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Abstract

The “density paradox” refers to the observation that some

highly populated cities and countries have recorded a

smaller number of Covid‐19 cases than regions that are

sparsely populated. We present empirical evidence on the

role played by population density in spreading the coro-

navirus, based on cross‐sectional data covering 172 coun-

tries (obtained from several sources, including the

European Centre for Disease Prevention and Control, the

World Bank and the Center for Health Security). The re-

sults, obtained by using the techniques of extreme bounds

analysis (EBA) and variable addition tests, show that pop-

ulation density has a significantly positive effect on the

number of cases but not the number of deaths, as the latter

is better explained by measures of preparedness. Plausible

explanations are presented for the results to conclude that

the “density paradox” is not really a paradox. This paper

makes a contribution by shedding more light on a

frequently debated issue by using a completely different,

and more robust, statistical techniques and by providing

results that may be helpful for health and urban planners.
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1 | INTRODUCTION

The rise of Covid‐19 has led to the emergence of several controversies about the pandemic and how to deal with it,

including some conspiracy theories on its origin. More serious issues than conspiracy theories are controversies

about, amongst others, the effectiveness of social distancing, the pros and cons of lockdown, and the choice be-

tween putting lives or the economy first (even though the loss of life could come from the pandemic or a collapsing

economy). This paper is about another controversy, the role played by population density in the spread of the virus.

Views on the effect of population density on the spread of contagious disease (Covid‐19 and otherwise) range
between “unimportant” and “important”. In between, we find views such as “important but less so than other

factors” and “important but not as important as it is portrayed to be”. There are also those who think that the

evidence is inconclusive. Supportive evidence is produced by, among others, Maybery,1 Sumdani et al.2 Kadi and

Khelfaoui,3 and Carozzi et al.4 Wong5 argues that how far people can be spatially separated is partly behavioural

but partly constrained by population density. Johnston6 notes that “population density is playing a role in trans-

mission rates but it's not the only factor”, suggesting that “the stats so far already muddle this correlation, with

densely populated places such as Hong Kong and Singapore managing the spread better than countries that have a

more dispersed urban form, like the US, Canada and some parts of Europe”. Adlakha and Sallis7 dismiss the role

played by population density in spreading the disease on the basis of casual empiricism (a scatter plot that shows

near‐zero correlation between density and the spread of the disease in 36 cities). Li et al.8 think that the evidence
on possible links between population density and the spread of pandemics is inconclusive.

On 23 March 2020, the journalist Matt Yglesias, known to be sardonic and facetious, tweeted the following:

“The moral of corona virus is that we should adopt the kind of low‐density living patterns associated with Asian

countries like South Korea, Japan, Taiwan, and Singapore that have successfully controlled its spread”.9 This tweet

was meant to be sarcastic, perhaps directed at those blaming population density for making New York City the

epicentre of the pandemic in the US. Barr and Tassier9 argue that even though Asian cities are known for their

“hyper‐density”, they have figured out ways to slow its spread without destroying the very essence of what makes

cities so successful.

On the other hand, it is widely believed that population density is the main reason why New York City is the

worst affected city in the US. This view is echoed by the author of an article entitled “Density is New York City’s Big

‘Enemy’ in the Coronavirus Fight”, which appeared in the New York Times on 23 March 2020. The author of the

article refers to what he calls a “distinct obstacle in trying to stem new cases: its cheek‐by‐jowl density”.10 He
insinuates that population density in New York City is the reason for the lack of success of the measures intended

to slow the spread of the coronavirus, including the shutting down of non‐essential businesses and urging its

residents to stay home.

