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Abstract

We propose a set of computational methods, named INTRIGUE, to evaluate and control 

reproducibility in high-throughput experiments. Our approaches are built upon a novel definition 

of reproducibility, which emphasizes directional consistency (DC) when experimental units are 

assessed with signed effect size estimates. The proposed methods are designed to i) assess the 

overall reproducible quality of multiple studies; and ii) evaluate reproducibility at the level of 

individual experimental units. We demonstrate the proposed methods in detecting unobserved 

batch effects in high-throughput experiments via simulations. In an application of assessing 

reproducibility in transcriptome-wide association studies (TWAS), we illustrate the versatility of 

the proposed methods: in addition to reproducible quality control, they are also suited for 

investigating genuine biological heterogeneity. Finally, we discuss the extensions of the proposed 

reproducibility measures and potential applications in other vital areas of reproducible research 

(e.g., publication bias and conceptual replications).

Introduction

Reproducibility, or results reproducibility, concerns producing corroborating results across 

different experiments that aim to tackle the same scientific question. In literature, it is also 

referred to as replicability [1]. The reproducibility of scientific research has attracted rising 

attention in both the scientific community and the general public [1, 2, 3]. Biomedical 

research faces some unique challenges in reproducibility, especially with its wide adoption 

of high-throughput experimental technologies. High-throughput experiments enable 

simultaneous measurements of a large number of biological variables. However, the 

accuracy and the reproducibility of the results are often susceptible to unobserved 

confounding factors, commonly known as batch effects [4, 5, 6]. In recent years, many 

incidents of irreproducible research [7, 8] can be traced to failures of quality control in high-

throughput experiments. While irreproducibility is often associated with unwanted batch 

effects, the very concept can be applied to study genuine biological heterogeneity. For 
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example, mapping tissue-specific expression quantitative trait loci (eQTLs) using high-

throughput assays can be framed as a problem of identifying irreproducible genetic effects 

on gene expressions in different cellular environments [9, 10]. In this context, strong 

irreproducible eQTL effects across tissues may imply altered molecular mechanisms for 

gene regulation [11]. In both scenarios above, assessing irreproducibility is to evaluate the 

extent of discordance in outcomes among multiple experiments.

Although there is a rich literature on quantifying reproducibility/replicability, the available 

results primarily focus on the consistency of (statistically) significant findings [12, 13]. As a 

result, most existing methods do not address the unique settings of high-throughput 

experiments, nor do they provide an overall assessment for the whole replication experiment. 

One of the pioneering works in quantifying irreproducibility in high-throughput experiments 

is [14] motivated by the analysis of CHIP-seq data. The authors characterized reproducible 

signals as highly and consistently ranked experimental units across experiments and 

proposed a computational framework, irreproducible discovery rate (IDR), to enable 

rigorous false positive control of such reproducible findings. Although rank information is 

universally available in all types of high-throughput experiments, we note that a vast 

majority of the experiments offer much richer information. Notably, many experiments 

provide a signed effect estimate (along with its standard error) for each experimental unit. 

For example, the estimated gene-level effect in differential gene expression experiments 

quantifies the difference in expression abundance. It is natural to consider the consistency of 

estimated effects among multiple experiments as a measure of reproducibility.

In this paper, we re-examine the characterization of reproducible signals in a setting where 

each experimental unit is assessed with a signed effect size estimate. In this context, 

reproducibility is intuitively defined by the quantitative concordance of estimates from 

multiple experiments. Despite this simple intuition, several conceptual considerations are 

critical in implementing this idea. First, we argue that the concordance criteria should be 

applied to the underlying unobserved true effects (rather than the observed/estimated 

effects). Specifically, the estimated effect should be viewed as a noise-contaminated 

observation from the real effect: consider a replication experiment with a much larger noise 

level than the original experiment. Despite that the observed effects from the two 

experiments are inconsistent, it is illogical to conclude that the initial experiment is 

irreproducible because the noisy observations in the second experiment are simply less 

informative (for recovering the true underlying effects). Second, it is unrealistic to assume 

that the underlying effects of reproducible signals in all experiments are exactly the same. 

However, they should be reasonably similar. The key is to define an acceptable level of 

heterogeneity in effect sizes for reproducible signals. To the best of our knowledge, there are 

no known results for such a definition available in the literature. Finally, we note that by 

imposing some consistency criteria on effect sizes, all experimental units can be classified 

into three mutually exclusive categories. They represent non-signals (which have consistent 

zero true effects in all experiments), reproducible signals (which have consistent non-zero 

true effects in all experiments), and irreproducible signals (which have inconsistent effects 

across experiments), respectively. This classification scheme is fundamentally different from 

the rank-based reproducibility quantification methods, which allow only two latent 

categories: consistent vs. inconsistent.
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In this paper, we formalize the concept of reproducibility and propose a novel statistical 

framework to quantify and control reproducibility in high-throughput experiments. We 

examine our proposed computational approaches in both simulation studies and real data 

applications. The proposed statistical methods are implemented in the software package 

INTRIGUE (quantIfy and coNTRol reproducIbility in hiGh-throUghput Experiments), 

which is freely available at https://github.com/artemiszhao/intrigue. A docker image that 

enables complete replications of the numerical results from our simulations and real data 

analysis is also included.

Results

Overview of computational methods

Under our specified setting, the fundamental distinction between reproducible and 

irreproducible signals is solely reflected by the heterogeneity among the underlying effects 

in repeated measurements. To provide a reasonable standard to distinguish exceedingly high 

and acceptable low levels of heterogeneity, we propose to characterize reproducibility by 

specifying a minimum requirement of the maximum tolerable heterogeneity for a 

common-sense reproducible signal. Based on this consideration, we argue that, with a high 

probability, the underlying effects of reproducible signals are expected to have the same 

(positive or negative) sign. Henceforth, we refer to this criterion as the requirement of 

directional consistency (DC). Given the true effect, the DC criterion establishes a range of 

reasonable variability for a reproducible signal.

