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Abstract
Face recognition is an essential technology in our daily lives as a contactless and
convenient method of accurate identity verification. Processes such as secure login to
electronic devices or identity verification at automatic border control gates are increas-
ingly dependent on such technologies. The recent COVID‐19 pandemic has increased the
focus on hygienic and contactless identity verification methods. The pandemic has led to
the wide use of face masks, essential to keep the pandemic under control. The effect of
mask‐wearing on face recognition in a collaborative environment is currently a sensitive
yet understudied issue. Recent reports have tackled this by using face images with syn-
thetic mask‐like face occlusions without exclusively assessing how representative they are
of real face masks. These issues are addressed by presenting a specifically collected
database containing three sessions, each with three different capture instructions, to
simulate real use cases. The data are augmented to include previously used synthetic mask
occlusions. Further studied is the effect of masked face probes on the behaviour of four
face recognition systems—three academic and one commercial. This study evaluates both
masked‐to‐non‐masked and masked‐to‐masked face comparisons. In addition, real masks
in the database are compared with simulated masks to determine their comparative ef-
fects on face recognition performance.

1 | INTRODUCTION

In hygiene‐sensitive scenarios, such as the current COVID‐19
pandemic, the importance of contactless and high‐throughput
operations is escalating, especially at crowded facilities such as
airports. An existing accurate and contactless identity verifi-
cation method is face recognition. However, covering the face
with a facial mask has been forced in public places in many
countries during the COVID‐19 pandemic to fight the spread
of the contagious disease. This fact can influence the perfor-
mance, and thus trust, of the face recognition system and
generate questions about its functionality under a situation
where the individuals’ faces are masked.

In the scope of face‐detection algorithms, face occlusion
has been addressed by many researchers [1]. Additionally,
there has been a growing interest in developing solutions
targeting occlusion‐invariant face recognition [2]. However,

most such works have addressed general face occlusions
typically appearing in the wild—for example, partial captures
and sunglasses. Given the current situation of the COVID‐
19 pandemic, it is crucial to analyse the exact effect of
wearing facial masks on the behaviour and performance of
face recognition systems under a collaborative use‐case
verification. This work aims to evaluate and analyse this
effect as a needed effort to enable the development of so-
lutions addressing accurate face verification under these
scenarios. To that end, this paper presents the following
contributions:

• A database based on a realistically variant collaborative
face capture scenario. This database contains three sessions
per subject, and each includes three capture variations. The
database includes face images with and without masks in
addition to face images with simulated masks.
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• A study of the behaviour of three widely studied aca-
demic face recognition solutions and one commercial off‐
the‐shelf face recognition solution (COTS) when
encountering masked faces compared with the typical
baseline of not wearing a face mask.
• An evaluation of verification performance when
comparing each masked face with others, both real and
simulated, to estimate the validity of having masked and
not‐masked reference images.
• An investigation of the validity of using face images with
synthetically simulated masks in evaluating face recogni-
tion systems for deployment on real masked faces. This is
performed by comparing the effects of simulated and real
masked face images in our face recognition performance
data.

Our conclusion includes pointing out the strong signs of
the negative effect on face recognition performance, stressing
the need for appropriate evaluation databases and recognition
solutions. We also point out the difficulty in assuming that
simulated masks represent real masks well in face recognition
evaluation studies. Our evaluation also points out that
comparing masked faces might be more accurate than
comparing masked and non‐masked faces for some face
recognition systems.

This paper is an invited extension to the paper [3], which
achieved the best paper award at BIOSIG 2020 [4]. This paper
is extended on the invited conference paper as follows:

• The database presented here and used for the provided
study is extended in size and variation. The presented
database includes 48 subjects rather than 24 as in the
invited work. The new database also includes a set of
augmented samples that represent faces with simulated
masks.
• The evaluation in this work expands on the invited paper
by studying the effect of verifying masked‐to‐masked face
pairs in comparisons with no‐mask pairs and mask‐to‐no‐
mask pairs. Thus, an experimental probe is provided for
masked or synthetically masked reference images.
• This study also extends the invited paper by including a
study on the effect of simulated masks on face recognition
performance in comparison with the effect of real masks
in the provided database.
• As an addition to the common verification performance
measures presented here and in the invited paper, we
provide an indication of generalizability by reporting a
measure of genuine and imposter score separability, the
Fisher discriminant ratio (FDR), for all experimental
setups.

