R4 monomers, the structures and dynamics early Tau aggregation are 

still elusive.

Given the large system size of Tau, we propose to systemically study the monomer 

structures and the dimerization dynamics (i.e., the minimalist aggregates) of each of the four 

MTB repeats using all-atom discrete molecular dynamics (DMD) simulations42. DMD is an 

effective and predictive MD algorithm, which have been widely used to study amyloid 

aggregation of IDPs43–48. Our simulation results showed that monomers of all the four 

repeats were very dynamic without a stable conformation, featuring frequent conformational 

changes. The transient ordered structures of R1, R2, and R4 were populated with helical 

structures, but R3 was abundant in β-sheet conformation. In dimerization simulations, the 

propensities of R2 and R4 to form β-sheet aggregates were stronger than R1 but much 

weaker than R3. Since the stability of R1 dimer was too weak with frequent dissociation into 

monomers, the dimerization didn’t induce much conformational change. R2 and R4 dimers 

contained both helix and β-sheet structures with β-sheet as the dominant structures. The 

dimers were stabilized by both inter-molecular and intra-molecular β-sheets. R3 dimers were 

driven by inter-molecular interactions between residues around the PHF6 regions. The 

average number of inter-molecular contacts for the residues around PHF6* and PHF6 

regions was much larger than the other regions, suggesting that these residues should play an 

important role in the early aggregation of tau. Overall, our simulation results uncovered the 

conformation and self-assembly dynamics of each tau MTB repeat, which will help better 

understand the aggregation of Tau.
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Material and methods

Molecular systems used in simulations.

The repeat sequences used in our simulation were taken from the Uniport (P10636)49 and 

presented in Table 1. Both N- and C-termini were treated neutrally charged. To investigate 

the folding and self-assembly dynamics of each repeat, we systematically performed both 

one- and two-peptide simulation using all-atom DMD. For each molecular system, 40 

independent trajectories were obtained starting with different coordinates and velocities. In 

dimerization simulations, the initial configurations with random inter-molecular distances 

and orientations had a minimum inter-molecular distance of at less 1.5 nm. The duration of 

each DMD trajectory in one- and two-peptide systems was 0.6 and 1.6 μs, respectively. The 

details of all the simulations were summarized in Table 2.

DMD Simulations.

All simulations were performed at 300 K using all-atom DMD algorithm with Medusa force 

field42. Similar to classical molecular dynamics (MD), both bonded interactions (i.e., 
covalent bonds, bond angles, and dihedrals) and non-bonded interactions (i.e., van der 

Waals, solvation, hydrogen bond, and electrostatic terms) are considered in DMD50, 51. The 

continuous potential functions in traditional MD are approximated by step functions in 

DMD42, 52. The covalent bonds and bond angles interactions (including bonds, bond angles, 

and dihedrals) are modeled as an infinite square well, dihedrals may feature multiple wells 

corresponding to the cis- or trans-conformations. The van der Waals parameters in non-

bonded interactions are taken from the CHARMM force field53. Lazaridis-Karplus implicit 

solvation model is used for modeling the solvated energy with fully-solvated conformations 

as a reference state54. Hydrogen bond interactions are modeled by a reaction-like 

algorithms55. Screened charge-charge interactions are modeled, using Debye-Huckel 

approximation, by setting the Debye length approximately to 10 Å. The units of mass, time, 

length, and energy used in our all-atom DMD simulations with implicit water model are 1 

Da, ~50 fs, 1 Å, and 1 kcal/mol, respectively. With significantly enhanced sampling 

efficiency, DMD is widely used to study protein folding/aggregation and protein-

nanoparticle interactions both by our group and by others56–59.

Computational Analysis.