The directional consistency criterion is a natural extension of Tukey’s argument for 

detectable effects [15, 16], i.e., an effect is reliably detected if its direction (positive or 

negative) can be confidently determined. In our context, DC characterizes the reliability of a 

reproducible signal in repeated measurements. DC also enjoys the scale-free property, i.e., 

the criterion is invariant even if the measurement scales are different in different 

experiments. For example, it is possible to consider the reproducibility of multiple 

differential gene expression experiments conducted using different technologies (e.g., 

microarray vs. RNA-seq) under our proposed theoretical framework.

We propose two Bayesian hierarchical models, the CEFN and the META models, to 

implement the DC criteria for high-throughput data analysis. Both models explicitly 

parameterize and quantify the heterogeneity between the true underlying effects for a given 

experimental unit (e.g., a gene) across multiple experiments. Importantly, the measures of 

heterogeneity can be translated into precise probabilistic statements for interpreting the DC 

criteria. In the CEFN model, the tolerable level of heterogeneity is adaptive to the underlying 

effect, i.e., a higher level of heterogeneity is expected if the true underlying effect increases. 

We refer to such a property as the adaptive expected heterogeneity. In comparison, the 

expected (tolerable) heterogeneity is invariant for the magnitude of true effects in the META 

model. Both properties can be useful depending on the application context.

In both statistical models, each experimental unit can be classified into three mutually 

exclusive latent classes according to its underlying (grand) effect and the heterogeneity 

exhibited in multiple experiments: i) the null signals (which have consistent zero effects); ii) 
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reproducible signals (which exhibit consistent non-zero effects); and iii) irreproducible 

signals (whose effect size heterogeneity exceeds the expectation by the DC criteria).

Given the estimated effects and their corresponding standard errors for all experimental units 

in multiple experiments, we develop an empirical Bayes procedure to conduct inference. 

(Note that our methods also work with z-statistics, or signed p-values, as the estimated 

effects at the signal-to-noise ratio scale.) The procedure is implemented in an expectation-

maximization (EM) algorithm by treating each experimental unit’s latent class status as 

missing data. Particularly, the procedure estimates the proportions of null (πNull), 

reproducible (πR), and irreproducible (πIR) signals for all experimental units. Additionally, 

we report a quantity, ρIR, to measure the relative proportion of irreproducible findings in 

non-null signals, i.e.,

ρIR ≔ πIR
πIR + πR

(1)

The combination, (πIR, ρIR), serves an informative indicator to quantify the severity of lack 

of reproducibility from observed data. Each experimental unit is subsequently assessed with 

three posterior classification probabilities corresponding to the three latent classes. The 

resulting posterior probabilities are used in the false discovery rate (FDR) control procedures 

[17] to identify reproducible and irreproducible signals.

Simulation studies

Evaluation of computational methods—We design a series of simulations to evaluate 

the performance of the proposed methods and investigate the practical factors that impact the 

assessment of reproducibility in high-throughput experiments. This set of simulations 

mimics the genome-wide quantitative trait locus (QTL) mapping experiments, and we 

implement different schemes by changing the proportions of three types of signals, adjusting 

sample sizes in replication studies, and varying the numbers of involved studies.

First, we examine the accuracy of the estimated proportions for πNull, πR, and πIR. The 

results, summarized in Supplementary Table 1, indicate that the proposed EM algorithm 

provides accurate proportion estimates for both the CEFN and the META models and is 

robust to uneven sample sizes in multiple experiments. Next, we examine the accuracy of 

reproducible probabilities assessed at the level of individual experimental units using the 

simulated data sets. Specifically, we investigate the calibration of the inferred posterior 

probability for reproducible classifications by contrasting the assessed posterior probabilities 

with the corresponding frequencies of true reproducible signals. If the posterior probabilities 

are calibrated, a group of experimental units assessed with posterior reproducible probability 

p should have approximately (100 × p)% of truly reproducible observations. Overall, we find 

that both the CEFN and the META models yield reasonably calibrated probabilistic 

quantification of individual reproducibility (Figure 1). For both models, the calibration is 

particularly accurate for modest to high values of reproducible probabilities. Both models 

seem to be conservative in the range of lower values, but it should not lead to inflation of 

type I errors. Finally, we investigate the quantitative relationship between the number of 
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replications and the power to detect reproducible and irreproducible signals. The receiver 

operating characteristic (ROC) curves shown in Figure 1 indicates that the area under the 

curve (AUC) monotonically increases with increased replication numbers for classifying 

reproducible and irreproducible signals.

Simulation for batch effect detection—One of the essential practical applications for 

the proposed methods is to detect batch effects in high-throughput experiments. Provided 

that a high-quality reference dataset generated from a similar experimental setting is 

available, we illustrate our methods in assessing the reproducibility of a new dataset in the 

presence of batch effects. Following the scheme in [18], we consider a differential gene 

expression (DE) experiment of 1,000 genes with 20 cases and 20 controls and use a location-

and-scale model [19] to simulate various magnitude of batch effects that are also partially 

correlated with the case-control status. Consequently, the DE analysis likely produces false-

positive findings without proper controls of latent batch effects. In all our simulations, half 

of the genes are contaminated by the batch effects.

Both the CEFN and the META models are shown excellent sensitivity in detecting modest 

batch effects: their performance is comparable to the gold standard two-sample 

Kolmogorov-Smirnov (K-S) test (Table 1 and Extended Data Figure 1). More importantly, 

the proposed approaches show the unique ability to identify reliable findings and 

irreproducible results through rigorous FDR control of reproducibility at gene-level (Table 

2). Additionally, we examine the performance of batch removal procedures and their impacts 

on reproducibility. We find that although such a procedure is generally effective, it does not 

completely eliminate the false positive findings. Nevertheless, when combined with the 

proposed methods, our ability to identify genuine biological signals is greatly enhanced even 

in the presence of batch effects (Table 2).

Real data applications

We demonstrate the proposed methods in an application of transcriptome-wide association 

study (TWAS) utilizing multi-tissue eQTL data from the GTEx project. TWAS analysis is a 

type of integrative analysis approach that tests the association between genetically predicted 

gene expression levels (based on tissue-relevant eQTL information) and the complex trait of 

interest [20, 21]. Significant associations identified from this procedure imply potential 

causal relationships from gene expressions to the trait under certain causal assumptions [22].

