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Abstract

Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive disease with the lowest survival 

rate among all solid tumors. The lethality of PDAC arises from late detection and propensity of the 

tumor to metastasize and develop resistance against chemo and radiation therapy. A highly 

complex tumor microenvironment composed of dense stroma, immune cells, fibroblast, and 

disorganized blood vessels, is the main obstacle to current PDAC therapy. Despite the tremendous 

success of immune checkpoint inhibitors (ICIs) in cancers, PDAC remains one of the poorest 

responders of ICIs therapy. The immunologically “cold” phenotype of PDAC is attributed to the 

low mutational burden, high infiltration of myeloid-derived suppressor cells and T-regs, 

contributing to a significant immunotherapy resistance mechanism. Thus, the development of 

innovative strategies for turning immunologically “cold” tumor into “hot” ones is an unmet need 

to improve the outcome of PDAC ICIs therapies. Other smart strategies, such as nanomedicines, 

sonic Hedgehog inhibitor, or smoothened inhibitor, are discussed to enhance chemotherapeutic 

agents’ efficiency by disrupting the PDAC stroma. This review highlights the current challenges 

and various preclinical and clinical strategies to overcome current PDAC therapy difficulties, thus 

significantly advancing PDAC research knowledge.
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The current work highlights the challenges that play a crucial role in minimizing the therapy 

efficiencies of pancreatic ductal adenocarcinomas. The potential strategies that can mitigate the 

challenges in therapy and diagnosis such as utilizing novel targets and nanomedicines are 

discussed. Together, these methods have potential to improve the overall treatment efficacy and 

survival rates of patients with pancreatic ductal adenocarcinoma.
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1. Introduction

In 2020, pancreatic cancer (PC) was the fourth leading cause of cancer-related death in the 

US. The 5-year survival rate of pancreatic cancer is the lowest among other solid cancers, 

7% [1]. Within PCs, 90% accounts for pancreatic ductal adenocarcinoma (PDAC) [2]. Many 

risk factors are associated with PDAC, such as smoking, family history, and genetic diseases. 

In PDAC, poor prognosis is the main challenge due to the tumor’s propensity to metastasize 

and develop resistance against chemo and radiation therapy [3]. One of the main challenges 

is dense stroma produced by the mucin-producing gland [4]. Stroma is one of the major 
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tumor microenvironment components that draw attention to researchers due to its role in 

patients’ poor prognosis [5]. Thus, the presence of stromal components in PDAC elevates 

the interstitial fluid pressure (IFP), leading to vasoconstriction that in turn impedes the 

chemotherapeutic delivery efficiency [6,7]. In recent years, researchers have begun to focus 

on finding new ways to better understanding PDAC’s genetics and biology to improve 

therapeutic outcomes. Biologically, desmoplastic reaction (DR) is one of the hallmarks of 

PDAC that contributes to PDAC’s poor prognosis. The dense desmoplasia plays a major role 

in distorting the normal architecture of pancreatic tissue and blood perfusion; thus, drug 

penetration decreases, and resistance increases [8]. Tumor hypoxia or low oxygen levels and 

hypovascular environment is another obstacle that reduces drug delivery efficiency to the 

tumor site [9]. The vasculature within the PDAC tumor microenvironment (TME) is 

obscured or obstructed by the tumor-associated fibroblast or pericytes [10]. Therefore, cells 

that grow within these harsh conditions are resistant to most chemotherapeutic agents and 

radiotherapy [11]. Within TME, the absence of immune surveillance and inflammatory cells 

supports aggressiveness and tumorigenesis of PDAC [12]. The signs of genetic alteration in 

PDAC have been studied extensively; Kristen rat sarcoma viral oncogene homolog (KRAS) 

mutation and CDKN2A alteration are found to be one of the early events in low-grade 

pancreatic intraepithelial neoplasia (Figure 1A) [13,14]. On the other hand, alteration of P53 

and loss of Smad4 was found to be one of the late events that occur in intraepithelial 

neoplasia grade 3 (Figure 1A) [13].

Several approaches, including immunotherapy, have been studied in patients with pancreatic 

cancers; nevertheless, most of them have not shown any clinically meaningful outcome 

noted in other malignancies [15]. Moreover, the complexity of PDAC tumor stroma 

composition attenuates most PDAC therapies due to poor drug penetration through the 

stroma barrier. Thus, new immunotherapy approaches need to be established to trigger a 

potent immune response against tumors. Also, nanoparticles approach is another way to 

overcome different PDAC barriers through its ability to accumulate in the tumor site [16,17]. 

Nanomedicine such as liposome and polymeric nanoparticles can overcome additional 

biological obstacles via protecting encapsulated payloads from degradation in blood 

circulation, and lowering their accumulation in non-target organs and tissues, thus 

minimizing the toxicity to normal cells and tissues. Nanoparticles can be designed to 

improve the delivery efficiency to target tissues, which lowers the needed therapeutic dose. 

Moreover, nanomedicines can minimize immunogenicity and prolong circulation time [18]. 

Therefore, nanoparticles provide a viable solution to improve current PDAC therapy’s 

efficiency. So far, in vitro and in vivo data of nanoparticles that have been tested on PDAC 

tumors showed promising results. In this review, the current PDAC challenges will be 

covered. The different ways that clinicians and researchers currently use varying approaches 

to overcome these challenges and improve the overall disease response will be discussed.