This divergence of views on the effect of density has led Barr and Tassier9 to come up with the concept of the

“density paradox”, as they wonder about the role of population density in spreading the virus, whether big cities are

more vulnerable than smaller ones, and if New York deserves “such harsh criticism”. Based on a formula that

defines the reproduction rate (the average number of people at the receiving end of transmission from an already

infected person) and the assumption that no preventive measures (such as social distancing and self‐isolation) are
taken, they specify a regression equation whereby the number of cases is determined by several explanatory

variables, including population density. By using county‐level US data, they obtain results showing that “population
density does matter but is not as large as the popular media would have you believe”. More specifically, they find

that (on average) an increase in a county's population density by 20% leads to a rise in the number of cases by

about 11%–12% (conditional on having at least one case of the virus). They reach the conclusion that “more

populous counties are likely to have fewer cases on a per capita basis than their sparser counterparts”. They go on

to argue that epicentres around the world are not located in the largest cities—for example, the epicentre in Italy is

Milan (not Rome) whereas the Chinese epicentre is Wuhan (China's 10th largest city) rather than Shanghai, which is

China's largest city.
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This is such an important issue that warrants more scrutiny. The objective of this paper is to provide further

evidence on the role played by population density in spreading the coronavirus, based on cross‐sectional data
covering 172 countries (obtained from several sources, including the European Centre for Disease Prevention and

Control, the World Bank and the Center for Health Security). We will highlight the sensitivity of the results to the

choice of the control variables and, unlike Barr and Tassier,11 seek to identify the role of population density in

determining both the numbers of cases and deaths per million of the population (as opposed to total cases and

deaths). For this purpose, we use control variables that pertain to the ability of each country to deal with the

pandemic as measured by the global health security (GHS) index, including measures of prevention, detection and

reporting, rapid response, health system, compliance with international norms, and the risk environment.12 The

findings should have implications for health planning and management and also for urban planning.

1.1 | The issue under investigation and stylised facts

In 1854 a physician named John Snow was investigating the source of contamination leading to a widespread

outbreak of cholera and killing more than 600 people in Soho, a London neighbourhood. He found that the culprit

was a water pump located near the corner of Broadwick and Lexington. His endeavour to connect the dots between

incidents of illness in the neighbourhood and the use of water from the pump was a feat of early empirical science

that is heralded as a milestone in public health. Berg13 describes the work of John Snow as providing a “textbook

example of the link between disease and population density” and highlights the importance of this finding as a “link

that's becoming even more important today as the world undergoes a dramatic process of urbanization”.

The effect of population density works via the contact rate, which is a determinant of the reproduction rate

(e.g.,14). TheWorld Health Organisation (WHO) highlights the effect of population density by stating the following:11

For communities, inadequate shelter and overcrowding are major factors in the transmission of diseases with

epidemic potential such as acute respiratory infections, meningitis, typhus, cholera, scabies, etc. Outbreaks of

disease are more frequent and more severe when the population density is high.

The effect of population density on the spread of disease can be looked at from two different angels. On the

one hand, densely populated regions lead to more face‐to‐face interaction among residents, which makes them

potential hotspots for the rapid spread of pandemics. On the other hand, these regions may have better access to

healthcare facilities and greater implementation of social distancing policies and practices. Therefore, the effect of

population density on the spread of disease could be positive or negative. The empirical results also depend on

which control variables are used.

The role played by population density in spreading pandemics and epidemics has been investigated repeatedly.

For example, Tarwater and Martin15 examine the effect of population density on the epidemic outbreak of measles

or measles‐like infectious diseases and find that a decline in a susceptible contact rate, from four to three, results in

a “dramatic effect on the distribution of contacts over time, the magnitude of the outbreak, and, ultimately, the

spread of disease”.

Likewise, Maybery1 attempts to identify the relationship between population density and the initial stages of

the spread of disease. His results support the proposition that the number of new infections is strongly related to

the distribution of susceptible contacts. Li et al.8 examine possible links between population density and the

propagation and magnitude of epidemics, arguing that it is inconclusive for three reasons: (i) a lack of focus on

appropriate density intervals; (ii) for density to be a meaningful variable, the population must be distributed as

uniformly as possible; and (iii) in propagation of an epidemic the initial proportion of susceptibles is an essential, yet

usually unknown factor.

1
WHO: What are the health risks related to overcrowding? https://www.who.int/water_sanitation_health/emergencies/qa/emergencies_qa9/en/.