Reproducibility of height GWAS between UK Biobank and GIANT consortium
—In the first analysis, we examine two independent GWAS of standing heights from the UK 

Biobank (UKB) and the GIANT consortium (GIANT), respectively. For both datasets, we 

use the GTEx skeletal muscle eQTL data to compute the genetically predicted gene 

expressions. If the two large-scale GWAS results are consistent, the two sets of the TWAS 

results are expected to be consistent. We use the z-scores from the two TWAS datasets as 

input and assess the reproducibility across 32,362 genes. We note that the UKB data has a 

larger sample size (337K individuals) than the GIANT data (253K individuals), and, as 

expected, the absolute values of z-scores for significant genes are often stronger in the UKB 
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data. Nevertheless, as shown in Figure 2, the overall trend of directional effects remains 

highly consistent with only a few outlying data points showing directional mismatches.

The proportion estimates by both the CEFN and the META models confirm that the two 

GWAS datasets are highly concordant (Table 3). Both models estimate that the proportion of 

irreproducible signals is close to 0. As expected, the META model yields slightly more 

conservative reproducibility assessment due to its assumption of non-adaptive heterogeneity, 

which emphasizes consistency in both signal directions and magnitude.

At 5% FDR level, the CEFN model identifies 3166 reproducible genes. The q-value 

procedure [23] identifies 1437 and 2653 significant TWAS genes at 5% FDR level in 

separate analyses of the GIANT and the UKB datasets, respectively. 97% of the GIANT 

TWAS genes and 91% of the UK Biobank TWAS genes are in the identified reproducible 

TWAS gene sets. The much-improved power over the analysis of individual datasets 

illustrates that the proposed approach achieves a similar benefit as a traditional meta-

analysis while incorporating tolerable heterogeneity.

This example represents a large class of applications for which reproducibility is evaluated 

by the measurements of signal-to-noise ratios (e.g., signed p-values, t-statistics). Given the 

context of this experiment, the systematic difference in z-scores for associated genes 

between the two studies is well expected due to the discrepancy of the sample sizes. We 

perform the Cochran’s Q test for each gene using the observed z-scores and observe that the 

empirical distribution of the derived p-values are distinctively right-skewed (Section 4.2.1 of 

the Supplementary Notes ). The CEFN model is uniquely suited in this example: it not only 

provides the sensible evaluation of reproducibility but also automatically aggregates the 

evidence for deemed reproducible genes across studies. The latter feature is particularly 

important, especially when the traditional fixed-effect meta-analysis approach is not readily 

applicable for a good proportion of reproducible genes (Section 4.2.1 of the Supplementary 

Notes).

Reproducibility of TWAS using blood and muscle transcriptome—In the second 

experiment, we focus on the height GWAS data from the UK Biobank but predict the gene 

expressions based on the GTEx eQTL data from two distinct tissues, namely, skeletal 

muscle and whole blood. Because the genetically predicted gene expressions reflect the 

tissue-specific gene regulation, the comparison of the corresponding TWAS analyses should 

shed light on the tissue-specificity of identified gene-level associations in TWAS.

Our main results focus on a subset of 7,734 “eQTL genes”, or eGenes [11, 24], which are 

pre-selected and satisfy two criteria: i) they are considered well-expressed in both tissues 

(Section 4.2 of the Supplementary Notes); and ii) they harbor at least one cis-eQTL (not 

necessarily identical) in both tissues. For this subset of genes, the inconsistent TWAS results 

between tissues are likely due to differential regulation patterns. We find that a substantial 

proportion of eGenes are deemed irreproducible in tissue-specific TWAS, indicating that 

potential causal molecular mechanisms from genes to traits are qualitatively different in 

different tissues.
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There is a caveat to the application of the proposed methods in this specific setting. Both the 

META and the CEFN models assume that the observed effects from the null signals are 

independent across experiments. This assumption is likely violated because the analyses in 

different tissues utilize the same GWAS data set, which introduces correlations in observed 

z-scores even under the null. This violation potentially leads to anti-conservative estimates 

of null proportions. Nevertheless, we find the estimates of null proportions of all genes by 

both models are very close to the estimates using multiple GWAS data (Table 3). We also 

repeat the tissue analysis using the TWAS results from i) UKB Height GWAS and GTEx 

whole blood eQTL data; and ii) GIANT Height GWAS and GTEx skeletal muscle eQTL 

data. In this setting, the independent assumption under the null is met. The results, 

summarized in Section 4.3.1 of the Supplementary Notes, are overly similar to Table 3 with 

increased πIR and πNull estimates. Although the interpretation in this new analysis may be 

more complicated given the difference in GWAS data, our main conclusions remain the 

same: a significant portion of TWAS signals for heights are tissue-specific.

At individual gene-level, the CEFN model almost exclusively identifies irreproducible 

eGenes corresponding to the outlying data points in the second and the fourth quadrants in 

Figure 3. In comparison, the META model also flags the data points with a noticeable 

magnitude difference in z-scores despite the directional consistency. In this context, both 

models are uniquely valuable: the CEFN model effectively identifies qualitative interactions 

between genes and tissue/cellular environments; the additional quantitative interactions 

identified by the META model are also of biological interest.

Discussion

In this paper, we propose a statistical framework to aid quantification and control of 

reproducibility in high-throughput experiments. Assuming signed effect estimates are 

available from multiple replicated experiments, we formally introduce a probabilistic 

definition of reproducibility based on the directional consistency criterion. Built on this 

definition, we propose the probabilistic models to i) assess the overall reproducibility of 

multiple studies through parameter estimation; and ii) evaluate reproducibility for individual 

experimental units. The proposed methods are applicable to a wide range of analyses for 

high-throughput experiments, including differential expression analysis, molecular QTL 

mapping, genome-wide genetic association studies (GWAS), and more.