2 | RELATED WORK

Many operational challenges are faced in the deployment of
face recognition solutions. Issues related to attacks on face
recognition systems are considered the most important of

these challenges and receive most of the research attention.
Such attacks can be morphing attacks [5, 6], presentation at-
tacks (spoofing) [7], or different unconventional attacks [8].
Face recognition deployability is also affected by the biometric
sample capture [9] and presentation [10], including face oc-
clusions. Occluded face detection is a widely studied challenge
in the domain of computer vision. A study by Optiz et al. [1] is
a clear example of occluded face detection—they targeted the
accurate detection of occluded faces by presenting a solution
based on a novel grid loss. Ge et al. [11] focussed on detecting
faces (not face recognition) with mask occlusions in in‐the‐wild
scenarios. Their research included face‐covering objects in a
wider perspective rather than facial masks worn for medical or
hygiene reasons. Such studies are highly relevant to face
recognition because the detection of faces (while wearing
masks) is an essential preprocessing step where face recogni-
tion systems might fail, as shown later in our experiments.

As discussed, the detection of occluded faces is one of the
challenges facing the deployment of biometric face systems.
However, the biometric recognition of occluded faces is a
more demanding challenge. One of the recent works to address
this issue is Song et al.’s [2] research aiming to improve face
recognition performance under general occlusions. The
approach presented by Song et al. [2] targets localizing and
abandoning corrupted feature elements, which might be
associated with occlusions, from the recognition process. A
very recent work presented by Wang et al. [12] focussed on
masked faces. In a short and underdetailed presentation, their
work introduced crawled databases for face recognition and
detection as well as simulated masked faces. The authors claim
to have increased verification accuracy from 50% to 95%;
however, they did not provide any information on the baseline
used, the proposed algorithmic details, or clarity on the eval-
uation database used. A recent preprint by Anwar and Ray-
chowdhury [13] has presented a database that includes 296 face
images, partially with real masks, of 53 identities. The images in
the database can be considered captured under in‐the‐wild
conditions, as they are crawled from the Internet and do not
represent a collaborative face recognition scenario. They pro-
posed fine‐tuning an existing face recognition network to
achieve better evaluation performance. On a larger scale, the
National Institute of Standards and Technology (NIST), as a
part of the ongoing Face Recognition Vendor Test (FRVT), has
published a specific study (FRVT—Part 6A) on the effect of
face masks on the performance on face recognition systems
provided by vendors [14]. The NIST study concluded that the
algorithm accuracy with masked faces declined substantially.
One of the main study limitations is the use of simulated
masked images under the questioned assumption that their
effect represents real face masks, an issue that this article
tackles. All the mentioned studies did not include an evaluation
of masked‐to‐masked face verification, which might motivate
requiring an additional masked reference image, an issue also
tackled in this article.

Under the current COVID‐19 pandemic, an explicitly
gathered database and the evaluation of real face masks on
collaborative face recognition is essential. This issue, as cleared
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above, also includes the need to study the appropriateness of
using simulated face masks for automatic face recognition
performance evaluation and assess the performance drop
when comparing masked face pairs. These issues are all
addressed in this work.

3 | THE DATABASE

The collected database aims to enable the analyses of face
recognition performance on masked faces and motivate future
research in the domain of masked face recognition. The pre-
sented database is an ongoing effort aiming at enabling
large‐scale face recognition evaluation. Our presented data
represents a collaborative, however varying, scenario. The
targeted scenario is that of unlocking personal devices or
identity verification at automatic border control gates. This
motivated the variations in masks, illumination, and back-
ground in the presented database.

The participants were requested to capture the data on
three different days, not necessarily consecutive. Each of these
days is considered one session. In each of these sessions/days,
three videos, with a minimum duration of 5 s, are collected by
the subjects. The videos are collected from a static webcam
(not handheld), while the users are requested to look at the
camera, simulating a face recognition‐based login scenario. The
data is collected by participants at their residences during the
pandemic‐induced home‐office period. The data is collected
during the day (indoor, daylight), and the participants were
asked to remove eyeglasses when they were considered to have
very thick frames. To simulate a realistic scenario, no re-
strictions on mask type, background, or any other restrictions
were imposed. The three captured videos each day were as
follows: (1) not wearing a mask with no additional electric
lighting (illumination); this scenario is referred to as baseline
(BL); (2) wearing a mask with no additional electric lighting
(illumination); this scenario is referred to as the first masked
scenario (M1); (3) wearing a mask with the room’s existing
electric lighting (illumination) turned on; this scenario is
referred to as the second masked scenario (M2). Given that
wearing a mask might result in varying shadow and reflection
patterns, the variation in the illumination in M1 and M2 is
considered.