MOOSA AND KHATATBEH - 1577

https://www.who.int/water_sanitation_health/emergencies/qa/emergencies_qa9/en/


A mathematical model is used by Sumdani et al.2 to study MERS‐CoV (Middle East Respiratory Syndrome‐
Coronavirus) and identify possible patterns of the spread. They split the population into two groups, with contact

rates that are independent of and dependent on population density. By analysing the conditions under which the

disease spreads, they observe how population density affects the transmission characteristics predicted by the

epidemiological model.

Consistency between the basic epidemiological model and the effect of population density is demonstrated by

Barr and Tassier11 who start with the determinants of the reproduction rate, which include the contact rate (the

average number of contacts people have with other people on a given day), the transmission rate (the likelihood

that any one individual will pass the disease onto someone else), duration (the time it takes for the disease to work

its way through the human body from infection to illness to recovery), and susceptibility (the fraction of people at a

given time who are susceptible to the disease). Then they suggest that density affects the contact rate of in-

dividuals, which makes the reproduction rate larger, leading to more infections in dense regions. However, they

emphasise the “missing role of time”, in the sense that the spread of the disease at a particular point in time de-

pends on when it started at that particular locality.

Other studies that deal with population density explicitly include Kadi and Khelfaoui,3 who use cluster analysis

to reveal strong correlation between population density and the number of infections, and Carozzi et al.4 who find

that density affects the timing of the outbreak, with denser locations more likely to have an early outbreak and that

population density is not positively associated with time‐adjusted cases and deaths. Tammes16 finds that following
the introduction of social distancing measures in England, the infection rate dropped more quickly in most densely

populated regions. Sunn et al.17 find that population density is not an important factor in Covid spreading under

strict lockdown policies, arguing that the lockdown policies of China put a limit on the Covid‐19 spreading speed.

As pointed out by Hsu18 an important issue that seems to be overlooked in this debate is that “the population

density of a city or county does not capture the finer points of how people actually gather within smaller spaces,

such as those on college campuses or in individual residential buildings”. Crowding occurs in densely as well as

lightly populated cities. For example, crowding occurs when people gather for events, such as concerts and parties,

and it can be caused by socioeconomic conditions that force many people to live in a small space or from cultural

preferences for living in multi‐generational households. Buses and other forms of mass transit can also get

crowded, even in smaller urban areas. This is why Hsu18 argues that “simple density has not adequately predicted

the disease's course in the U.S., where the new coronavirus has spread well beyond urban areas to ravage rural

communities and suburbs during the country's long summer”.

The contrast in the results can be seen in the works of Moosa and Khatatbeh19,20 and Hamidi et al.21

Compared to demographic factors, Moosa and Khatatbeh20 find that the infection rate depends on urban popu-

lation rather than overall population density and that the mortality rate depends on the age structure of the

population and population density but not on the percentage of urban population. Moosa and Khatatbeh19 identify

three robust variables that determine the case mortality rate: international tourist arrivals, population over 65 and

population density. On the other hand, Hamidi et al.21 find that county density is not significantly related to the

infection rate, which they attribute to adherence to social distancing guidelines. However, they also find that

counties with higher densities have significantly lower virus‐related mortality rates than do counties with lower

densities, which they attribute to “superior health care systems”. They conclude that connectivity matters more

than density in the spread of the pandemic and that large metropolitan areas with a higher number of counties

tightly linked together through economic, social, and commuting relationships are the most vulnerable to the

pandemic outbreaks.