2. Current PDAC therapy

One of the most critical challenges of the PDAC treatment is the tumor microenvironment 

characterized by constantly changing morphology and genetics that contribute to its 

aggressiveness [19]. The PDAC tumor microenvironment is also characterized by 

desmoplasia (dense stromal cells) that adds to the resistance to conventional therapies. 
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However, significant improvements have been made in the treatment strategies of the PDAC, 

which include monotherapy such as gemcitabine, multidrug regimen like the FOLFIRINOX, 

and combination therapies (gemcitabine plus adjuvant/neoadjuvant therapies/immune 

checkpoint inhibitors) (Table 1,2). The following are some of the novel therapeutic strategies 

for PDAC that have been developed based on the stage of cancer and the resistance 

mechanisms involved at that stage of the disease.

Most of the reasonably successful treatments applied so far for PDAC include a combination 

of chemotherapy, immunotherapy, and radiotherapy. Currently, most clinical trials consist of 

these combinations (Table 1, 2).

2.1. First-line therapy:

The main PDAC treatment is surgical resection followed by chemotherapy, radiotherapy, and 

targeted therapy [20]. In resectable tumors, gemcitabine has so far been the most successful 

and preferred the first-line drug because of its lower toxicity and reasonable response rate 

[21]. This drug is used as a single therapy and in combination with other drugs such as 5-

fluorouracil (5-FU) [22,23]. Using gemcitabine alone for six months after tumor resection 

has increased the 5-year overall survival (OS) to 20.7% compared to the observation arm 

( OS 10.4%) [21]. Other clinical trials had shown no major difference in OS and quality of 

life after using 5-FU/ leucovorin (23.6 months) or gemcitabine (23 months) in resectable 

PDAC patients [24]. Moreover, a recent clinical trial (phase III NCT03610100) has designed 

a modified version of gemcitabine (Acelarin) to overcome the current resistance to 

gemcitabine and enhance its efficiency via delivering a high intracellular level of dFdCTP 

(gemcitabine active agent). Due to the pancreatic relapse after 6 months of gemcitabine 

treatment, a combination regimen should be considered as adjuvant therapy [24]. 

Neoptoloms et al. have investigated the efficiency of another combination of resectable 

PDAC using gemcitabine and capecitabine. The team found that this regimen increased OS 

to 28 months compared to 25.5 months using gemcitabine alone. Interestingly, the adverse 

effects of using gemcitabine and capecitabine were tolerable [24].

For locally advanced pancreatic cancer, treatment is solely based on combination therapy. 

One of the more explored combinations with some success in the metastatic PDAC is the 

FOLFIRINOX (fluorouracil, leucovorin, irinotecan, and oxaliplatin) [25]. Clinical trial 

PRODIGE 4/ACCORD 11 has shown that FLOFIRINOX increased the OS rate up to 11.1 

months compared to 6.8 months of using gemcitabine alone. FLOFIRINOX showed some 

adverse effects such as thrombocytopenia, neutropenia, febrile neutropenia, diarrhea, and 

alopecia.; however, the patients’ quality of life was better than gemcitabine alone [26]. In 

this regard, several retrospective studies have suggested reducing the initial chemotherapy 

doses of FLOFIRINOX, which could reduce side effects and maintain the regimen efficiency 

[27]. A phase II trial has shown that using a modified FOLFIRINOX regimen enhanced 

treatment efficacy and reduced toxicity [28]. Also, PEFG (cisplatin, epirubicin, fluorouracil, 

and gemcitabine) was one of the first combinations taken to the clinical trials that showed 

fewer adverse effects and higher therapeutic efficacy [29]. Another combination studied used 

gemcitabine with the EGFR inhibitor (erlotinib) approved by the FDA for PDAC [30]. 

Gemcitabine also has been paired with Abraxane, capecitabine alone, and gemcitabine/
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docetaxel/capecitabine (GTX) to give a good response and better survival rates in PDAC 

patients [31]. Gemcitabine with Abraxane was a successful combination [32] tried in phase 

III trials and was approved by the FDA, although it showed severe adverse reactions (such as 

neutropenia, leukopenia, neuropathy, febrile neutropenia, or fatigue). The reason for 

approval was because of the advantages that outweighed the side effects of treatment.

Other combination therapies that have shown promise in clinical trial results are listed (Table 

1 and 2). Several different combinations are put to the test for PDAC constantly so that we 

could increase the success rate of therapy and make personalized medicine achievable. The 

main criteria taken into account in choosing the appropriate combination therapy are 

efficacy/survival, adverse effects, and patient compliance [33].

2.2. Second-line therapy:

Second-line therapy is mainly depending on the chosen first-line therapy. Thus, healthcare 

providers should take clinical trials into account for selecting the appropriate regimen that 

does not impact patients’ quality of life and has minimal side effects. For instance, for 

patients who received FOLFIRINOX as first-line therapy, a gemcitabine-based regimen 

should be considered. For patients who failed to respond to FOLFIRINOX, gem-based 

therapy (gem-nap) played a significant role in improving OS (8.8 months) [34] with 

manageable side effects. On the other hand, if gem-based therapy is used as first-line 

therapy, 5-FU can be used either as a single agent or with other agents such as oxaliplatin as 

the second-line therapy.

2.3. Current ongoing clinical trials for PDAC therapy:

Currently, there are many new pathways and targets for PDAC therapy that are being 

explored, such as the Hedgehog pathway, KRAS pathways, JAK/STAT pathways, 

hyaluronidase/hyaluronic acid, angiogenesis, tyrosine kinase inhibitors, and growth factor 

receptors. Most of these trials are in phase I and phase II and are initially evaluated for their 

safety and toxicity profiles [35]. CYL-02 is a non-viral gene therapy that is used to sensitize 

the chemotherapy of PDAC (NCT01274455). Patients with locally advanced PDAC 

remained free of metastasis after receiving CYL-02. CA 19–9 cancer biomarkers in locally 

advanced PDAC patients significantly reduced after receiving gene therapy combined with 

gemcitabine. [36]. Another clinical trial (NCT03450018) combined SLC-0111 (CAIX 

inhibitor) with gemcitabine for treating metastatic PDAC. SLC-0111 was found to play a 

role in increasing intratumor acidosis and slowing tumor growth [37]. Some other clinical 

trials are listed in Tables 1 and 2.