The DC criterion is one of our key contributions to reproducibility research, and its 

application goes beyond the scope of high-throughput experiments. The DC criterion 

provides a principled way to define a maximum level of acceptable heterogeneity. If the 

observed variation between replications is deemed to exceed this maximum tolerable level, 

the practical factors that lead to irreproducible results should be carefully investigated. To 

illustrate, we provide an example of detecting publication bias based on the proposed META 

model and a Bayesian model comparison approach. Publication bias refers to the 

phenomenon that reported effect estimates in scientific publications tend to be exaggerated. 

It is known that naturally occurred between-study heterogeneity and publication bias are two 

convoluted factors, and objective assessment of publication bias requires explicit 

consideration of between-study heterogeneity [25, 26]. Ignoring between-study 
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heterogeneity when assessing publication bias often yield misleading conclusions [27, 25, 

28]. In our illustrative example, we simulate two studies estimating a treatment effect 

(Section 5 of the Supplementary Notes). The effect size estimate for the smaller study is 

generated from a selection process that mimics aggressive p-hiking behaviors. For each 

observation, we compute a Bayes factor to compare the evidence for irreducible and 

reproducible models based on the reported estimates. We find that this approach exhibits 

excellent sensitivity and specificity in detecting publication bias with merely two studies 

(see results in Section 5 of the Supplementary Notes). In comparison, other existing 

approaches that rely on detecting funnel plot asymmetry (e.g., Egger regression) typically 

requires more than ten replication studies [29].

Our proposed approaches also have close connections to assessing heterogeneity in a meta-

analysis: both the CEFN and the META model resemble a random-effects meta-analysis 

model, and both models converge to the fixed-effect meta-analysis model in the limiting case 

of no heterogeneity (i.e., k → 0; r → 0). Similar to meta-analysis models, the quantification 

of heterogeneity in INTRIGUE is achieved by evaluating the between-study variance of the 

underlying effect sizes. However, the traditional meta-analysis often assesses the extent of 
heterogeneity by contrasting to a fixed-effect model (e.g., using Cochran’s Q test) [30]. We 

argue that for assessing reproducibility, the fixed-effect meta-analysis model may not be a 

natural benchmark because the diversity between studies is inevitable. In comparison, the 

DC criterion formulates a much relaxed and reasonable standard and also enables a refined 

categorization of null, irreproducible, and reproducible signals. Therefore, we consider 

applying the DC criterion to define an expected level of heterogeneity a priori is the main 

distinction and novelty compared to the traditional meta-analysis approaches. Finally, we 

note that traditional meta-analysis typically considers only a few experimental units/effects, 

whereas the proposed methods are designed for high-dimensional measurements generated 

from high-throughput experiments. We are able to take advantage of this setting and apply 

Bayesian hierarchical modeling to achieve effective partial pooling of information on 

reproducibility from strong, modest, and even weak signals of all types.

Our work also complements the seminal work by Li et al. [14], which quantifies 

reproducibility via rank consistency. The proposed approaches utilize different quantitative 

information than the relative rankings of experimental units in a high-throughput setting. 

When such information is available, we find that our proposed approaches refine the 

classification of signals and overcome some computational difficulties in the IDR method. 

Nevertheless, the rank-based methods are more general for requiring less information 

content, and their applications are also broader.

The concepts and general ideas proposed in this paper are also applicable to conceptual 
replications, which refer to applying different methods to reproduce the result from a 

previous research work without replicating the complete experimental procedure [31]. One 

critical limitation of our current methods is its independent assumption of observed null 

signals from replications, which we have discussed in the example of multi-tissue TWAS 

analysis. As the applications of conceptual replications often share the same underlying data, 

explicit modeling of the correlations between null observations becomes necessary in such 

application scenarios. In some specific statistical settings, e.g., a multivariate linear 
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regression model (MVLR), the proposed META model can be conveniently incorporated 

into the framework proposed in [32] to resolve this issue. Nevertheless, more general 

solutions, especially for the CEFN model, require future work.

Methods

Model details

We consider a general setting where p experimental units (e.g., genes) are measured in M 
experiments. In the j-th experiment, we assume that the effect of unit i is represented by a 

point estimate, β i, j, and its corresponding standard error, σi,j. Let βi,j denote the underlying 

true effect of unit i, we assume that

β i, j ∣ βi, j ∼ N(βi, j, σi, j2 ), (2)

where σi,j models the noise contamination to the true effect.

The reproducibility is directly reflected by the variability of βi,j’s among different 

experiments. To this end, we introduce a grand effect for unit i, β̄i, for a hypothetical 

population of possible replicating experiments. We assume

β̄i ∼ N(0, ω2), (3)

where ω characterizes the magnitude of the overall effect. For a reproducible signal, βi,js are 

expected closely clustered around β̄i. To implement the DC criterion, we propose two 

different prior models to describe the directional relationships between βi,j’s and β̄i.

Curved exponential family normal prior model (CEFN)—In this prior model, we 

assume

βi, j ∣ β̄i, k ∼ N(β̄i, k2β̄i
2), k ≥ 0, j = 1, 2, …, M . (4)

Notably, the variance of the assumed distribution (4) depends on its mean parameter and is 

scaled by a heterogeneity parameter, k. In the extreme case when k → 0, (4) degenerates to 

the fixed-effect assumption in meta-analysis. Importantly, (4) has the critical implication that 

directly connects to the DC criterion, i.e.,

Pr (βi, j has the correct sign as β̄i ) = Φ 1
k , (5)

where Φ(·) denotes the cumulative distribution function of the standard normal distribution 

(a detailed derivation is provided in Section 6 of the Supplementary Notes). Eqn (5) shows 

that when k → 0, the probability → 1, whereas k → ∞, the probability → 0.50. The 

adaptive expected heterogeneity of the CEFN model is due to the explicit mean-variance 

relationship in (4). The variability of βi,j’s increases with β̄i
2 for a fixed k (representing a 

fixed DC probability) value.
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Meta-analysis prior model (META)—In this model, we adopt a Bayesian meta-analysis 

model [33] to describe the heterogeneity of βi,j’s. Particularly, we assume that

βi, j ∣ β̄i, ϕ2 ∼ N (β̄i , ϕ2) , j = 1, 2, …, M . (6)

Let r ≔ ϕ2

ϕ2 + ω2 , the DC criteria has a probabilistic interpretation through the following 

integral equation,

Pr (βi, j has the correct sign as β̄i ) = 2
π∫0

+∞
Φ 1 − r

r t e− t2
2 dt . (7)

Note that the limiting behaviors of the META model for extreme heterogeneity, i.e., as r → 
0 and r → 1, coincide with the CEFN model.