The secondary structure was calculated using the DSSP program60. The hydrogen bond was 

considered to be formed when the N⋯O distance was within 3.5 Å and the N–H⋯O angle 

was greater than 150°. A pairwise residue contact was defined when the distance between 

the heavy atoms of two non-sequential side-chain/main-chains was within 0.65 nm. Cluster 

analysis was performed using the Daura algorithm and a Ca root-mean-square deviation 

(RMSD) cutoff of 0.35 nm61. A two-dimensional (2D) free energy surface was constructed 

using −RTlnP(x, y), where P(x, y) is the probability of a conformation having a certain 

parameter value of x and y.
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Results and discussions

Before analyzing the simulation result, the convergence of the single- and two-peptide DMD 

simulations for each repeat were examined by comparing the secondary structure propensity 

within two different time intervals (Figure S1&S2). The conformations generated within 

300–450 and 450–600 ns from the single-repeat simulation and 800–1200 and 1200–1600 ns 

from the two-repeat simulation were used for the convergence assessments. The average 

secondary structure content of each repeat and the secondary structure propensity of each 

amino acid residue from every repeat were very similar within the two time intervals for 

both single- and two-peptide systems (Figure S1&S2), indicating all the molecular system 

simulations were reasonably converged.

Conformational ensembles of R1, R2 and R4 monomers were populated by transient, 
ordered structures with helical conformations, while R3 monomer was dominant with 
dynamically formed β-sheet.

To investigate the conformational dynamics of MTB repeats, forty independent DMD 

simulations were performed for the isolated monomer of each tau repeat starting from the 

fully extended conformation with randomized initial velocities. Each independent simulation 

lasted 0.6 μs. We first analyzed the conformational dynamics of each repeat by monitoring 

the secondary structure of each residue as a function of simulation time (e.g., representative 

trajectories in Fig. 1a). All the four repeats mainly adopted unstructured conformations (i.e., 
random coil and bend) with structured formations (e.g., helix, β-sheet, and turn) transiently 

observed. These ordered conformations were unstable, easily converted into the random coil 

and bent structures. The transient ordered structures of R1, R2, and R4 repeat were mostly 

helices, although less frequent β-sheets were also observed (Fig. 1a,b&d). In contrast, the 

dynamically-formed ordered structures of R3 repeat were predominantly β-sheets (Fig. 1c). 

By averaging secondary structure contents over all independent simulations (Table S1), all 

four isolated repeats indeed predominantly adopted unstructured conformations (>70%). The 

helical content for R1, R2, and R4 monomers (~9–13%) was much higher than that of R3 

(<1%), while the β-sheet content of R3 (~18%) was much higher than the other repeats (~3–

7%). The secondary structure propensities for each residue were also analyzed (Figure S3). 

There were two helices-populating regions in R1 located around residues 251–259 and 263–

268 (Figure S3a). Residues 278–290 from R2 and 342–349 from R4 also displayed 

significant helical propensities (Figure. S3b&d). β-sheets in R3 were predominantly formed 

by residues 307–315 and 326–332 (Figure S3c).

To further characterize the structural ensemble of each repeat we calculated the potential of 

mean force (PMF, the effective conformational free energy landscape) as a function of the 

radius of gyration (Rg) and end-to-end distance (End2End) using the last 400 ns DMD 

trajectories from forty independent DMD simulations. As shown in Fig. 2a, the free energy 

basin of R1 was broad with Rg ~0.9–1.4 nm, and End2End ~1.0–4.0 nm, indicating the 

conformation of R1 monomer was very diverse. The most populated top 5 clusters of R1, 

scattered on the surface of the low free energy basin, featured helical formations. The 

patterns along the diagonal of the inter-residue contact frequency map (Figure S4a) further 

confirmed that, and the weak long-range interactions off-diagonal indicated that R1 did not 
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form compact structures. The free energy basin of R2 (Rg ~0.9–1.2 nm and End2End ~1.0–

2.5 nm) had a smaller “area” than R1 (Fig. 2b). The top 5 most populated conformations 

also adopted helical structures. Besides the diagonal helical contact pattern (residue 278–

295), a weak β-sheet contact pattern was observed (Figure S4b), where residues 285–300 

could form a β-hairpin structure with β-strand located residues 285–290 and 295–300. A 

similar helical region (i.e., 280–288) was also observed in another recent all-atom REMD 

simulation of Tau267–313 segment62. The PMF of R4 (Fig. 2d) was similar to that of R1 

and R2 (Fig. 2b), with a broad free energy basin populated with various helical formations 

(snapshots 1, 2, 3 and 5 in Fig. 2d). The contact map of R4 had two structured contact 

patterns (Fig. S2c): one helical motif comprised by the N-terminal residues 342–350 

(snapshots 1, 2, 3 and 5 in Fig. 2d), and one β-hairpin motif with β-strands located around 

residues 346–352 and 359–365 (snapshot 4 in Fig. 2d). In contrast, the PMF of R3 showed a 

small narrow basin with Rg ~1.1–1.3 nm and End2End ~0.7–1.5 nm (Fig. 2c). 