The reference (R) data is the data from the first session
(day), consisting of the baseline reference (BLR), the mask
reference of the first capture scenario (M1R), and the mask
reference of the second capture scenario (M2R). The masked

references (M1R and M2R) are joined into one masked refer-
ence subset, M12R. The probe data (P) is the data of the
second and third sessions (days), including the no‐mask
baseline probe (BLP), mask probe of the first capture sce-
nario (M1P), mask probe of the second capture scenario
(M2P), and combined probe data (M1P and M2P) noted as
M12P. The first second of each video was neglected to avoid
possible biases related to subject interaction with the capture
device. After the one‐second skip, three seconds were
considered. From these three seconds, 10 frames were
extracted with a gap of 9 frames between each consecutive
frame, knowing that all videos are captured at a frame rate of
30 frames per second. To allow the synthetically added masks
to be comparatively evaluated, the data is augmented with
additional subsets that include the images with simulated
masks. As synthetically masked references, simulated masks are
added to the BLR images to create the simulated mask refer-
ence (SMR) subset. For probes, the BLP subset is augmented
with simulated masks to create the simulated mask probe
(SMP) subset. The details of adding the simulated masks are
presented in Section 5.2.

The total number of participants in the presented database
is 48, compared with 24 in the first version of the database [3].
All subjects participated in all three required sessions. Table 1
presents an overview of the database structure in terms of the
number of participants, sessions, and extracted frames from
each video. Figure 1 shows samples of the database; please
note that only samples from the SMP are shown, as there is no
consistent visual difference between SMR and SMP subsets.

4 | FACE RECOGNITION

We analyse the performance of three academic face recognition
solutions and one commercial face recognition solution to
present a wide view of the effect mask‐wearing on face
recognition performance. The three academic algorithms are
ArcFace [15], VGGFace [16], and SphereFace [17]. The com-
mercial solution is the MegaMatcher 12.1 SDK [18] from
Neurotechnology. The following is detailed information about
the selected face recognition solutions.

SphereFace is chosen because it achieved competitive
verification accuracy on Labeled Faces in the Wild (LFW) [19]
99.42% and YouTube Faces (YTF) [20] 95.0%. SphereFace
contains 64 convolutional neural network layers trained on the
CASIA‐WebFace data set [21]. SphereFace is trained with the
angular softmax loss function (A‐softmax). The key concept

TABLE 1 An overview of the database
structure and number of images in each subsetSession Session 1: References Session 2 and 3: Probes

Data Split BLR M1R M2R M12R SMR BLP M1P M2P M12P SMP

Illumination No No Yes both No No No Yes Both No

Number of captures 480 480 480 960 480 960 960 960 1920 960

Abbreviations: BLP, baseline probe; BLR, baseline reference; M1P/M2P/M12P, mask probe of the first, second, and
combined capture scenarios, respectively; M1R/M2R/M12R, mask reference of the first, second, and combined capture
scenarios, respectively; SMP, simulated mask probe; SMR, simulated mask reference.
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behind A‐softmax loss is to learn discriminative features from
the face image by formulating the softmax as an angular
computation between the embedded feature vectors and their
weights.

ArcFace achieved state‐of‐the‐art performance scores on
several face recognition evaluation benchmarks such as LFW
99.83% and YTF 98.02%. ArcFace introduced additive angular
margin loss to improve the discriminative ability of the face
recognition model. We deployed ArcFace based on ResNet‐
100 [22] architecture pretrained on a refined version of the
MS‐Celeb‐1M data set [23] known as MS1MV2.

VGGFace is one of the earliest face recognition models to
achieve competitive face verification performance on LFW
(99.13%) and YTF (97.3%) face benchmarks, doing so by using
a simple network architecture trained on a public database of
2.6 million images of 2600 identities). The network architecture
is based on the VGG model [24] trained with softmax loss and
fine‐tuned using triplet loss [25].

We used the MegaMatcher 12.1 SDK [18] from the vendor
Neurotechnology. We chose this COTS product because
Neurotechnology achieved one of the best performances in the
recent NIST report that addressed vendors’ face verification
products [26]. The face quality threshold was set to zero for
probes and references to minimize neglected masked faces.
The full processes of detecting, aligning, feature extraction, and
matching are part of the COTS, and thus we are unable to
provide their algorithmic details. Comparing two faces by the
COTS method produces a similarity score.

For the three academic systems, the widely used multi‐task
cascaded convolutional networks (MTCNN) [27] solution is
employed, as recommended in [17], to detect (crop) and align
(affine transformation) the face.