Both the CEFN model and the META model can be represented by a directed acyclic graph 

(DAG) (Extended Data Figure 2).

Partition of model space

The space of the proposed hierarchical model based on the CEFN prior is parameterized by 

the combination of (k, ω), which can characterize all three latent classes in observed data.

1. Non-signal: ω = 0. Under this setting, the value of k becomes irrelevant, and 

β̄i = βi, 1 = ⋯ = βi, M ≡ 0.

2. Reproducible signal: ω ≠ 0 and k is small. Under this setting, the generative 

model will produce βi,j’s with the same (correct) sign with a high probability. 

Hence the DC requirement is satisfied.

3. Irreproducible signal: ω ≠ 0 and k is large. βi,j’s generated from this setting have 

variability exceeding the DC criteria and are considered irreproducible.

For the META model, the partition of the model space can be similarly formed by the values 

of (r, ω).

To ease the computational burden in inference, we choose to characterize the continuous 

model space by a dense grid of discrete parameter combinations. Specifically, the grid point 

(k0 = 0, ω0 = 0) represents the non-signals and is always included. Following [16], we adopt 

a data-driven strategy to specify a dense grid values of (k, ω) for alternative scenarios 

(Section 1.2 of the Supplementary Notes). By default, we set DC probabilities {0.990, 0.975, 

0.950} to represent reproducible signals and {0.750, 0.700, 0.650} to represent 

irreproducible signals. (Our software implementation also allows user-specified probability 

classifications.) Additionally, a sequence of ω values is computed to cover a wide range of 

possible grand effects.

For the l-th grid value in the model space, we denote its (prior) weight by πl. Let M0, MR 

and MIR denote the subsets of grids corresponding to non-signals, reproducible, and 
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irreproducible signals, respectively. The prior probabilities for the three latent categories can 

be represented by

πNull ≔ Pr(M0) = π0
πR ≔ Pr(MR) = ∑

l ∈ MR
πl

πIR ≔ Pr(MIR) = ∑
l′ ∈ MIR

πl′

(8)

Given the partition of the model space, the joint modeling of all experimental units can be 

achieved by assuming exchangeability. More specifically, for L pre-specified (k, ω) grids, 

we introduce a 1-of-L latent indicator vector, γi for each experimental unit i and assume that 

γi’s are sampled with replacement from the (prior) probability distribution {πl : l = 0, …, L 
− 1}. The point of interest for inference is to compute the posterior probability, Pr(γi ∈ MR ∣ 
Data), which aids the classification of the corresponding experimental unit.

Statistical inference

We design an EM algorithm to estimate the weight parameter π ≔ (π0,…, πL−1). Using the 

resulting point estimate, π, we compute πR = ∑i ∈ MRπi and πIR = ∑j ∈ MIRπj to represent 

the estimated proportions of reproducible and irreproducible experimental units in the 

observed data, respectively. Within the empirical Bayes framework, we evaluate the 

posterior probability that experimental unit i is generated from the l-th model by

Pr γi l ∣ (β i, 1, σi, 1), …, (β i, M, σi, M), π = πl BFi, l
∑l′πl′ BFi, l′

, (9)

where γi → l represents that γi indicates the l-th model and BFi,l denote the Bayes factor/

marginal likelihood for the l-th generative model. Thus, the posterior probability that 

experimental unit i is reproducible can be computed by

Pr(γi ∈ MR ∣ Data) = ∑
l ∈ MR

Pr γi l ∣ (β i, 1, σi, 1), …, (β i, M, σi, M), π .
(10)

The details of the EM algorithm and the numerical computation of the relevant Bayes factors 

are described in Section 1.4 of the Supplementary Notes.

Note that

lfdri, reproducible ≔ 1 − Pr γi ∈ MR ∣ (β i, 1, σi, 1), …, (β i, M, σi, M), π (11)

is the estimated local false discovery rate (lfdr) for the reproducibility classification of 

experimental unit i. The posterior probabilities allow us to perform FDR control without 

extra cost. In comparison, deriving p-values from the complex null hypothesis stating unit i 
is either a non-signal or irreproducible seems considerably challenging both conceptually 
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and computationally. The lfdr’s for the irreproducible classification can be similarly 

computed from the corresponding posterior probabilities for MIR.

Model robustness

The proposed statistical models assume the normality of the observed summary-statistics 

from each experimental unit. The normal likelihood assumption is a reasonable 

approximation for a wide range of commonly applied parametric models involving 

maximum likelihood estimation, including the families of linear and generalized linear 

models. Many parametric models that are used in analyzing high-throughput sequencing 

data fall into this category. The prior distributions in the CEFN and the META models for 

modeling non-null signals are formed by a dense scaled-normal mixture (rather than a single 

normal distribution), which can be used to approximate a broad spectrum of distributions. 

As a result, both the marginal data probability (i.e., the unconditional distribution of 

observed data) and the posterior probability distribution of the shared effect size between 

studies are extremely flexible [16].

Like Efron’s local FDR method, our proposed methods are applicable for any valid signed p-

value derived from either parametric or non-parametric approaches. The signed p-values can 

be converted to z-scores via a quantile normal transformation [17]. The resulting z-scores 

follow the standard normal distribution under the null, and the distributions for the non-null 

signals are modeled by the flexible scaled-normal mixtures. We show an illustration of this 

transformation in Section 1.3.1 of the Supplementary Notes.

Additional properties of CEFN prior

The CEFN prior (4) is a key component of the proposed methods. Here we discuss some 

properties and implications derived from the prior, which should provide further insights.