3. Challenges of PDAC treatment

PDAC prognosis is the poorest among all solid tumors. Even though there are new 

advancements in finding the initial sign of PDAC, inadequate response to current therapies is 

still prevalent [38]. One of the hypotheses that have emerged in the last few years is that the 

PDAC microenvironment is responsible for increasing both carcinogenesis and drug 

resistance [39]. The tumor microenvironment of PDAC is enriched by the stromal barrier, 

which is composed of fibroblast, immune cells, blood vessels, neural cells, and cellular 
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proteins such as growth factors and cytokines (Figure 1B) [40]. Because of the stromal 

barrier, most combination therapies failed to increase the survival rate significantly[41]. the 

overall survival (OS) achieved in resectable tumors aged from 25.5 months using 

gemcitabine alone or 28 months when combined with capecitabine [24]. While in locally 

advanced PDAC tumor, the OS ranged from 6.8 using gemcitabine alone or 11.1 months 

after using FOLFIRINOX (fluorouracil (5-FU), irinotecan, and oxaliplatin) [26]. The 

following factors are believed to play a role in attenuating current therapeutic efficiency, as 

discussed below.

3.1. Tumor microenvironments (TME)

One of the main challenges in PDAC therapy is heterogeneous TME [42]. The genetically 

engineered mouse model (GEMM) of pancreatic cancer has enabled researchers to mimic 

human pancreatic cancers in many asp,ects such as resistance to gemcitabine, which opens 

new avenues for understanding pancreatic cancer microenvironments [43–45]. It has been 

discovered that PDAC has a stroma enriched TME, which keeps changing its composition, 

especially during progression from preneoplastic pancreatic intraepithelial neoplasms 

(PanINs) to invasive pancreatic cancer. Pancreatic intraepithelial neoplasms is a PDAC 

precursor lesion that is classified into a low grade (PanIN-1 and PanIN 2) and high grade 

(PanIn-3) [46]. The progression from PanIN low grade to PanIN high grade is associated 

with alteration in cancer-associated genes such as KRAS, P53, CDKN2A, and SMAD4 

(figure 1, A) [46]. Stroma, a component of TME, has a major role in increased proliferation, 

metastasis, immune escape, and drug resistance [40]. Desmoplastic reaction (DR) is one of 

the PDAC hallmarks that contributes to PDAC’s poor prognosis. The dense desmoplasia 

plays a major role in distorting the normal architecture of pancreatic tissue and creating a 

mechanical barrier around the PDAC tumor, that limits tumor vascularization. Thus, drug 

penetration into tumor site is diminished [47]. Olive, K. et al. have reported that 

accumulation of active gemcitabine metabolites (2’,2-difluorodeox-cytidine triphosphate 

(dFdCTP) was high in poor stromal cancer in subcutaneous and orthotopic mice model 

while it was barely detectable in high dense stroma cancer such as PDAC [48]. One of the 

pathways that enhances PDAC desmoplastic reaction is sonic hedgehog (SHH) signaling. 

Importantly, DR consists of multiple components such as fibroblasts, pancreatic stellate 

cells, and extracellular matrix (collagen I, collagen II, and fibronectin) that all react together, 

and worsen the clinical outcomes of PDAC patients [49]. The major two components of DR 

are pancreatic stellate cells (PSCs) and fibroblasts. It has been found that PSCs are involved 

in secreting many cytokines such as IL6, CLL2, CLL5, and CLL8 [50,51]that are 

contributing to proliferation, migration, and producing extracellular matrix (ECM) protein 

[52]. Several studies showed PSCs’ role in reorganizing the collagen fibers to parallel 

alignments that enhance cancer cells’ migration and invasion [53]. Cross talk between the 

pancreatic cell and PSCs is a trigger for PDAC cells to grow and migrate via releasing some 

growth factors such as insulin-like growth factor, vascular endothelial growth factor 

(VEGF), and platelet-derived growth factor (PDGF) and cytokines [54]. Several pathways 

are believed to play a significant role in the PSCs process, such as transforming growth 

factor-beta (TGF-β), hepatocyte growth factor (HGF), fibroblast growth factor, and 

epidermal growth factor (EGF). Lohr et al. found that the co-culture of TGF-β expressing 

Panc-1 is more proliferative and induces more collagen I and fibronectin [52]. Armstrong et 
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al. have shown that PSCs incubated with TGF-β enhanced [3H] thymidine uptake, induce 

collagen production, promote the malignancy of PDAC tumor, and increase cancer 

resistance toward chemo and radiation therapies [55,56]. It has been found that fibroblasts 

play a role in producing secreted protein acidic and rich in cysteine (SPARC) that enhances 

cell migration and proliferation and worse prognosis in PDAC patients [3,57]. The activated 

factors of pancreatic cells promote activation of stromal cells, which consequently affect 

other epithelial tumor components of pancreatic cancer [3]. Therefore, PSCs, fibroblast, and 

epithelial cells play a significant role in controlling ECM through the proteolytic enzyme of 

metalloproteinase (MMPs) which expresses in pancreatic cancer cells. It has been found that 

several enzymes of MMPs such as (MMP-1, MMp-2, and MMp-9) overexpressed when 

coming in contact with specific ECM proteins [58,59]. ECM is one of the major factors that 

enhance tumor aggressiveness and invasiveness. Further understanding of PSCs’ activated 

pathway- PDAC cross-talk is needed to develop PSCs targeted therapy [60,61].