Conformational clustering analysis indicated that the top populated conformations of R3 

were β-hairpins (snapshots 1–5 in Fig. 2c). The contact frequency map revealed that the β-

sheets were formed by residues 307–320 and 325–333, stabilized hydrophobic and aromatic 

interactions (Figure S4c). For example, hydrophobic residues 308I, 309V, 313V, 315L 

displayed high tendencies to form contact with residue 328I. The aromatic residue 310Y 

also featured a strong propensity to interact with 330H. Prior all-atom full-length MTB 

repeat REMD simulation also demonstrated that both the 3R and 4R were predominantly 

adopted in random coil formation (>60%)36 and the β-sheet propensity of R3 was higher 

than other repeat63. The conformations of each repeat in the full-length MTB repeat (3R or 

4R) might be different from pure isolated repeat due to the potential interactions between 

repeats may induce conformation changes. For example, prior REMD simulation study revel 

that the 3R monomer (R1–R3–R4) displayed higher β-sheet propensity than the 4R 

monomer due to the presence of R2 hindered the interactions between R1 and R336. Another 

recent carbon-detected NMR experiments also shown tau’s repeat region existed in extended 

conformation in the dispersed state and attained transient β-hairpin propensity upon liquid–

liquid phase separation64. Overall, isolated tau MTB repeat monomers were intrinsically 

discorded lacking stable ordered conformations. R1, R2, and R4 monomers transiently 

formed helices, while R3 occasionally formed β-sheets.

R3 displayed a significantly higher tendency to form β-sheet rich dimers than other 
repeats.

To investigate the contribution of each tau repeat to the full-length tau aggregation, the 

dimerization dynamics of each repeat was investigated. For each repeat, 40 independent 

simulations each lasting 1.6 μs were performed with randomized initial configurations. We 

first examined for each repeat the dimerization dynamics in terms of secondary structure 

changes, inter- and intra-chain interactions, and snapshot structures (Fig. 3). The R1 dimers 

were very dynamic and featured frequent conformational conversions. The probability 

distribution of intra-molecular hydrogen bonds and contacts for each R1 repeat observed in 

the two-peptide system was also similar to the one-peptide system (Figure S5a&e). The 

well-ordered dimer conformations with short β-sheets and helices were transient and easily 

converted into unstructured coils and bends (Fig. 3a). The time evolution of intra- and inter-

molecular backbone hydrogen bonds, correlating to the number of structured residues, 
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displayed constantly large fluctuation around 0–30. The averaged β-sheet contents of R2 and 

R4 (11%~12%, Table S1) were larger than R1(~5%), but much smaller than R3 (~35%). 

Compare to monomers, the intra-molecular hydrogen bonds and contacts per chain of R2 

and R4 in two-peptide simulations displayed a small decrease (Figure S5) along with 

increased in β-sheet contents (Table S1), suggesting that the dimerization of R2 and R4 

induced conformational conversion to β-sheets. Representative dimerization trajectories of 

R2 (Fig. 3b) and R4 (Fig. 3d) further confirmed that both R2 and R4 could assemble into 

metastable β-sheets rich dimer. Once the homo-dimers of R2 and R4 dissociated into 

monomers, random coils and bends became the dominant conformations. R3 underwent 

major changes in structure and dynamics upon dimerization. By forming extensive inter-

molecular hydrogen bonds and contacts, both intra-chain hydrogen bonds and contacts were 

significantly decreased in dimers (Figure. S5c,g). The self-assembly dynamics showed that 

residues around PHF6 (306–311) featured the highest propensity to form inter-molecules β-

sheets (Fig. 3c). The stability of β-sheet conformation in R3 dimers was significantly 

enhanced comparing to R3 monomers (Fig. 1c). The probability distribution of monomer 

and dimer in dimerization simulations (Table S2) showed that the aggregation propensity of 