Now a look at the stylised facts may be useful. In Figure 1 we observe population density, cases per million and

deaths per million for the countries ranked highest in terms of the GHS index. These countries comprise a group of

low‐density ones (such as Australia, Canada and Norway) and high‐density ones (such as Belgium, Netherlands and
Korea). As expected, we cannot see one‐to‐one correspondence between rankings in terms of population density,
cases and deaths, simply because population density is not the only factor determining cases and deaths.
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The information embodied in Figure 1 is summarised in Table 1 and Table 2. Countries are classified into high,

medium and low in terms of density, cases and deaths according to where they fall in the first, second or third 33

percentiles. Then the countries are placed into one of six cells ranging between high density‐high cases/deaths and
low density‐low cases/deaths. If the number of cases per million is determined largely by density, most countries

would be placed in the low‐low and high‐high cells in Table 1. We can see that six countries, out of a total of 19, fall

in these cells. Yet, we find that two low‐density countries (Sweden and the US) have high numbers of cases. This is
because Sweden has not imposed measures of social distancing and perhaps because of mishandling and

F I GUR E 1 Ranking of countries with high GHS index. Note: These countries are selected on the basis of having
high GHS indices and either high or low population density. Cases and deaths are totals as of 11 May 2020 [Colour
figure can be viewed at wileyonlinelibrary.com]
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complacency in the US. On the other hand, Korea has a high population density and low cases per million. This is

due to the active and early implemented policy of test and trace. The pattern with respect to the number of deaths

per million, as show in Table 2, is similar but not identical.

1.2 | Modelling issues

If population density leads to more cases and/or deaths, then we should expect, ceteris paribus, that countries with

high densities record a higher incidence of cases and deaths. On the assumptions that the transmission rate,

duration rate and susceptibility rate are likely to be constant across the US, Barr and Tassier11 suggest the

following regression equation to explain inter‐county differences in the number of cases by population density:

lnðCÞ ¼ γ0 þ γ1 lnðDÞ þ δ0X þ ε ð1Þ

where C is the total number of cases, D is population density and X is a set of control variables. However, they end

up estimating a regression with the explanatory variables being population, land area, real GDP, days since first

TAB L E 1 Classification of some countries by density and number of cases

Cases per million

Population Density

Low Medium High

High Sweden Portugal Switzerland

US UK

Belgium

Medium Canada France Germany

Norway Denmark Netherlands

Low Australia Malaysia Korea

Finland Slovenia

Latvia Thailand

TAB L E 2 Classification of some countries by density and number of deaths

Deaths per million

Population Density

Low Medium High

High Sweden France UK

US Belgium

Netherlands

Medium Canada Slovenia Switzerland

Portugal Germany

Denmark

Low Australia Malaysia Korea

Norway Thailand

Finland

Latvia
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case and airport passenger arrivals (Enplanements Mill+). It is not obvious why population and land area appear as
separate explanatory variables when they should appear as a ratio defining density.

The problem with this specification is that the results are sensitive to the choice and definition of control

variables. Young and Holsteen22 argue that theory rarely says which variables should appear in the model, sug-

gesting that “theory can be tested in many different ways and modest differences in methods may have large in-

fluence on the results”. Likewise, Klees23 believes that “all relevant variables that may affect the dependent variable

can never be included”. In fact, Young and Holsteen22 are sceptical about the idea of using control variables because

they (control variables) are “a common source of uncertainty and ambivalence”. We hardly know what the “true

model” is, in which case a misspecified model with 10 control variables is not superior to, or less biased than, a

misspecified model with only five of them. Clarke24 argues that extra controls can leverage correlations with other

omitted variables, amplifying omitted variable bias. Likewise, Meng25 refers to “an unknown number of relevant

factors”, some of which may be unknown to the economist, making it impossible to claim that all important variables

are included in the model.

Gilbert26 argues that published results are accepted because the reported regression equation has coefficients

that are correctly signed and statistically significant. However, he suggests that these significant coefficients cannot

be taken as evidence for or against the hypotheses under investigation, wondering about the other 999 regressions

that have been assigned to the bin. This is what prompted Leamer27 to suggest that econometricians confine

themselves to publishing mappings from prior to posterior distributions rather than actually making statements

about the economy.

A straight cross‐sectional regression can be written as

Y ¼ αþ βDþ ∑
n

i¼1
δiXi þ ε ð2Þ

where Y is the dependent variable (which can be cases per million or deaths per million), D is the variable of in-

terest (population density) and Xi is one of n control variables, which are thought to affect the dependent variable.