3.2. Cancer Stem Cells (CSCs) in PDAC

It is well known that TME is characterized by its heterogenicity, and its pathological and 

physiological effects on tumor therapy are not well understood. Epithelial to mesenchymal 

effect (EMT) is a stem cell characteristic that is believed to have a significant role in 

promoting tumor heterogenicity and cell metastasis [62]. Within TME, there is a 

subpopulation of the cells called cancer stem cells (CSCs) that are capable of self-renewal 

[63], and that can justify why many tumors regenerate after being mostly eradicated during 

chemotherapeutic treatment [64]. CSCs were firstly found in the hematopoietic system; 

however, researchers found CSCs to be presented in solid tumors such as breast [65], colon 

[66], brain [67], and pancreatic cancer [64]. Breast CSCs were characterized by CD44high/

CD24low antigenic phenotypes that promote tumor initiation compared to other carcinomas 

with CD44low/CD24high [65]. However, in the xenograft animal model of pancreatic cancer, 

it has been identified that a subpopulation of cells has CSC properties and has CD44+, 

CD24+, and ESA+. In this study, the authors found that CD44+, CD24+, and ESA+ 

pancreatic cells have a high potential to form a tumor when injected as low as 100 cells per 

mouse compared with CD44-, CD24-, and ESA- [64].

CD44 is a non-kinase, transmembrane glycoprotein (P-glycoprotein) expressed on several 

cells and tissues such as embryonic stem cells and bone marrow. It has been found that 

CD44 is overexpressed in various tumor cells, and it is known as a biomarker of CSCs [68]. 

Furthermore, CD44 has a significant role in cancer stemness and promoting cancer 

tumorigenicity [69]. Hyaluronic acid binds to CD44; thus, many drug delivery researchers 

have reported the efficiency of using hyaluronic acid as CD44 binding ligand to improve the 

efficiency of PDAC first-line therapy [70–72].

In addition, hepatocyte growth factor receptor (c-Met), present in both normal and tumor 

cells, is essential for embryonic development and tissue repair [73]. c-Met is a unique 

receptor with only one ligand that can bind to it, namely, HGF [73]. Upon HGF binding to c-

Met, a series of downstream signaling pathway events are mediated, leading to enhancement 

of normal cell growth, cell motility, and protection of normal cells from apoptosis [74]. In 

cancer cells, c-Met functions differently than normal cells due to c-Met being overexpressed 
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or mutated, which ultimately enhances pancreatic carcinoma [75]. It has been found that 

exposing cells to chemotherapeutic agents such as gemcitabine enhanced EMT, increase c-

Met phosphorylation that promotes expression of CSCs biomarkers such as CD44 and CD24 

[76]. Interestingly enough, CD44 plays a role in regulating the HGF/c-Met signaling 

pathway, which maintains CSCs function. Overexpression of c-Met in pancreatic cancer is a 

sign of poor prognosis, which elevates EMT phenotype. Li et al. have studied the role of c-

Met in forming tumor spheres. They found that c-Met+ cell lines could form spheres while 

c-Met– cell lines could not.

Moreover, treating pancreatic xenografts in NOD-SCID mice with a combination of c-Met 

inhibitor (XL184) and gemcitabine showed significant tumor growth regression even after 

32 days of therapy cessation [77]. Also, Alex et al. successfully designed an antibody-drug 

conjugate (TR1801-ADC) that enhanced the tumor inhibition (in vitro and in vivo) in Met 

overexpressed pancreatic cancer and worked in synergy with gemcitabine [78]. CSCs are 

one of the leading players of PDAC distal metastasis. Hermann et al. showed that PDAC 

distal metastasis is correlated with the presence of CD133+ of pancreatic CSCs and 

CXCR4+ expression. [79].

Based on the findings mentioned above, PDAC has a subpopulation of cells (CSCs) which 

plays a crucial role in developing metastasis and fortifying chemotherapeutic resistance. 

Moreover, c-Met is another PDAC biomarker that enhances the CSCs subpopulation’s 

tumorigenicity. Together, these studies suggest that CSCs biomarkers (CD44+ and CD133+ 

cells) and c-Met+ cells can be used as a new target for therapy to minimize tumor growth 

and enhance the tumor response to current treatment.

3.3. Hypoxia

Hypoxia is an essential feature of PDAC tumor microenvironment, which plays a major role 

in activating several molecular and signaling pathways contributing to PDAC aggressiveness 

[80]. Chang Q et al. performed a study to measure the oxygen levels within pancreatic 

cancer. In this experiment, which was conducted on seven patients, they found a dramatic 

reduction of oxygen in pancreatic tumors than normal tissue [81]. The ability of cancer cells 

to survive in the hypoxic condition is attributed to the activation of hypoxia-inducible factor 

(HIF) pathways. HIF can activate several genes such as STIM1, PKM2, MiR21, and MTA2 

[82] that help cancer cells controlling metabolism, survival, pH, migration, as well as some 

angiogenic growth factors [83–85]. In PDAC, many studies have shown that pancreatic 

cancer cells induce the angiogenesis process via secreting vascular endothelial growth factor 

(VEGF) and fibroblast growth factor (FGF) [86,87].