R3 was much stronger than the other repeats. The probability distribution of the number of 

inter-molecular hydrogen bonds and contacts for each type of repeat in the dimeric state 

were further analyzed, where only these conformations two peptides were connected by at 

least one inter-molecular contact formed by heavy atoms were considered during the last 

800 ns (Figure S6). The conformations of R3 dimer were predominant with inter-molecular 

contacts and hydrogen bonds, but the dimers formed by R1, R2, and R4 repeats were 

dominant with intra-molecular contacts and hydrogen bonds. Overall, our result was 

consistent with prior experimental studies showing that the self-aggregation and the 

quantities of aggregates at 1 h after starting the aggregation of single-repeat R3 peptide was 

much larger than R1, R2 and R429.

Dimerization enhanced the β-sheet contents in R2, R3 and R4 instead of R1.

The probability of each residue adopting different secondary structures in dimerization 

simulations was compared with monomer simulations for each MTB repeat (Fig. 4 & Figure 

S7). With a weak dimerization propensity (Fig. 3), secondary structure propensity 

distribution of R1 in dimerization simulations was similar to that in monomer simulations 

(Fig. 4a & Figure. S7a). The dominant secondary structure was random coil, consistent with 

previous CD spectral experiments showing that the R1 mainly retained random structures in 

the early aggregation stage26. The partial helical structures of R1 were mainly formed by 

residues 251–259 and 263–268. Residues 278–290 in R2 repeat featured partial helix 

conformations with a probability of ~10–25% in both monomer and dimer simulations (Fig. 

4b). Upon dimerization, the β-sheet propensities for residues 276–284 and 297–300 in R2 

were enhanced ~10%, consistent with previous research demonstrated that residues 275–280 

corresponding to the PHF6* region played a key important role in the self-assembly of 

tau33, 65. The mixed helices and β-sheets observed in the early R2 aggregates agreed with 

prior experimental CD spectral study26. Residues 307–315 and 326–332 in R3 showed 

strong propensities to form β-sheets in both monomer and dimer simulations (Fig. 4c). 

Especially in dimer simulations, the β-sheet propensities for residues around PHF6 region 

(residues 307–315) were increased to ~50%, suggesting an important role in the aggregation 
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of Tau66, 67. For example, when the PHF6 fragment was deleted the amyloid aggregation of 

tau was significantly reduced31. Almost no helical structures were observed in R3, consistent 

with previous CD spectral experiments revealing that the R3 early aggregates were 

predominantly β-sheets26. Residues 342–349 in R4 preferred to form helixes in monomers 

and dimers (Fig. 4d). Upon dimerization, β-sheet propensities for residues 345–354 and 

357–363 were enhanced. Prior NMR secondary chemical shifts of full-length MTB repeats, 

3R and 4R, detected β-structure for 8–10 residues at the beginning of repeats R2–R4 

indicating the R2, R3 and R4 had higher β-sheet structure propensity than R168. Hence, our 

simulation results suggested that dimerization increased the β-sheet contents in R2, R3 and 

R4, but not for R1.

PHF6* in R2 and PHF6 in R3 played important roles for Tau MTB repeat aggregation.

To uncover the key interactions driving the aggregation of Tau MTB repeats, we computed 

the residue-wise contact frequency maps both inter and intra peptides in dimer simulations 

of each Tau repeat (Fig. 5). As expected, R1 had only weak inter-molecular contacts formed 

by N-terminal residues, corresponding to residues 246–260 assembled into transient parallel 

or anti-parallel β-sheets (e.g., snapshots Fig. 3a). The intra-chain contact frequency map was 

consistent with partial helical conformations (Fig. 5a). The inter-molecular contacts of R2 

were mainly formed by residues 275–285 around the PHF6* region (Fig. 5b), by forming 

parallel or anti-parallel β-sheets with the same fragment in the other chain or interacting 

with residues 293–303 as parallel β-sheets (e.g., the self-assembly dynamics of R2 in Fig. 