The problem here is that we can never be sure whether or not we have included all of the potential control var-

iables, which is consequential as the results are sensitive to the set of control variables included in the model.

To circumvent this problem, Leamer27,28 proposed extreme bounds analysis (EBA), which is a sensitivity

analysis that enables the selection of the explanatory variables to be included in empirical models. A simple form of

EBA involves the estimation of a series of regressions where the explanatory variables are the variable of interest

(density) and a combination of h control variables, such that 1 < h < n. Instead of estimating one equation con-

taining all of the control variables, we estimate m equations, such that

m¼ n!=½h!ðn − hÞ�! ð3Þ

For given values of n and h, the first and last equations are

Y ¼ αþ βDþ δ1X1 þ δ2X2 þ …þ δhXh þ ε ð4Þ

And

Y ¼ αþ βDþ δn−hþ1Xn−hþ1 þ …þ δn−1Xn−1 þ δnXn þ ε ð5Þ

In EBA, inference is based on the estimated coefficient, β, not from one equation, but rather from the whole set

of estimates derived from the m estimated equations.

According to Leamer's EBA, D is a robust determinant of Y if the coefficient β does not change sign and sig-

nificance. For example, when n¼ 7 and h¼ 3, β must remain statistically significant and of the same sign in 35

estimated regressions in order for the underlying variable of interest to be robust. This is a rather difficult test to
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pass, particularly for high values of n, because if the coefficient changes sign and/or significance in one out of

thousands of regressions, the variable is deemed fragile. The emphasis, however, shifts from significance (in one

estimated equations) to robustness (in a large set of estimated equations).

To deal with the excessive stringency of Leamer's EBA, which also overlooks the distribution of β, Sala‐i‐
Martin29 has come up with an alternative EBA test. The alternative test involves the same procedure and num-

ber of regressions, but the criterion used to determine robustness is different. For this purpose, the entire dis-

tribution of β is analysed to determine the fraction of the cumulative distribution function (CDF) lying on each side
of zero, CDF(0). If at least 95% of the CDF lies on either side of zero, the variable is considered robust—otherwise,

it is fragile.

1.3 | Data and empirical results

The empirical results are based on a cross‐sectional sample covering 172 countries.2 Three dependent variables are
used: cases per million, deaths per million and the death rate (deaths per case). While it is true that population

density is more relevant to the determination of cases rather than deaths, it can be argued that it also affects the

death rate, because hospitals are more likely to be overwhelmed in high than low density regions. Data on cases

and deaths were obtained from the European Centre for Disease Prevention and Control.3 The daily figures re-

ported by the ECDPC are converted into cumulative totals as on 11 May 2020. Data on population density

(measured in people per square kilometre) were obtained from the World Bank's development indicators data

base.4

The control variables are taken to be measures of preparedness and the ability to deal with disease outbreak.

These variables are the constituent components of the global health security (GHS) index, which is prepared jointly

by the Nuclear Threat Initiative (NTI) and the Johns Hopkins Center for Health Security (JHU) (in co‐operation with
the Economist Intelligence Unit, EIU).5 These variables are prevention (preventing the emergence or release of

pathogens); detection and reporting (early detection and reporting for epidemics of potential international

concern); rapid response (response to and mitigation of the spread of an epidemic), health system (sufficient and

robust health system to treat the sick and protect health workers); compliance with international norms

(commitment to improving national capacity, financing plans to address gaps, and adhering to global norms); and

risk environment (the overall risk environment and country vulnerability to biological threats). These are certainly

not the only control variables that can be used, but the idea is that they should reduce the effects exerted by

population density on the dependent variable. This will help us answer the question whether, for example, the

health system is good enough to counter the cases and deaths caused by population density. These variables

(labelled X1, …X6) are measured as indices taking values between zero and 100.