Furthermore, HIF mediates several pathways, such as c-Met and Hedgehog pathways, that 

enhance cancer invasiveness and drug resistance [3,88]. Moreover, hypoxia is known to 

activate the notch signaling pathway, which plays a role in cancer cell proliferation and 

differentiation [89]. Yoshiharu et al. found almost 21 of 34 examined specimens (62%) 

showed moderate to high expression of at least one notch in pancreatic cancer as well as in 

PanIN lesions. [90]. Notch signaling pathway is an early sign of PDAC that acts as a 

mediator to activate EGF receptors and PDAC precursors [90]. Furthermore, notch pathway 

activates transforming growth factor-alpha (TGF-α), which functions as an activator of 
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acinar-to-ductal metaplasia [91]. All these factors mediate cancer invasiveness, drug 

resistance and increase the challenge of reaching drugs to TME of pancreatic cancer. 

Therefore, new novel targeted therapies or delivery systems that could target hypoxic 

regions or inhibit notch signaling pathways are needed to improve the overall therapeutic 

efficiency.

3.4. Inflammation and Immune cells

One of the major characteristics of TME is an absence of immune surveillance and the 

presence of inflammatory cells that support aggressiveness and tumorigenesis of PDAC [12]. 

Inflammatory and immune cells are crucial components of TME that play a pivotal role in 

PDAC aggressiveness. Within TME, at the early stage, many immune cells such as anti-

tumor Th1, CD4+, CD8+, and natural killers (NKs) are recruited to eliminate the cancer 

cells. However, the tumor cells start to develop an escape mechanism via recruiting 

monocyte and neutrophil, acquiring the anti-inflammatory phenotype (M2 and N2, 

respectively). Furthermore, tumor cells recruit or polarize T regulatory cells (Treg), shift 

anti-tumor Th1 to Th2, and recruit myeloid-derived suppressive cells (MDSCs). All these 

events result in the deactivation of CD4+, CD8+, NKs and increase the tumor progression 

[92,93].

3.5. Role of RAS in PDAC

The Ras family belongs to a small GTPase composed of HRAS, NRAS, and KRAS [94]. 

KRAS (KRASG12D and KRASG12V), CDKN2A, TP53, and SMAD4 are the most common 

genetic mutations found in pancreatic cancer. However, until now, none of them are 

druggable. The absence of specific inhibitors for all of these genes limits the therapeutic 

options for PDAC patients [95]. Recent studies found that almost 95% of the patients have a 

mutational activation of oncogenic KRAS at codon 12 [96] that is crucial in activating and 

maintaining PDAC. Moreover, KRAS mutation is a sign of poor prognosis in resectable and 

advanced PDAC patients [97]. Normally, KRAS proteins have a crucial role in cell survival, 

differentiation, and proliferation [98]. However, the mutated KRAS compromises oncogenic 

KRAS’s normal function; thus, the pancreatic cells’ growth becomes uncontrollable. In 

genetically engineered mice models, functional studies have found that KRAS switching off 

led to dramatic tumor regression [99,100]. Therefore, extensive preclinical and clinical 

ongoing studies explore KRAS to design an effective targeted therapy.

In OA02.02 phase 1 clinical trials, it has been found that AMG510 can inactivate KRAS by 

irreversibly occupying His95 groove near the cysteine pocket of KRASG12C. Interestingly, 

AMG510 is potent against KRASG12C mutation of non-small-cell lung cancer tumor while it 

is not active against wild type [101]. Moreover, AMG510 showed good anti-tumor activity 

either alone or with PD-1 checkpoint inhibitors. The adverse effects of AMG510 were 

tolerable such as nausea and vomiting [101]. However, the use of AMG510 is limited in 

PDAC due to KRASG12C mutation that accounts for only 2% in PDAC[102]. This study will 

stimulate researchers to develop new drugs that can inactivate KRASG12D and KRASG12V 

that is accounting for 80% of PDAC. Due to the undruggable nature of KRASG12D and 

KRASG12V, targeting the KRAS downstream (MEK-ERK and/or PI3K) is the putative way 

to manage the KRAS related cancers. Inhibition of a single downstream pathway (RAF, 

Alzhrani et al. Page 9

Adv Ther (Weinh). Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MEK1/2, ERK1/2, and PI3K) of RAS did not show significant clinical effect, and drug 

resistance may be induced via several compensatory activations mechanisms such as PI3K, 

which activates several pathways such as Akt and mTOR [103].

Several inhibitors of RAS downstream pathway are clinically tested, as shown in Figure 2. 

The role of KRAS in enhancing TME is not well understood. Mills, L et al. have 

demonstrated the role of KRAS in TME. KRAS activates SHH expression, which further 

induces GLI family zinc finger 1 (transcriptional factor) in fibroblasts. The binding of GLI1 

to IL-6 promotor regulates the activation of cancer STAT3. In this study, loss of GLI family 

zinc finger 1 impaired the carcinogenic of KRAS in PDAC animal model [104]. Thus, 

targeting the cross-talk between cancer cells and TME components is a viable way for 

promoting PDAC tumor regression.

4. Strategies to overcome PDAC barriers

4.1. Stroma-Targeting Therapy in PDAC

PDAC tumor is characterized by one of the densest stroma among several tumors types that 

arise from pancreatic stellate cells (PSCs). Activation of PSCs leads to the formation of an 

extracellular matrix that enhances the strength and resistance of PDAC cells to 

chemotherapeutic and radiation therapy [105,106]. Currently, several agents are being tested 

in preclinical and clinical studies to enhance delivering of cytotoxic drugs to PDAC 

microenvironments (Figure 2).