ArcFace and SphereFace networks process the aligned and
cropped image input and produce a feature vector of size 512
from the last network layer. The VGG model produces a
feature vector of size 4096 from the third‐to‐last output layer
as recommended by the authors [16]. Two faces are compared
by calculating the distance between their respective feature
vectors, which is calculated as Euclidean distance for ArcFace
and VGGFace features, as recommended in [15, 16], and as
cosine distance for SphereFace features, as recommended in

[17]. The Euclidean distance (dissimilarity) is complemented to
illustrate a similarity score, and the cosine distance shows a
similarity score by default.

5 | EXPERIMENTAL SETUP

This section presents the set of experiments conducted, eval-
uation metrics employed, and setup used to create the synthetic
masks.

5.1 | Experiments and evaluation metrics

As a baseline, we start by evaluating face verification perfor-
mance without any mask‐wearing influence. This evaluation
performs an N:N comparison between the data splits BLR and
BLP (BLR‐BLP). In the subsequent step, we perform an N:N
evaluation between the data subsets BLR and M12P (BLR‐
M12P) to measure verification performance when the probe
subject is wearing a mask. These experiments are conducted on
the four face recognition solutions being evaluated. Addition-
ally, to evaluate real masked‐to‐masked face verification, we
consider the M12R subset as a reference and perform an N:N
comparison between M12R and M12P (M12R‐M12P). We also
evaluate the performance of the real masked references against
the simulated masked probes (BLR‐SMP), and we evaluate the
simulated masked references against the simulated masked
probes (SMR‐SMP).

The effect of having probe subjects wear a face mask is
studied by illustrating the imposter and genuine distributions of
the BLR‐M12P (mask) along with the baseline BLR‐BLP
comparisons. This enables deeper analyses of the distribution
shifts caused by wearing a mask. To study performance in
verifying not‐masked references to masked references versus
masked‐to‐masked pairs, we plot the imposter and genuine
comparison score distributions of the BLR‐M12P (baseline)
comparisons along with the imposter and genuine score dis-
tributions of the M12R‐M12P. To compare the verification
performance for the not‐masked references with simulated and
real masked faces, we plot the imposter and genuine

F I GURE 1 Samples of the collected database from the three capture types (BL, baseline; M1, first scenario; M2, second scenario; SMP, simulated mask
probe)
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comparison score distributions of the BLR‐M12P and BLR‐
SMP pairs. To compare the verification performance of the
simulated masked probes with the simulated mask references
and not‐masked references, we plot the imposter and genuine
comparison score distributions of the BLR‐SMP and SMR‐
SMP pairs. Additionally, we present the mean of imposter
comparison scores (I‐mean) and the mean of the genuine
comparison scores (G‐mean) for each experiment to analyse
the comparison score shifts quantitatively.

We also report verification performance metrics based on
the ISO/IEC 19795‐1 [28] standard. As an essential pre-
processing step, face detection can be affected by the strong
change in appearance induced by wearing a face mask. To
capture that effect, we report the failure‐to‐extract rate (FTX)
for our experiments. FTX measures the rate of comparison
where feature extraction is not possible, and thus a template is
not created. Beyond that, and for comparisons of successfully
generated templates, we report a set of algorithmic verification
performance metrics. From these, we report the equal error

rate (EER), which is defined as the false non‐match rate
(FNMR) or false match rate (FMR) at the operation point
where they are equal. We additionally present the FNMR at
different decision thresholds as an algorithmic verification
performance metric by reporting the lowest FNMR for FMR
≤1.0%, ≤0.1%, and ≤0%, namely FMR100, FMR1000, and
ZeroFMR, respectively.

Further, we enrich our reported evaluation results by
reporting the FDR to provide an in‐depth analysis of the
separability of genuine and imposter scores for different
experimental settings. FDR is a class separability criterion used
by [29, 30], and it is given by:

FDR¼
ðμG − μIÞ

2

ðσGÞ
2
þ ðσIÞ

2;

where μG and μI are the genuine and imposter scores’ means,
and σG and σI are their standard deviations. The larger the

F I GURE 2 The comparison score (similarity) distributions comparing the ‘baseline’ BLR‐BLP genuine and imposter distributions with those of the
distributions including ‘masked’ face probes (BLR‐M12P). The shift in the genuine scores towards the imposter distribution is clear when faces are masked for all
the investigated systems. (a) VGGFace, (b) SphereFace, (c) ArcFace, and (d) COTS
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TABLE 2 Verification performance
measures FDR, G‐mean, and I‐mean achieved
by VGGFace on the different experimental
setups