2b). R3 displayed a high aggregation propensity with most residues having larger number of 

inter-molecular contacts than intra-molecular contacts (Fig. 5c). The computed inter-chain 

contact frequency map suggested that residues around PHF6 (residues 306–315) could 

interact among themselves or with residues 325–334 by forming inter-molecular β-sheets. A 

weak intra-chain β-hairpin pattern with β-strands located around residues 310–315 and 325–

330 were also observed. For instance, as shown in the dimerization trajectory in Fig. 3c, N-

terminal residues around the PHF6 regions first assembled into inter-molecular β-sheet, then 

induced C-terminal residues converted into metastable β-sheets. In dimer simulations of R4, 

the inter-molecular interaction was weak, with only a faint β-sheet pattern formed by 

residues 343–354 observed in the contact frequency map (Fig. 5d). Therefore, the detailed 

analysis of inter-residue interactions revealed that PHF6* and PHF6 regions play important 

roles in the amyloid aggregation of Tau.

Dimerization free energy landscapes of Tau MTB repeats.

To better understand the conformational dynamics of each repeat in dimerization 

simulations, we computed the PMF as a function of the total number of backbone hydrogen 

bonds (#Hbond) and the radius gyration of the assemblies (#Rg). To avoid potential biases 

from initial states, only the last 0.8 μs out of 1.6 μs trajectories in all forty independent 

simulations were used for the analysis for each repeat. The free energy basin of R1 

dimerization was flat and broad with the number of backbone hydrogen bonds and Rg 

ranging 5–15 and 0.8–2.8 nm, respectively. Formation of inter-molecular hydrogen bonds 

was rare. Representative snapshots corresponding to the low energy regions labeled on the 

free energy surface (Fig. 6a) confirmed that the aggregation propensity of R1 was weak. 

Different from R1, the free energy basins of R2 dimerization featured an tail corresponding 
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to β-sheet rich dimers with large number of hydrogen bonds and small Rg values in addition 

to helical monomers and dimers (Fig. 6b). The β-sheet rich dimer wasn’t stable and easily 

dissociated into helical monomer (Fig. 3b). Compared to R2, the β-sheet rich R4 dimers 

with large with large number of hydrogen bonds and small Rg values (~15–32, ~0.9–1.7 nm) 

became more favorable than the basin (~10–15, ~2.4–2.6 nm) corresponding isolated 

monomers and dimers with helixes and coils (Fig. 6d). The free energy landscape surface of 

R3 dimerization was completely different from R1, R2 and R4, with most of R3 aggregates 

featuring small Rg values (~1.2–1.5 nm) and abundant with a high number of backbone 

hydrogen bonds (10~15) (Fig. 6c). The averaged inter-chain hydrogen bonds were much 

greater than intra-chain hydrogen bonds, due to formations of stable inter-molecular β-

sheets. Overall, our analysis suggested that the amyloid aggregation propensity of R2 and 

R4 were stronger than R1, but much weaker than R3.

Conclusion

We systematically investigated the conformational dynamics of monomer folding and 

dimerization for each of four tau MTB repeats with long timescale all-atom DMD 

simulations, accumulatively 24 μs for monomers and 64 μs for dimers. Our results 

demonstrated that all isolated single-repeat monomers are intrinsically disordered with 

predominantly unstructured conformations, but also displayed different secondary structure 

propensities in forming dynamically ordered secondary structures. The transient ordered 

structures of R1, R2 and R4 contained both helixes and β-sheets, but with the helical 

structures as the major species. The ordered structures of R3 monomers were predominantly 

β-sheets. The analysis of dimerization dynamics and conformational ensembles revealed that 

R2 and R4 had stronger aggregation propensity than R1, but much weaker than R3. The R1 

dimers were unstable, lacking β-sheets, and easily dissociated into helical or unstructured 

monomers. The conformational ensembles and dimerization dynamics of R2 and R4 were 

very similar to each other, where both repeats could aggregate into metastable β-sheet rich 

dimers. The aggregates of R2 were abundant with inter-chain β-sheets driven by residues 

around the PHF6* regions, but R4 dimers were predominantly formed by β-hairpins. The R3 

repeat displayed the highest amyloid aggregation propensities. Residues around PHF6 

regions in R3 readily self-assembled into inter-molecular β-sheets and then induced other 

residues to form larger β-sheets. Both PHF6 in R3 and PHF6* in R2 formed large numbers 

of inter-molecular contact, and played important role in the early aggregation of tau. Our 

study provides a full picture of the monomer conformations and dimerization dynamics for 

all four MTB repeats, which will help better understand the pathology of Tau aggregation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. The conformational dynamics of Tau MTB repeat monomers.
Time evolution of the secondary structure for each residue in monomer simulation is shown 

on the left panel from each of four tau repeats (a-d). Transient ordered conformations 

formed along the simulation trajectory (the time stamped blow) are presented on the right. 