First, we examine the directional consistency of observed β i, j’s. The CEFN prior and the 

sampling distribution (2) jointly imply that the following probabilistic statement for the 

directional consistency in the observed data, i.e.,

Pr β i, j’s all have the same sign ∣ β̄i
2 , k2

= ∏
j = 1

M
1 − Φ − 1

k2 + σi, j2 ∕ β̄i
2 + ∏

j = 1

M
ϕ − 1

k2 + σi, j2 ∕ β̄i
2

(12)

The detailed derivation is provided in the Section 1.5 of the Supplementary Material.

Equation (12) indicates the directional consistency of observed data is determined by the 

interplays of the effect size heterogeneity (i.e., the property of reproducibility) and the 

signal-to-noise ratio (represented by β̄i
2 ∕ σi, j2 ). Both factors can dictate the variations of the 

estimated effects. If the noise in the data becomes dominant, the data can be uninformative 

on the underlying effect size heterogeneity, which is a point that we have discussed in the 

introduction. In an extreme example of two experiments (M = 2), if one of the experiments 

has extremely high-level of noise on unit i, it follows that
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lim
σi, 1

2

β̄2 ∞

Pr( β i, 1 and β i, 2 have the same sign) = 1
2,

(13)

regardless of the value of k. Thus, accurate inference of k is contingent on the condition that 

experimental noises are well-controlled.

Next, we consider k is the dominant factor. It can be shown that, with all else being equal, 

the sign consistency probability in (12) is decreasing as the number of the experiments, M, 

increases. However, the rate of decrease is determined by k, i.e., large k values lead to rapid 

decreases, whereas the rate of decrease also approaching 0 as k → 0. A direct implication 

from this observation is that multiple experiments are more informative in identifying 

irreproducible signals. If the number of repeated experiments is limited, the observed data 

from irreproducible signals may show directional consistency by chance. However, such 

chance diminishes quickly as more replication experiments become available. We will 

further illustrate this point in our simulation studies.

Finally, we note that the proposed CEFN prior is independent of the probabilistic 

assumptions on β̄i. In our proposed model, the generative model for β̄i follows the uni-modal 

assumption (UA) [16]. However, this is not required to utilize the CEFN prior. In Section 1.6 

of the Supplementary Material, we show that the CEFN prior is valid for an arbitrary 

generative model of β̄i. This property is unique to the CEFN model. In comparison, the DC 

implication from the META model relies on the UA assumption of β̄i.

Simulation details

Evaluation of computational methods—The general setting for this set of simulations 

mimics a genome-wide expression quantitative trait locus (eQTL) mapping experiment 

investigating p = 1000 genes. Each gene’s genetic effect in each experiment is independently 

simulated from one of the reproducible, the irreproducible, and the null model. The 

corresponding gene expressions are subsequently simulated from a linear model.

For evaluating the estimation accuracy of the EM algorithm, we create three simulation 

schemes, S1, S2, and S3, by varying the proportions of the null, reproducible and 

irreproducible signals and the combinations of the sample sizes in the two studies. 

Throughout this experiment, we consider M = 2 experiments. Notably, we select the sample 

sizes to mimic the study designs in the early and current eQTL studies. The simulation 

details are provided in Section 2.1 of the Supplementary Notes. Additional comparison to 

the rank-based IDR method is provided in Section 2.2 of the Supplementary Notes.

To examine the calibration of reproducible probabilities at the gene-level, we design a new 

scheme, S4, by further reducing sample sizes (N1 = 50, N2 = 40) to cover a full range of 

probabilistic quantification better.

Simulation scheme S5 is applied to quantify the relationship between the number of 

replications (M) and the power to detect reproducible and irreproducible signals. In this 
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scheme, the number of replications from M = 2 to M = 10 and setting the sample size in 

each study = 50.

Additionally, we alter the data generating model to simulate reproducible and irreproducible 

effects in additional sets of simulated data. The results by INTRIGUE remain mostly 

invariant (Section 2.3 of the Supplementary Notes).

Batch effect detection—In the first set of simulations, we assume that no true biological 

signals in all genes. Hence all rejections from the hypothesis testings are indeed false-

positive findings. Our main interest here is to investigate the quantification and the 

corresponding sensitivity of various approaches in detecting unobserved batch effects. Our 

input to all tested methods for each gene includes the estimated DE effects and the 

corresponding standard errors from M = 2 separate experiments. Particularly, the data from 

the first experiment are NOT contaminated by the batch effects and are regarded as a gold-

standard reference. In the replication dataset, we simulate the batch effects using the 

location-and-scale model for 50% of the genes, and the batch labels are partially correlated 

with the case-control status. The sizes of the batch effects are drawn from a random effect 

model, N(0, η2), where we vary the magnitude ratio of the batch effects to the additional 

white noise, η/σ, from 0 to 2 in different simulated datasets (σ2 represents the residual error 

variance for the white noise). When the replication dataset is analyzed alone using the q-

value procedure at the FDR 5% level, there are less than 3 rejections when η/σ ≤ 0.6, the 

false rejections rise to 4.5% and 25% as η/σ reaches 1.0 and 2.0, respectively (Table 1).

We apply the META and the CEFN models on the simulated datasets and focus on their 

estimates on the irreproducible and reproducible proportions. For comparison, we apply the 

two-sample Kolmogorov-Smirnov (K-S) test to examine the concordance of the p-value 

distributions from the reference and the target datasets. We also apply the IDR method to 

analyze the replication and the reference datasets (Section 3.2 of the Supplementary Notes). 

The resulting estimates indicate a lack of rank-consistent signals when the estimation 

procedure is initialized close to the truth. However, we find that the IDR estimates can be 

unstable when the initial values for the model parameters are randomly altered, indicating 

that the latent copula model space may be multi-modal (Section 3.2 of the Supplementary 

Notes). Furthermore, there is no quantity similar to the irreproducible proportion estimate to 

alarm practitioners for potential latent batch effects in this application context.