The EBA results are reported in Table 3 for both Leamer's EBA (looking at the extreme values only) and the

Sala‐i‐Martin EBA (looking at the cumulative density function). The table displays the extreme values of the co-

efficient on the variable of interest (βmin and βmax), together with their t statistics in parentheses. The percentage of
significant coefficients across regressions estimated for each combination of the control variables is also reported.

We can see that βmin and βmax do not change sign or significance when the dependent variable is cases but not so
when it is deaths. This means that population density is a robust determinant of cases, having a positive effect—that

is, the virus spreads more quickly in more densely populated countries. Irrespective of the combination of control

variables, the coefficient turns out to be significant (hence the 100%).

2

The analysis is based on cross‐sectional data where each country represents an observation in the sample. In this sense, the results do not pertain to
individual countries, but rather to the sample as a whole. The sample consists of the latest available observation on each variable.
3

https://www.ecdc.europa.eu/en/publications‐data/download‐todays‐data‐geographic‐distribution‐covid‐19‐cases‐worldwide
4

https://data.worldbank.org/indicator/EN.POP.DNST
5

https://www.ghsindex.org/
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On the other hand, the coefficient on population density is not significant (even in one regression) when

the dependent variable is the death rate, in which case it is definitely fragile. This means that population

density does not affect the number of deaths, which makes sense because a larger number of infected people

recover in a country with a high quality healthcare system. However, when the dependent variable is the ratio

of deaths to infection cases, population density turns out to be robust, exerting a negative effect on the ratio.

This means that with high population density, proportionately less of the infected people die. If cases rise with

density but deaths are not affected by it, it follows that the ratio must decline as density rises.

The importance of density as a determinant of Covid‐19 cases is demonstrated by the finding that it passes the
difficult test of Leamer's EBA. No matter what combination of the control variables is used, the coefficient turns out

to be significantly positive when the dependent variable is cases per million and negative when it is the ratio of

deaths to cases. The results obtained from the Sala‐i‐Martin EBA are consistent, as the percentage of the cumu-

lative density function lying on either side zero, CDF(0), is 100% in both cases.

2 | SUPPLEMENTARY RESULTS

To shed some light on the relative importance of the control variables as determinants of cases and deaths, we use

variable addition tests and the Akaike information criterion for model selection. Now that we have found out that

population density has a significant effect on the number of cases (and consequently on the ratio of deaths to

cases), variable addition tests are intended to find out if any of the control variables adds anything in terms of

explanatory power to an equation that has population density as the only explanatory variable. For this purpose,

the following two regression equations are estimated:

Y ¼ αþ βDþ ε ð6Þ

Y ¼ αþ βDþ δiXi þ ϵ ð7Þ

where Y is any of the three dependent variables and Xi is any of the six control variables, such that i¼ 1;…; 6. The

null hypothesis is that Xi does not add anything to the explanatory power of the equation over and above what is

provided by population density. For this purpose, three test statistics can be constructed from the residual sums of

squares of equations (6) and (7): a Langrage multiplier (LM) statistic with a χ2ð1Þ distribution, a likelihood ratio

statistic with a χ2ð1Þ distribution, and an F(1,169) statistic. A significant test statistic implies that the added var-

iable, Xi , does matter and that it contributes to the explanatory power of the equation (for details, see30)

The Akaike information criterion (AIC) is used to choose between equation (6), in which the dependent variable

is explained by population density only, and the following equation:

TAB L E 3 Robustness of population density

Sample βmin βmax Significance (%) CDF(0)

Cases/million 0.28 0.56 100.0 99.9

(2.91) (3.12)

Deaths/million −0.01 0.003 0.00 67.1

(‐1.41) (0.22)

Ratio (Deaths/Cases) −0.000007 −0.000005 100.0 100.0

(−3.50) (−2.50)
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Y ¼ αþ δiXi þ ϵ ð8Þ

where the dependent variable is explained by one of the control variables. AIC is calculated as follows:

AIC ¼ LL1 − LL2 − ðk1 − k2Þ ð9Þ

where LL1 and LL2 are respectively the maximised log‐likelihood functions of equations (6) and (8), and k1 and k2 are
the number of estimated parameters.31,32 A positive value of AIC indicates that equation (6) is preferred to equa-

tion (8), and vice versa. When equation (6) is selected as the preferred model, this means that population density is

more important for the determination of the dependent variable than the control variable Xi .