4.1.1. Utilizing hyaluronidase enzyme—A variety of methods to enhance the 

effectiveness of chemical therapeutic agents have been developed to address the physical and 

biological obstacles to successful PDAC therapies and reverse the effects of stroma on tumor 

growth. One of these strategies is to use Hyaluronic acid (HA) or hyaluronan, which is one 

of the major components of PDAC stroma. HA interacts with cellular receptors to ensure 

tumor cell survival and to activate downstream signaling pathways relevant to tumor 

progression [107,108]. Accumulating evidence found an abundance of hyaluronan (HA) in 

PDAC tumors, which significantly enhances tumor proliferation. A high level of HA is a 

sign of poor prognosis compared to those who have a low level of expression [109]. 

Therefore, one of the strategies in enhancing PDAC drug delivery is depleting HA using 

hyaluronidase [110]. In HALO202 clinical trial that recruited 279 patients, PEGylated 

hyaluronidase (PEHPH20) combined with gem-nap in one arm and gem-nap alone on the 

other arm. In this study, it has been found that patients who had a high level of HA 

responded much better than low HA with overall response rate (ORR) (45% vs. 31%) and 

OS ( 11.5 vs. 8.5 months), respectively [111]. Despite the promising results in phases 1 and 

2, the phase 3 clinical study (HALO109–301) failed to achieve the primary endpoint of OS, 

and further development of PEHPH20 was halted. The authors concluded that targeting 

desmoplasia alone is not sufficient; other factors such as tumor stroma, epithelial to 

mesenchymal transition, low tumor mutational burden should be considered to enhance the 

overall PDAC response [112].

4.1.2. Sonic Hedgehog (SHH) signaling—One of the pathways that participate in 

improving PDAC desmoplastic reaction is Sonic Hedgehog (SHH) signaling. The Hedgehog 
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pathway is abnormally activated in PDAC [113]. It is evident that Hedgehog signaling 

pathway stimulates pancreatic stellate cells (PSCs) through direct effects on non-pancreatic 

tissues and controls stromal deposition [114]. A variety of strategies are being considered to 

inhibit the Hedgehog pathway, which is the pro-inflammatory stage of PDAC, in order to 

remove tumor-stroma [115]. The Hedgehog Signal Pathway is blocked by cyclopamine as a 

natural steroid alkaloid [116]. It reduced the fibronectin content of a PDAC xenograft mouse 

model and increased tumor vascularization. Cyclopamine improves tumor growth inhibits by 

63.3% in combination with nanomaterials loaded with paclitaxel [117]. One research on 

induced pluripotent stem cells demonstrated that IPI-926, a small molecule that inhibited the 

Hedgehog pathway, gave favorable effects of inducing blood vessel density and drug 

concentration in pancreatic ductal adenocarcinoma (PDAC) [118]. In phase, I clinical trial of 

IPI-926, patients who were previously affected by PDAC did not have any significant side 

effects [118]. Sadly, despite the promising findings in phase I trials, phase II clinical trials of 

IPI-926 showed no major benefits to prevent PDAC in pancreatic cancer patients [119]. In 

similar conditions, in patients with metastatic PDAC relative to gemcitabine alone, 

Vismodegib, another Hedgehog inhibiter in conjunction with gemcitabine, improved median 

total survival and progression-free survival significantly [120]. Although multiple therapies 

that target the Hedgehog pathway showed positive effects in preclinical models, few 

improved survival rates and their use was followed by side effects and toxicity [121]. 

Overall, Using SSH signaling inhibitors is an effective way to deplete the stromal barrier and 

enhance gemcitabine delivery [122,123]. Feig et al. have combined smoothened inhibitor 

(IPI-926) with gemcitabine which majorly reduced tumor stroma, promoted micro-vessel 

density, and significantly increase intra-tumor gemcitabine active metabolite (dFdCTP); as a 

result, the overall survival increased [40]. Olive et al. have found that using Hedgehog 

inhibitors allows the chemotherapeutic agent to be delivered to the tumor site [48].

4.1.3. Targeting Inflammation and Immune cells in TME—PDAC stroma is 

enriched in many inflammatory cells, such as mast cells, which are considered the 

cornerstone of angiogenesis, tumor growth, and lymph node involvement [124]. Therefore, 

inhibition of mast cell activity is one of the current strategies to limit tumor progression. 

Ibrutinib, a small molecule that permanently inhibits Bruton’s tyrosine kinase (BTK) 

protein, is used to decrease fibrosis and inhibit mast cell cytokines release (IL-8, TNFα, and 

MPC-1) within PDAC TME. Ibrutinib has shown a reduction in tumor fibrosis in a mouse 

model and improve the mouse response to standard therapy [124,125].

4.1.4. Targeting Hypoxia in TME—Many methods have been utilized by targeting 

hypoxia, including prodrugs that are activated in hypoxic conditions, drugs that target 

HIF-1α active cells, and nanoparticles with active hypoxia targeting, which are being 

developed [126,127]. Evofosfamide (TH-302), a cytotoxic prodrug, comprises a mustard 

derivative converted in hypoxic conditions to an active metabolite [128]. Clinically, 

Evofosfamide has been indicated to minimize radiotherapy resistance in PDAC. However, 

another clinical trial for NSCLC using Evofosfamide with tarloxotinib (a hypoxia-activated 

tyrosine kinase inhibitor) was terminated early because the patients did not meet the 

minimum response rate to this combination [128,129]. Another anticancer agent that was 

identified years ago is POP33. POP33 is a prodrug with the potential to elevate caspase-3 
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activity and induce apoptosis in HIF-1–active/hypoxic cells [130]. This drug, which is a 

fusion protein, consists of a cleaved caspase pro-enzyme and a transduction HIF-1α 
dependent stabilization domain to deliver the drug into cells [130]. Although POP33 

exhibited a promise in an animal model of PDAC, it has yet to make its way for human 

application. While no direct HIF protein inhibitors have reached the clinical studies for 

PDAC, treatment strategies that target heat shock protein (HSP) 90 have led to HIF 

degradation [131,132].