VGG EER FMR100 FMR1000 ZeroFMR G‐mean I‐mean FDR FTX

BLR‐BLP 2.3795% 4.6561% 9.9513% 19.2483% 0.819001 0.596985 8.6816 0.000%

BLR‐M12P 18.9209% 47.5859% 67.8121% 86.9508% 0.639760 0.544981 0.6378 4.736%

M12R‐M12P 20.9248% 51.3110% 76.9665% 84.9871% 0.693083 0.569062 0.6135 4.736%

BLR‐SMP 7.6525% 14.1156% 54.2517% 70.4082% 0.695138 0.576018 3.0399 5.114%

SMR‐SMP 3.6799% 5.8282% 23.0061% 42.9448% 0.800212 0.610588 1.3912 5.371%

Note: The performance degradation induced by the masked face probes.
Abbreviations: BLP, baseline probe; BLR, baseline reference; EER, equal error rate; FDR, Fisher discriminant ratio; FMR,
false match rate; FTX, failure‐to‐extract rate; M12P, mask probe of the combined first and second capture scenarios; M1R/
M2R/M12R, mask reference of the first, second, and combined capture scenarios, respectively; SMP, simulated mask probe;
SMR, simulated mask reference.

TABLE 3 Verification performance
measures FDR, G‐mean, and I‐mean achieved
by SphereFace on different experimental
setups

SphereFace EER FMR100 FMR1000 ZeroFMR G‐mean I‐mean FDR FTX

BLR‐BLP 2.5237% 3.5856% 9.1958% 43.1286% 0.703659 0.132542 9.2316 0.00000

BLR‐M12P 15.6472% 57.7897% 79.1916% 96.8344% 0.280806 0.039197 1.8983 4.736%

M12R‐M12P 25.5317% 78.5115% 91.3690% 99.5655% 0.533365 0.266994 0.9161 4.736%

BLR‐SMP 15.4323% 31.6846% 46.3397% 76.9503% 0.415802 0.04813 2.6162 5.114%

SMR‐SMP 12.7381% 23.9176% 39.1283% 68.7882% 0.55719 0.343760 2.332 5.371%

Note: the performance degradation induced by the masked face probes.
Abbreviations: BLP, baseline probe; BLR, baseline reference; EER, equal error rate; FDR, Fisher discriminant ratio; FMR,
false match rate; FTX, failure‐to‐extract rate; M12P, mask probe of the combined first and second capture scenarios; M1R/
M2R/M12R, mask reference of the first, second, and combined capture scenarios, respectively; SMP, simulated mask probe;
SMR, simulated mask reference.

TABLE 4 Verification performance
measures FDR, G‐mean, and I‐mean achieved
by ArcFace on different experimental setups

ArcFace EER FMR100 FMR1000 ZeroFMR G‐mean I‐mean FDR FTX

BLR‐BLP 0.0000% 0.0000% 0.0000% 0.0000% 0.702020 0.302603 33.4823 0.000%

BLR‐M12P 2.8122% 3.3917% 4.2793% 11.0741% 0.490206 0.298841 9.3521 4.736%

M12R‐M12P 4.7809% 4.7959% 4.9427% 99.7933% 0.624205 0.318468 7.6235 4.736%

BLR‐SMP 1.1652% 1.3002% 5.4551% 13.0724% 0.507047 0.300292 12.3798 5.114%

SMR‐SMP 0.2732% 0.0000% 0.6151% 6.9195% 0.675107 0.330339 6.4712 5.371%

Note: The performance degradation induced by the masked face probes.
Abbreviations: BLP, baseline probe; BLR, baseline reference; EER, equal error rate; FDR, Fisher discriminant ratio; FMR,
false match rate; FTX, failure‐to‐extract rate; M12P, mask probe of the combined first and second capture scenarios; M1R/
M2R/M12R, mask reference of the first, second, and combined capture scenarios, respectively; SMP, simulated mask probe;
SMR, simulated mask reference.

TABLE 5 Verification performance
measures FDR, G‐mean, and I‐mean achieved
by COTS on different experimental setups