In the second set of experiments, we additionally simulate genuine DE effects for 20% of the 

genes for each dataset, where the genuine effects are independently drawn from a random 

effect distribution, N(0, κ2), and we set κ/σ = 1 throughout. In the replication dataset, the 

batch effects impact 50% of the DE genes and 50% non-DE genes. We also apply the 

procedure, ComBAT, on each replication dataset to adjust the unobserved batch effects and 

create a corresponding processed replication dataset. When the replication datasets are 

analyzed alone (which we refer to as the “stand-alone analysis”), there are excessive false-

positive errors even when the magnitude of the batch effects are well below the detectable 

levels by the K-S tests (Section 3.3 of the Supplementary Notes). The batch effect 

adjustment procedure is shown quite effective in reducing type I errors, however, the false 
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discovery rates are still not properly controlled in most cases, indicating that complete 

removal of batch effects by computational means is extremely difficult.

We apply both the CEFN and the META model to analyze the reference and the replication 

datasets jointly. The results are summarized in Table 2. In the joint analysis, we find that 

both models properly control the FDR of genuine DE signals at the pre-specified 5% level 

for all examined magnitudes of batch effects. More importantly, when the magnitude of the 

batch effects is smaller than the genuine biological effects, the proposed approaches 

effectively maintain the power of discovery. Nevertheless, when the batch effects overwhelm 

the genuine effects, i.e., η/σ ≥ κ/σ, the power from both models diminishes to ensure the 

desired false positive control. The latent batch effect adjustment procedure again illustrates 

its usefulness. When the processed replication datasets are jointly analyzed with the gold-

standard reference dataset, we observe marked power recovery even when the magnitude of 

the batch effects is close to the biological effects.

Assessing reproducibility of TWAS analysis

Statistically, TWAS analysis is a special case of the burden test. Given a GWAS dataset, (y, 
G), and a set of weights for relevant genetic variants derived from eQTL studies,{wi}, it 

aims to examine the correlation between the phenotype y and the weighted sum, ∑i wiGi, for 

a target gene. The weighted sum is often interpreted as a linear genetic prediction of the 

target gene. A more detailed technical overview of TWAS analysis is provided in Section 4.1 

of the Supplementary Notes.

We apply INTRIGUE in two experiments to examine the reproducibility between i) two 

different GWAS datasets; and ii) two sets of weights derived from different tissue eQTL 

datasets. The details on pre-processing of the eQTL and GWAS data can be found in [24, 

22].

In the first experiment, we also compare the INTRIGUE results with the traditional meta-

analysis and the IDR analysis (which encounters some computational difficulty). The results 

are detailed in Section 4.2 of the Supplementary Notes.

In the second experiment, we use two sets of eQTL weights derived from the whole blood 

and the skeletal muscle tissues. In addition to the analysis focusing on the eGenes, we also 

apply INTRIGUE to examine the full set of 32,363 genes. Both the CEFN and the META 

model yield similar estimates, and the result indicates that among the non-null genes, a 

majority is irreproducible between tissues, i.e., ρIR > 0.50 (Table 3). Close inspection 

suggests that a large proportion of the irreproducible findings are due to tissue-specific gene 

expressions.

The sample sizes in GTEx skeletal muscle and whole blood eQTL data are close (706 vs. 

670) but not identical. We down-sample the skeletal muscle eQTL data to match the exact 

sample size of whole blood and repeat the TWAS and INTRIGUE analyses. We find the 

proportion estimates in reproducibility analysis are virtually invariant (Section 4.3.1 of the 

Supplementary Notes)
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Code availability

The source code for software implementation (in R and C/C++), simulation studies, and real 

data processing are provided in https://github.com/ArtemisZhao/INTRIGUE. A docker 

image that duplicates the complete computational environment for reproducing the reported 

results can be freely downloaded from https://hub.docker.com/r/xqwen/intrigue.

Extended Data

Extended Data Figure 1: Proportion estimates from batch effect affected high-throughput 
experiments with no genuine biological signals
Each simulated dataset consists of 1,000 genes. No gene is differentially expressed in the 

case (N = 20) and the control (N = 20) samples. In each replication dataset, 500 genes are 

affected by the unobserved batch effects with various magnitudes (η/σ). The figure shows 

the estimates of (πIR, πR) from the CEFN and the META models for all magnitudes of batch 

effects examined. The reproducible proportions across all datasets remain close to 0, while 

the estimates of the irreproducible proportions monotonically increases as the batch effects 

become stronger.
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Extended Data Figure 2: A directed acyclic graph representation of the proposed Bayesian 
hierarchical model
The estimated effects, β i, j’s are observed, β̄i’s and βi,j’s are latent random variables. ω, k (or 

r) are hyper-parameters.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data availability

• All processed data for simulations and real data analysis are available at https://

github.com/ArtemisZhao/INTRIGUE/intrigue_paper.

• GWAS summary statistics for the UK Biobank and the GIANT consortium are 

available at doi:10.5281/zenodo.3629742.

• eQTL data for TWAS analysis are available at https://gtexportal.org/home/

datasets.
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Figure 1: Accuracy and performance of the proposed methods in simulations
Panel A represents the calibration accuracy of the estimated reproducible probabilities. The 

estimated reproducible probabilities are binned into multiple frequency bins. We plot the 

mean of the estimated probabilities versus the frequency of the actual reproducible signals 

for each bin (represented by a filled circle at the center of the corresponding error bar). The 

error bars represent the estimated 95% confidence intervals. The statistics in each plot are 

computed from 200,000 data points pooled from 200 independent simulations. Considering 

the small sample sizes used in the simulations, we find the reproducible probabilities are 

calibrated reasonably well, especially for the modest- to high-value bins. Both models are 
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conservative in reporting low-frequency values. Panel B shows the performance of 

classification for reproducible and irreproducible signals with different numbers of 

replication experiments. ROC curves for classifying reproducible signals (left) and 

irreproducible signals (right) by both the CEFN and the META models are plotted. In all 

cases, the performance of classifications uniformly improves as the number of replication 

experiments increases.
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Figure 2: Highly reproducible TWAS signals identified from the height GWAS data in the UK 
Biobank and the GIANT consortium
The TWAS z-scores for all genes are plotted. The highlighted brown data points represent 

the gene evaluated with the reproducible probability > 0.90. It is clear that the CEFN model 

tolerates the magnitude difference of the z-scores and focuses on the directional consistency. 