4.1.5. Remodeling Tumor Vasculature—The thick fibrotic stroma covering the blood 

vessels and the proliferation of cancer-associated fibroblasts (CAFs) destroy intratumoral 

blood vessels, creating a hypoxic microenvironment, which supports pancreatic 

adenocarcinoma metastasis and the development of chemoresistance [133,134]. Remodeling 

PDAC vessels improves drug delivery and exposes living cells to better environments which 

improves drug effectiveness and its disposition in the body. Many agents with varying aims 

have been employed to target the tumor microenvironment [135]. In 2015, a Phase II study 

tested the effectiveness of the new medication, FOLFIRINOX, in conjunction with lisinopril 

in patients with locally advanced pancreatic cancer. The approach was found to have a high 

proportion of patients achieving R0 resection [136]. It is also noteworthy thatthe lack of the 

Angiotensin II Type II receptor (AT2R) in pancreatic fibroblasts contributes to tumor cell 

proliferation [137]. In the future, Ang II signaling pathway will need to be analyzed in more 

depth before its use in the clinic.

4.2. Other Important strategies

One of the target protein that facilitates PDAC stromal depletion is secreted protein acidic 

rich in cysteine (SPARC). Abraxane (albumin conjugated paclitaxel) has been hypothesized 

for its ability to deplete stroma and accumulate in overexpressed SPARC pancreatic TME. 

There are contradictory results in this regard. One clinical trial has shown that combining 

gemcitabine with nab-paclitaxel increased the overall survival of high expressed SPARC 

patients (17.8 months) compared to those who had low SPARC expression (8.1 months) 

[138,139]. However, stromal depletion was not seen in a preclinical study of the patient-

derived xenograft mice model. The author observed that gemcitabine activity was impaired 

due to activation of reactive oxygen species (ROS). The interesting observation was after 

using gemcitabine combined with nab-paclitaxel [140]. Thus, the exact role of SPARC is 

unknown and in-depth investigations are needed to reveal the particular role of this 

biomarker and its prognostic impact after treating it with nab-paclitaxel or other targeted 

therapy.

Another target is cancer stem cells (CSC) which have a significant role in tumor 

proliferation and metastasis [141]. One of the signaling pathways that promote CSC growth 

is STAT3. It is well documented that STAT3 is activated in PDAC tumor and functions as a 

tumor promotor. Therefore, inhibition of STAT3 would enhance PDAC response to 

chemotherapeutic agents and promote tumor inhibition [142].
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5. Immunotherapy as a promising approach for PDAC therapy

Since FDA approval of different immunotherapeutic agents such as ipilimumab (2011) and 

nivolumab (2014), immunotherapy became a candidate therapy for multiple tumors such as 

melanoma, renal cancer, lung cancer, and others [143]. Using immunotherapies have shown 

a drastic improvement in OS and enhance the therapeutic response of many solid tumors 

such as (melanoma and renal cancer). Hence, immune checkpoints in designing a treatment 

regimen for PDAC is a promising avenue [144]. The most widely used immune checkpoint 

inhibitors are against the programmed cell-death-1 (PD-1), and the cytotoxic T lymphocyte 

antigen-4 (CTLA-4) receptors and programmed cell-death ligand-1 (PD-L1) [145].

5.1. Reasons for checkpoint inhibitors failure in PDAC

Immune checkpoints refer to immunogenic regulatory mechanisms pertaining to T-cell 

immune response. Immune checkpoint blockades (ICB) such as PD-1, PD-L1, and CTLA-4 

have shown promising results and varied responses in solid tumors [146]. Cancer 

immunotherapy has a variable patient outcome that is dependent on the leukocyte population 

in the tumor microenvironment [147]. Not every patient of either the same or different tumor 

subtype will elicit a similar anti-tumor immune response to ICB. For highly resectable 

tumors, chemotherapy may be surpassed by immunotherapy owing to fewer side effects and 

irreversible tumor regression. However, clinical trials with ICB for PDAC have been 

disappointing [148].

A major reason for the failure of immunotherapy in PDAC is the dense tumor 

microenvironment (TME) that is the limiting factor for a number of PDAC chemotherapies. 

PDAC TME consists of a dense fibrous stroma consisting of tumor cells, immune cells, 

growth factors for tumor metastasis, extracellular matrix, fibroblasts making it highly 

complex and heterogenous [3]. Tumor-infiltrating lymphocytes are present at a lower 

population in the PDAC TME, driving factors for effective clinical response to ICB.

Single-agent clinical trials for employing ICB for PDAC have not shown promising results. 

Single-agent anti-CTLA-4 (Ipilimumab) dosed intravenously at 3mg/kg/dose (4 doses/

course, every 3 weeks, for maximum 2 courses) was practically ineffective for the treatment 

of advanced pancreatic cancer [149]. Monotherapy with PD-1/PD-L1 ICB durvalumab 

showed partial response in 2 out of 29 patients who received the intervention and had 

evaluable data [150]. In essence, single-agent immunotherapies for PDAC have not garnered 

an effective patient outcome.