COTS EER FMR100 FMR1000 ZeroFMR G‐mean I‐mean FDR FTX

BLR‐BLP 0.0000% 0.0000% 0.0000% 0.0000% 112.3174 1.6304 145.2178 0.000%

BLR‐M12P 1.0185% 1.0747% 1.6454% 5.3296% 67.3309 1.6667 29.9121 0.000%

M12R‐M12P 0.0417% 0.0000% 0.0248% 3.2992% 102.4084 6.73598 37.8482 0.000%

BLR‐SMP 0.6002% 0.6337% 0.6337% 0.8684% 74.3175 1.7565 30.6757 0.000%

SMR‐SMP 0.9322% 0.1081% 0.8917% 1.4317% 104.7186 5.8493 45.3178 0.000%

Note: The performance degradation induced by the masked face probes.
Abbreviations: BLP, baseline probe; BLR, baseline reference; EER, equal error rate; FDR, Fisher discriminant ratio; FMR,
false match rate; FTX, failure‐to‐extract rate; M12P, mask probe of the combined first and second capture scenarios; M1R/
M2R/M12R, mask reference of the first, second, and combined capture scenarios, respectively; SMP, simulated mask probe;
SMR, simulated mask reference.
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FDR value is, the higher the separation between the genuine
and imposter scores, and thus verification performance and its
generalizability are expected to improve. Furthermore, we
report the receiver operating characteristic (ROC) curves for
different experiments to illustrate the algorithmic verification
performance at a wider range of thresholds (operation points)
for the different face recognition systems considered.

5.2 | Simulated mask

We use the synthetic mask generation method described by
the NIST report [14]. The synthetic generation method de-
pends on the Dlib toolkit [31] to detect and extract 68 facial
landmarks from a face image. Based on the extracted land-
mark points, a face mask of different shapes, heights, and
colours can be drawn on the face images. The detailed

implementation of the synthetic generation method is
described in [14], and the open‐source implementation can be
found under [32] as provided by Boutros et al. [33]. The
synthetic mask generation method provided in [33] offers
different face mask types with different heights and cover-
ages. To generate a synthetic mask database, we first extract
the facial landmarks of each face image. Then, for each face
image, we generate a synthetic masked image of the mask
type C and the colour blue, described in [14, 33].

6 | EVALUATION RESULTS

The evaluation results are based on the presented database and
the experimental setup. These results are discussed in this
section in the form of answering practical questions on the
issue of masked face recognition.

F I GURE 3 The verification performance of the four investigated systems—VGGFace (a), SphereFace (b), ArcFace (c), and COTS (d)—is presented in the
form of receiver operating characteristic (ROC) curves. For each system, two curves are plotted to represent the settings that include ‘masked’ face probes (BLR‐
M12P) and the unmasked baseline (BLR‐BLP). The area under curve (AUC) is also listed for each ROC curve. As in Tables 2–5, the negative effect of masked
probes is apparent in the performance of the VGGFace ArcFace, SphereFace, and COTS models
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6.1 | How does wearing a face mask affect
face verification performance when the
reference is not masked?

The comparisons between the baseline (BLR‐BLP) imposter
and genuine score distributions and the experiments with
masked face probes (BLR‐M12P) on the four face recognition
solutions considered are presented in Figure 2. One can notice
in all experimental setups that, when comparing unmasked
references with masked face probes, the genuine score distri-
butions strongly shift towards the imposter distributions in
comparison with the baseline BLR‐BLP setup. This points out
an expected decrease in performance and general trust in the
verification decision, as the separability between imposter and
genuine samples decreases. On the other hand, the imposter
score distributions do not seem to be affected by the masked
probes (BLR‐M12P) in comparison with the unmasked

baseline (BLR‐BLP) in the better performing COTS and
ArcFace. In the lower performing SphereFace and VGGFace,
imposter score distributions do shift towards the genuine
distributions, however, this shift is significantly smaller that the
genuine distribution shift. This points out that, give a preset
decision threshold, having masked probes will result in a larger
increase in FNMR values in comparison with the increase in
the FMR values.

Tables 2–5 list the achieved verification performance, given
by the different evaluation metrics, on all experimental setups
by the VGGFace, SphereFace, ArcFace, and COTS solutions,
respectively. For all academic systems, wearing a face mask
affected the ability to detect the face properly, resulting in a
higher than zero (as in the baseline) FTX. The FTX values for
the three solutions are identical as they all use the MTCNN
network for face detection and alignment. The COTS solution
was able to produce results for all comparison pairs and thus

F I GURE 4 The comparison score (similarity) distributions from comparing the no‐mask‐to‐mask ‘baseline’ BLR‐M12P genuine and imposter distributions
to those of the distributions including ‘masked’ face references and probes (M2R‐M12P). In the COTS model, separability between the genuine and imposter
distributions appears to be higher when comparing masked references with masked probes than when comparing not‐masked references with masked probes.
(a) VGGFace, (b) SphereFace, (c) ArcFace, and (d) COTS
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achieved an FTX of 0%. However, it must be noted that the
quality thresholds in the COTS were set to zero for both, the
reference and probe images.