In contrast, the META model emphasizes the consistency in both aspects and assesses only a 

small subset of genes with high reproducible probabilities.
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Figure 3: Tissue-consistent and Tissue-specific height TWAS signals identified from whole blood 
and muscle skeletal tissues
Tissue-consistent (reproducible probability > 0.75) and Tissue-specific (irreproducible 

probability > 0.75) height TWAS signals are highlighted in brown and cyan, respectively. 

We observe that the META model identifies genes with the consistent directional effect but 

the inconsistent magnitude of z-scores (i.e., cyan points in the first and third quadrants) as 

irreproducible signals. The irreproducible genes flagged by the CEFN model are primarily 

directional inconsistent.
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Table 1:
Detecting batch effects in high-throughput experiments with no genuine biological signals

Each simulated dataset consists of 1,000 genes. No gene is differentially expressed in the case (N = 20) and 

the control (N = 20) samples. In each replication dataset, 500 genes are affected by the unobserved batch 

effects with various magnitudes (η/σ). The table shows that the estimates of (πIR, ρIR) from both the CEFN 

and the META models are effective in detecting batch effects with modest to large magnitudes. The two-

sample two-sided K-S tests, comparing the empirical distributions of p-values from the reference and the 

replication datasets, are slightly more sensitive. However, it is unclear how the test information can be used to 

guard against false-positive findings. The number of false rejections represents the number of rejections by the 

q-value procedure at 5% FDR level when analyzing the batch contaminated dataset alone. The false-positive 

findings become a severe problem as the batch effect increases. When both datasets are jointly analyzed, there 

is no false classification of reproducible signals at 5% FDR level in any setting by either the CEFN model or 

the META model.

Batch Effect
(η/σ)

CEFN META K-S test False Rejections

πIR ρIR πIR ρIR p-value (by q-value w/o ref)

0.0 2.0 × 10−3 0.51 1.4 × 10−3 0.44 0.219 0

0.2 2.8 × 10−3 0.57 2.1 × 10−3 0.54 0.134 0

0.4 6.7 × 10−3 0.57 3.7 × 10−3 0.65 0.200 1

0.6 0.017 0.61 0.022 0.86 0.022 2

0.8 0.089 0.84 0.100 0.98 8.67 × 10−4 15

1.0 0.161 0.94 0.137 0.99 9.08 × 10−5 45

1.5 0.283 0.99 0.203 0.99 1.79 × 10−6 152

2.0 0.342 1.00 0.238 1.00 3.95 × 10−11 252
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Table 2:
Identify reproducible signals from batch effect affected high-throughput experiments with 
genuine biological signals

Each simulated dataset consists of 1,000 genes. 200 genes are differentially expressed in the case (N = 20) and 

the control (N = 20) samples. In each replication dataset, 500 genes (100 DE genes and 400 non-DE genes) are 

affected by the unobserved batch effects with various magnitudes. We apply the FDR control procedures based 

on the CEFN and the META models to identify the reproducible signals by jointly analyzing the 

corresponding replication and reference datasets. The table shows the realized false discovery rates and power. 

For reference, we report the discoveries by applying the q-value procedure on the replication dataset alone. 

The numbers in the parentheses represent the analysis results of the processed replication datasets by the 

ComBAT method, a latent batch effect adjustment procedure. All procedures are performed at the target FDR 

control level of 5%.

(η/σ)

CEFN META Stand-alone Analysis

FDR Power FDR Power FDR Power

0.0 0.046 (0.037) 0.520 (0.520) 0.046 (0.046) 0.520 (0.515) 0.014 (0.015) 0.340 (0.325)

0.2 0.029 (0.029) 0.500 (0.500) 0.029 (0.029) 0.495 (0.495) 0.031 (0.031) 0.315 (0.315)

0.4 0.038 (0.029) 0.500 (0.495) 0.030 (0.030) 0.490 (0.485) 0.145 (0.103)
0.325 (0.315) 

†

0.6 0.049 (0.039) 0.490 (0.490) 0.024 (0.033) 0.405 (0.440) 0.239 (0.205)
0.350 (0.310) 

†

0.8 0.044 (0.04l) 0.430 (0.470) 0.000 (0.000) 0.085 (0.190) 0.327 (0.250)
0.380 (0.345) 

†

1.0 0.000 (0.026) 0.000 (0.375) 0.000 (0.000) 0.020 (0.050) 0.448 (0.345)
0.395 (0.360) 

†

1.5 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.005) 0.616 (0.496)
0.440 (0.350) 

†

2.0 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.690 (0.569)
0.475 (0.345) 

†

†
The symbol indicates power without proper type I error control. In all simulation scenarios, the proposed methods control the false-positive 

findings at the target level.
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Table 3:
Estimated null, reproducible, and irreproducible proportions in standing height TWAS 
analyses

The top panel represents the comparison between two GWAS datasets with the same tissue-eQTL data. Both 

the CEFN and the META models provide qualitatively similar estimates in all three categories, and the 

estimates indicate high level of consistency between different GWAS data. The bottom panel represents the 

comparison of TWAS analyses with the same GWAS data (UKB) but different tissue-eQTL data. For both the 

full gene set and the subset of eGenes, the META model and the CEFN model provide qualitatively similar 

estimates. There is a noticeable proportion of TWAS signals that are estimated irreproducible, suggesting 

potential tissue-specific molecular mechanisms leading to the complex trait of interest, height. Note that the 

genes in the eGene set are necessarily expressed in both tissues. Thus, in the analysis of full set, the 

irreproducibility of the genes are explained by both differential expressions (i.e., a gene is only expressed in a 

single tissue) and differential regulations, whereas in the analysis of eGene set, explanations can be narrowed 

down to the potential differential regulatory mechanisms in the two tissues.

GWAS data eQTL data Gene set πNull πR πIR

UKB vs. GIANT Muscle Full set
CEFN 0.838 0.161 0.001

META 0.841 0.141 0.018

UKB Muscle vs. Blood

eGene set
CEFN 0.296 0.399 0.305

META 0.406 0.368 0.225

Full set
CEFN 0.794 0.069 0.136

META 0.837 0.031 0.131
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