The results are presented in Tables 4, 5 and 6 for the three dependent variables. Table 4 reports the results

when the dependent variable is cases per million. The variable addition test statistics show that three control

variables add value over and above what is provided by population density: X1 (prevention), X4 (the healthcare

system) and X6 (the risk environment). These results are consistent with the preferred equation as selected by AIC,

which tells us that X1, X4 and X6 have better explanatory power than population density. In Table 5 we can see

that any of the control variables has higher explanatory power for the number of deaths than population density. In

Table 6, on the other hand, we can see that population density outperforms any of the control variables in

explaining the ratio of death to cases.

TAB L E 4 Variable addition tests and model selection (cases per million)

Variable

Variable Addition Tests Model Selection

LM LR F(1,169) AICb Preferred Equation

X1 6.20a 6.31a 6.32a −0.46 8

X2 1.53 1.53 1.52 2.05 6

X3 3.26 3.29 3.27 0.87 6

X4 9.79a 10.09a 10.21a −2.22 8

X5 0.49 0.49 0.49 2.59 6

X6 34.96a 39.09a 43.12a −18.1 8

aSignificant at the 5% level, implying that the underlying variable is important and should be included in the model.
bA negative AIC implies that equation (8) (with the alternative variable) is preferable to equation (6) (with population

density), and vice versa.

TAB L E 5 Variable addition tests and model selection (deaths per million)

Variable

Variable Addition Tests Model Selection

LM LR F(1,169) AICb Preferred Equation

X1 12.41a 12.88a 13.14a −6.44 8

X2 6.44a 6.56a 6.57a −3.27 8

X3 5.78a 5.88a 5.87a −2.94 8

X4 10.79a 11.14a 11.32a −5.56 8

X5 0.99 0.99 0.98 −0.44 8

X6 27.18a 29.58a 31.72a −14.62 8

aSignificant at the 5% level, implying that the underlying variable is important and should be included in the model.
bA negative AIC implies that equation (8) (with the alternative variable) is preferable to equation (6) (with population

density), and vice versa.
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The “density paradox” refers to the observation that some highly populated cities and countries have recorded

smaller numbers of Covid‐19 cases than places that are sparsely populated. Controversy has arisen as to why New
York City is the epicentre of Covid‐19, which some observers attribute to high population density, whereas Seoul
(which is more densely populated) has significantly fewer cases. On a country level, it can be readily seen that some

sparsely populated countries have recorded more Covid‐19 cases per capita than some more populated countries

(e.g., Sweden vs. Slovenia). Yet, we can also observe that some sparsely populated countries have fewer cases than

densely populated countries (e.g., Australia and Finland vs. Switzerland, the UK and Belgium).

This is not a paradox unless we make the implausible and unrealistic assumption that the only factor that

determines Covid‐19 cases per capita is population density. The outcome depends on an interplay of a large

number of factors, including (but not limited to) population density. These factors include preparedness for epi-

demics and pandemics as well as the timing and nature of action taken to prevent the spread of the virus. For

example, Sweden has the largest number of cases in Europe on a per capita basis because the government refuses

to impose social distancing. Brazil, with a low density, is in a very bad shape because the president believes that

Covid‐19 is not more hazardous than the common cold (or flu at worst) and that the economy is more important.

In this paper we present empirical evidence on the role played by population density in spreading the coro-

navirus, based on cross‐sectional data covering 172 countries. As control variables, we use measures of the ability
of each country to deal with the pandemic as reflected in the global health security (GHS) index. Several empirical

techniques are used, including extreme bounds analysis (both the Leamer and Sala‐i‐Martin versions), variable

addition tests and the AIC as a model selection criterion. The results show that population density has a signifi-

cantly positive effect on the number of cases but not the number of deaths—the latter is better explained by

measures of preparedness. Population density also seems to have a negative effect on the ratio of deaths to cases.