The verification performance metrics (EER, FMR100,
FMR1000, ZeroFMR) reported for the COTS, ArcFace,
SphereFace, and VGGFace are negatively affected when the
probe faces are masked (BLR‐M12P), see Tables 2–5. The
reduction in the performance is much more apparent in
the VGGFace and SphereFace solution in comparison with the
COTS and ArcFace. For all systems, the G‐mean values
decreased significantly when considering the masked probes.
This, despite the relatively small size of the evaluation data,
indicates a strong negative effect of the masks on the face
recognition performance. On the other hand, the I‐mean
values when considering the masked faces, in comparison
with the baseline (BLR‐BLP), were only slightly changed under
the COTS and ArcFace solutions. For the SphereFace and

VGGFace solutions, the I‐mean values are affected, although
not as drastically as the G‐mean. The separability measure
FDR was also significantly affected across the four systems by
having a masked probe.

To show verification performance over a wider range of
operation points, Figure 3 presents the ROC curves for the
different experimental settings for each of the four investigated
systems. Similar conclusions to those established from Ta-
bles 2–5 can be made. The COTS, ArcFace, VGGFace, and
SphereFace verification performances are affected by the
masked face probes.

As an answer to this subsection title, having a masked
face probe does significantly affect the verification perfor-
mance of the investigated face recognition systems. This
effect is seen more in the large shift in the genuine score
values in comparison with that in the imposter score
values.

F I GURE 5 The verification performance of the four investigated systems—VGGFace (a), SphereFace (b), ArcFace (c), and COTS (d)—is presented in the
form of receiver operating characteristic (ROC) curves. For each system, two curves are plotted to represent the settings that include not‐masked references and
‘masked’ face probes (BLR‐M12P) as baselines and the masked references and masked probes (M12R‐M12P). The area under curve (AUC) is also listed for each
ROC curve. As in Tables 2–5, the negative effect of both masked references and probes in comparison with only masked probes is apparent in the performance
of the academic solutions VGGFace, ArcFace, and SphereFace

556 - DAMER ET AL.



6.2 | Does having a masked reference
enhance verification performance when the
probe is masked?

Figure 4 presents a comparison between the baseline where the
reference is not masked and the probe is masked (BLR‐M12P)
on one side, and also the case where the reference is masked
(M2R‐M12P). In both cases, the genuine imposter separability
appears low. Both the genuine and imposter scores shift to the
higher values when the reference is masked, in comparison
with not‐masked reference. This might be due to the fact that
the masked area of the face appears more similar when covered
by a mask in both the compared images. This is visible in all
the four investigated face recognition solutions. This is also
supported by the G‐mean and I‐mean values presented in
Tables 2–5.

The verification performance of the three academic solu-
tions presented in Tables 2–4 indicates lower performance
when the probe is masked and the reference is masked, in
comparison with not‐masked reference. This case is more
apparent in the SphereFace and ArcFace, and to a less degree
for the VGGFace solution. The FDR separability measure
indicates a similar trend. This performance drop is also visible
on a wider range of operation points in the ROC curves in
Figure 5 for the three investigated solutions. On the other
hand, the COTS solution performs better when the probe is
masked and the reference is masked, in comparison with not‐
masked reference, see Table 5. This is also supported by the
FDR value in the table and on a wider operation range in
Figure 5. Moreover, one should not neglect the large difference
in the imposter and genuine score values between both cases,
BLR‐M12P and M12R‐M12P.

F I GURE 6 The comparison score (similarity) distributions comparing the not‐masked references with simulated masked probe ‘baseline’ BLR‐SMP
genuine and imposter distributions to those of the distributions including ‘simulated’ masked face references and probes SMR‐SMP. The genuine scores of
comparing simulated mask probes and references SMR‐SMP are generally higher than those of the real masked references BLR‐SMP in the investigated systems.
(a) VGGFace, (b) SphereFace, (c) ArcFace, and (d) COTS
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As an answer to this subsection title, having a masked face
reference does not enhance verification performance with a
masked probe, in comparison with having a not‐masked
reference, on most investigated systems. This eliminate the
need of having multiple references (masked and not masked) in
face verification galleries, at least when the academic investi-
gated systems are considered, which are not optimized for
masked faces. On the other hand, the COTS investigated
system performs better when both the probe and imposter are
masked.

6.3 | Does the answer to our last question
(Section 6.2) also apply to simulated masks?