For each tau repeat one 600ns DMD trajectory was randomly selected from 40 independent 

simulations.
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Fig. 2. The conformational free energy landscape of Tau MTB repeat monomers.
The 2D PMF as a function of radius of gyration (Rg) and end-to-end distance (End2End) for 

each of the four repeats (a-d). The centroid structure of the most populated top 5 clusters and 

their locations on the PMF are also presented as insets.
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Fig. 3. The dimerization dynamics of Tau MTB repeats.
The secondary structure of each residue and the number of intra-chain and inter-chain 

backbone hydrogen bonds and contacts are presented as the function of simulation time. 

Four well-ordered dimer structures with corresponding the time stamps bellow are selected 

on the right.
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Fig. 4. Secondary structure changes upon dimerization.
The averaged propensity of every residue adopting β-sheet and helix conformations in 

monomer and dimer simulations for each of the four Tau MTB repeats (a-d).
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Fig. 5. The residue-wise interaction analyses.
The intra-chain (lower diagonal) and inter-chain (upper diagonal) residue-wise contact 

frequencies for the dimer of each tau repeat. The cumulative inter- and intra-chain contact 

frequency of each residue with all the other residues are shown in the top panels and right 

panels, respectively.
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Fig. 6. The dimerization free energy landscape of each tau repeat.
The PMF as a function of total number of backbone hydrogen bonds (#Hbond) and Rg in 

dimer simulations are shown for each repeat (a-d). The number of intra-chain, inter-chain, 

and total backbone hydrogen bonds probability distribution are shown on the top panel. 

Representative structures corresponding to local minima labeled in the PMFs (α, β, γ) are 

shown on the right.
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Table 1.

The amino acid sequences of each tau repeat used in our simulation.

Sequence

R1 244QTAPVPMPDLKNVKSKIGSTENLKHQPGGGK274

R2 275VQIINKKLDLSNVQSKCGSKDNIKHVPGGGS305

R3 306VQIVYKPVDLSKVTSKCGSLGNIHHKPGGGQ336

R4 337VEVKSEKLDFKDRVQSKIGSLDNITHVPGGGN368
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Table 2

The details of molecule systems in our DMD simulations, including the number of simulated peptides 

(System), the type of repeat simulated (Peptide), the corresponding dimension of the cubic simulation box, the 

number of independent trajectories performed (DMD run), the length of each DMD simulations (Time), and 

the accumulative total simulation time (Total time).

System Peptide Box (nm) DMD run Time (μs) Total time (μs)

1-peptide R1 7 40 0.6 24

R2 7 40 0.6 24

R3 7 40 0.6 24

R4 7 40 0.6 24

2-peptide R1 8.5 40 1.6 64

R2 8.5 40 1.6 64

R3 8.5 40 1.6 64

R4 8.5 40 1.6 64

J Chem Inf Model. Author manuscript; available in PMC 2022 June 28.


	Abstract
	Graphical Abstract
	Introduction
	Material and methods
	Molecular systems used in simulations.
	DMD Simulations.
	Computational Analysis.

	Results and discussions
	Conformational ensembles of R1, R2 and R4 monomers were populated by transient, ordered structures with helical conformations, while R3 monomer was dominant with dynamically formed β-sheet.
	R3 displayed a significantly higher tendency to form β-sheet rich dimers than other repeats.
	Dimerization enhanced the β-sheet contents in R2, R3 and R4 instead of R1.
	PHF6* in R2 and PHF6 in R3 played important roles for Tau MTB repeat aggregation.
	Dimerization free energy landscapes of Tau MTB repeats.

	Conclusion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Table 1.
	Table 2