We can only conclude that the “density paradox” is not really a paradox.6

While views and findings differ on the role of population density in transmitting Covid‐19, the effect of density
on the spread of the disease is intuitive and consistent with the basic epidemiological model. This, however, does

not mean that we should expect a one‐to‐one correspondence between density and the spread of the disease

TAB L E 6 Variable addition tests and model selection (ratio of deaths to cases)

Variable

Variable Addition Tests Model Selection

LM LR F(1,169) AICa Preferred Equation

X1 0.16 0.16 0.15 10.97 6

X2 0.01 0.01 0.004 11.05 6

X3 2.02 2.09 1.95 10.79 6

X4 0.58 0.59 0.53 11.03 6

X5 3.19 3.38 3.22 9.07 6

X6 0.002 0.002 0.002 11.05 6

*means a significant test statistics, Significant at the 5% level, implying that the underlying variable is important and

should be included in the model.
aA negative AIC implies that equation (8) (with the alternative variable) is preferable to equation (6) (with population

density), and vice versa.

6

The words “puzzle” and “paradox” appear frequently in the economics literature to describe certain observations that are seemingly unexplainable (this

does not necessarily mean that it does not have an explanation but that we do not know what the explanation is). However, it often turns out that these

puzzles and paradoxes are not really puzzles or paradoxes (see, e.g.,33).
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because other factors play a role as well. The results of this study show that, on a worldwide basis, density does

matter. If this is the case, then what are the implications for health planning and management? One has to bear in

mind that the objectives of healthcare in a pandemic are to minimise (i) transmissibility, morbidity and mortality;

and (ii) the burden on the healthcare system. One implication is that if population density is conducive to the spread

of the virus, then lockdowns and other forms of non‐pharmaceutical intervention should not be uniform across

regions of the same country. Rather the degree of stringency should depend on population density. However, public

gatherings should be avoided even in lightly populated regions. Hsu18 argues that not every crowding situation

leads to widespread viral transmission, even though some have turned out to be superspreader events in a diverse

array of settings in the US, including a suburban house party in Connecticut, a biotech conference at a Boston hotel,

a Bible study session at a rural Arkansas Church, and overnight summer camps in Georgia and Missouri.

Population density has another implication because it has been found that middle‐aged and older adults who
live in densely populated neighbourhoods tend to have higher odds of being overweight, which makes them more

vulnerable to Covid‐19.34 The effect goes through mode of travel and physical exercise, in the sense that those

living in densely populated neighbourhoods typically use cars and spend less time on exercise. Yet another

implication is that the pandemic could encourage some local governments and developers to promote suburban

living. However, it is unlikely that there will be a mass exodus out of cities. Johnston6 suggests that it is unlikely that

Covid‐19 alone will see a shift back to suburbanisation, even though some people may reconsider the desirability of
some of the most high‐density housing stock. He notes the view of an expert who says that “people won't

necessarily want to move to the country after this, but there will be an acute awareness that they may need more

space”. The motivating factor is that people want to avoid riding in lifts and touching shared surfaces.

An important implication for health planning is highlighted by De Winter35 who argues that what matters is not

availability (e.g., the number of health centres per 10,000 people and the number of clinical laboratory per 100,000

people—the same goes for ICUs, doctors, nurses, etc.), but rather by accessibility, in the sense that people need

health service within a certain distance from where they live. The geographical distribution of health personnel and

facilities should not only depend on population density but also on accessibility.

The lesson that should be learned from these results is that density does matter, in which case it should not be

dismissed as irrelevant on the basis of casual empiricism (e.g.,7) It is a factor that should be taken seriously by health

planners and managers when they determine the distribution of health personnel and facilities. In the past, epi-

demics and pandemics provided incentives to do something constructive. e.g., London's sewage systems were

developed in response to cholera outbreaks in the 19th century. This pandemic has provided the opportunity to do

practical research that can aid decision making.
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