Figure 6 presents a comparison between the baselines where
the references are not masked and the probes are synthetically
masked (BLR‐SMP) on one side, and also the case where the
references are synthetically masked (SMR‐SMP). Both the
genuine and imposter scores seem to slightly shift to the higher

values when the references are synthetically masked, in com-
parison with not‐masked reference in the investigated systems.
This is also supported by the G‐mean and I‐mean values
presented in Tables 2–5. The verification performance pre-
sented in these tables indicates slightly better performance of
the three academic solutions when the references are also
synthetically masked. The COTS, on the other hand, performs
better when only the references are not masked. These ob-
servations are in contrast to the observations made in Sec-
tion 6.2 where the investigated masks were real. This might be
due to the high similarity (identical) in the simulated masks,
which leaves only the visible part of the face as a comparison
information source. This is supported by the large increase in
G‐mean (in comparison with increase in I‐mean) in the SMR‐
SMP case in Tables 2–5.

As an answer to this subsection title, unlike the real
masks, verifying two synthetically masked faces do perform
slightly better than comparing a not‐masked reference with a
synthetically masked face on the academic solutions. This
different conclusion, in comparison with the situation with

F I GURE 7 The comparison score (similarity) distributions from comparing the not‐masked references with masked probe ‘baseline’ BLR‐M12P genuine
and imposter distributions to those of the distributions including ‘simulated’ masked face probes BLR‐SMP. The genuine scores of the simulated mask probes
(SMPs) are generally higher than those of the real masked score M12P in the investigated systems, (a) VGGFace, (b) SphereFace, (c) ArcFace, and (d) COTS
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real masks in Section 6.2 do indicate the less‐than optimal
use of simulated masks as a replacement of real masks in
such evaluations, which will be measured in more details in
the next section.

6.4 | Does evaluating face recognition
performance with simulated mask probes truly
reflect the real mask scenario?

Figure 7 presents the comparison between the baselines where
the reference is not masked and the probe has a real mask
(BLR‐M12P) genuine and imposter score distributions and the
case where the probe is synthetically masked (BLR‐SMP) on
the four face recognition solutions considered. It is noticeable
in all experimental setups that, when the probes are

synthetically masked, the genuine score distributions shift to
higher values in comparison with the real mask probes setup.
On the other hand, the imposter scores are not significantly
shifted, this indicates an enhancement in the performance and
general trust in the matcher decision, as the separability be-
tween genuine and imposter samples increase in the case of
synthetically masked probes.

Tables 2–5 present the lower verification performance
achieved by the real masks in comparison with the simulated
masks. This is also indicated by the lower FDR values and
lower G‐mean values in the case of real masks. Similar verifi-
cation performance indications can be noticed on a wider
operation point in the ROC curves presented in Figure 8. A
main exception to this is the COTS performance at high FMR
values, where the SMPs score a higher FNMR than the real
masked probes, as shown in Figure 8‐d.

F I GURE 8 The verification performance of the four investigated systems—VGGFace (a), SphereFace (b), ArcFace (c), and COTS (d)—is presented in the
form of receiver operating characteristic (ROC) curves. For each system, two curves are plotted to represent the settings that include not‐masked references and
real ‘masked’ face probes (BLR‐M12P) as baselines and the same reference but with simulated masked probes (BLR‐SMP). The area under curve (AUC) is also
listed for each ROC curve. As in Tables 2–5, the higher performance with simulated probes in comparison with real masked probes is apparent in the
performance of the VGGFace, ArcFace, and SphereFace, which is not the case for COTS on the full operation range
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As an answer to this subsection title, synthetically gener-
ated masks do not reflect the effect of wearing a real face mask
on face recognition. Variations in the simulated mask shape,
colour, and texture might be seen as an option to this issue, but
it would be difficult to capture the full variation scale of real
masks and their interaction with other environmental factors.
Such factors can range from personal wear preferences, to
environment illumination, and up to customized mask designs.

In general, the effect of wearing face masks on the face
recognition behaviour is apparent on all investigated systems.
This renders the current face recognition solutions in strong
need for evaluation under these new challenges. This also
motivates building face recognition solutions that are adaptive
to masked faces and pushes for realistic masked face evaluation
platforms.

7 | CONCLUSION

This work presented an extensive study on the effects of mask‐
wearing on face recognition performance in collaborative sce-
narios. The main motivation behind this effort is the widespread
use of face masks as a preventive measure in response to the
COVID‐19 pandemic. We presented a specifically collected
database captured in three different sessions with and without
wearing a mask. This database is augmented with additional
subsets where the masks are synthetically added. We analysed
the behaviour of three widely studied academic face recognition
solutions in addition to one commercial solution. Our study
indicated the significant effect of wearing a mask on comparison
score separability between imposter and imposter comparisons
in all the investigated systems, and thus the effect on verification
performance. Moreover, we questioned, among other conclu-
sions, the suitability of simulatedmasks in the realistic evaluation
of face recognition performance when processing masked faces.
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