Antigenicity and immunogenicity are two major factors responsible for the failure of ICB in 

PDAC [151]. Reduced antigenicity in PDAC refers to tumor cells’ inability to produce and 

present tumor-associated antigens to the effector cells of the immune system. This, in turn, 

negatively affects T-cells’ ability to mount an immune attack in response to antigen 

producing cells [152]. Immunogenicity, which is the ability to induce an immune response in 

cancer, is dependent on multiple factors like composition of the stroma, infiltration of CD8+ 

and CD4+ T-cells, B cells, antigen presentation [152].
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PDAC tumor can be classified into subtypes based on RNA expression analysis, and it 

reveals prominent immune cell signatures specific to the PDAC subtype. Since each subtype 

has a different signature that characterizes the tumor microenvironment components, they 

will show different outcomes in response to ICB therapies. Tumors are classified into 

inflamed (hot) and non-inflamed (cold) based on T-cell infiltration [153]. Most of the 

preclinical and clinical studies have concluded that only patients who have T-cell inflamed 

tumors would have a high chance of responding to ICB. However, non-inflamed tumors 

respond poorly to monotherapy of ICB due to low level of tumor infiltrating lymphocytes 

(TIL) and PDL-1[153]. Therefore, combining ICB with other agents is a valid strategy to (i) 

enhance tumor immunogenicity, (ii) recruit more TIL to the tumor site, and (iii) minimize 

tumor microenvironments immunosuppression [154,155]. PDAC is the lowest mutational 

tumor among other solid tumors, where the average of mutation is 1 mutation per megabase 

(Mb) compared to 11 mutations per Mb in melanoma [156]. Thus, immune system 

recognition of neoantigen is solely based on neoantigen quality, where it can be recognized 

if it is high-quality neoantigen such as microbial-like sequence [157,158].

5.2. Possible approaches to improve tumor immunogenicity

Various reports have shown the ineffectiveness of monotherapies for PDAC. Hence, it is 

worthwhile to explore the effect of combinations of ICB or chemotherapy and ICB to tackle 

PDAC. Patients with poor prognosis and rapidly advancing cases of metastatic PDAC were 

dosed with a combination of Durvalumab and Tremelimumab. No patients responded well to 

Durvalumab monotherapy, a response rate of 3.1% was seen in patients receiving 

combination therapy, although with adverse toxicity in 22% of the cohort of patients [159].

Gemcitabine, frontline chemotherapy for PDAC, has been tested in combination with ICB to 

disengage PD-1/PD-L1 interaction. Attempts have been made to deliver gemcitabine and 

anti-PD-L1 in a controlled manner to the tumor [160]. Daniel et al. found that prolonged 

exposure of PDAC cancer to gemcitabine promotes the expression of several immune 

markers such as MHC class 1, PD-L1, and PD-L2. The authors also found that gemcitabine 

plays a role in increasing the secretion of several cytokines and TGFβ [160].

The activity of gemcitabine and anti-PD-1 was tested in vivo on transgenic mice; the current 

combination failed to inhibit the tumor growth unless the mice had genetic ablation of 

TGFβ. In TGFβ deficient mice, gemcitabine and anti-PD-1 activity in inhibiting tumor 

regression were improved by enhancing CTL infiltration into the TME [160]. These 

observations suggest that gemcitabine primes the PDAC tumor for enhanced antigen 

presentation, making anti-PD-1 therapy more effective in eliciting a robust CD8+ T-cell 

response and reducing tumor load [161]. Other drugs such as Cisplatin, albumin-bound 

paclitaxel, nivolumab are currently under clinical trials to expand on the promising outcomes 

of the combination of ICB with chemotherapy. So far, it is likely that moving ahead, 

immunotherapy for PDAC shall shift clinical focus from monotherapy to combination 

therapy.

Radio and chemotherapy, which have immunogenic cell death effects, have actively reduced 

tumor burden and enhanced T-cell infiltration to tumor microenvironments. 
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Chemotherapeutic agents that induce immunogenic cell death are platinum-based drugs and 

taxanes combined with ICB to improve the immune system against cancer cells [162,163].

CCL2-CCR2 leads to recruiting Tumor-associated macrophages (TAM) that play as 

immunosuppressive within tumor microenvironments [164]. Many clinical trials tried to 

modulate the immune system to recognize and fight cancer cells. One of the clinical trials is 

using chemokines receptor 2 antagonist (PF-04136309), which inhibits the binding of 

chemokines ligand 2 to its receptor CCR2, resulting in inhibition. Immunosuppressive TAM 

[165].

Another way of inducing immune cells against cancer cells is via using the vaccine. GVAX 

is one of the vaccines composed of two human pancreatic cells engineered to secret immune 

cytokines (Granulocyte-Macrophage Colony Stimulating Factor (GM- CSF)) [166]. GVAX 

efficiency was evaluated as adjuvant therapy in resected PDAC and as a treatment regimen 

combined with ipilimumab in metastasis PDAC. In clinical trials phase I/II, GVAX was 

found to induce mesothelin-specific CD8+ T cells in the tumor section and improved the 

overall survival rate in PDAC patients. Thus, using GVAX, which functions as a trigger for 

dendritic cells that phagocytes released GM-CSF and migrate to lymph node to activate T 

cells, is a promising way to enhance tumor immunogenicity in PDAC patients [167,168].

All these methods have been either well established or are being rapidly developed to treat 

this severe disease. These have a lot of prospects to be explored and challenges to be 

overcome.

5.3. Other promising targets and strategies

Many teams have used groundbreaking bioinformatics, biochemistry, and cell biology 

approaches to identify specific mKRAS protein sequences that can be recognized by T cells. 

These teams have uncovered a set of molecular receptors that enable T cells to be home to 

mKRAS-expressing cancer cells. On the basis of these findings, Vonderheide RH and his 

group is undertaking two different clinical trials of new technologies designed to trigger 

mKRAS immune activity in patients with resected pancreatic cancer. The team is planning 

to use the most effective T - cell receptor identified and to perform a clinical trial of 

optimized T -cell therapy for the treatment of metastatic pancreatic cancer [169]. 

Furthermore, there many other targets and promising strategies are still under development 

for better therapeutic outcomes as shown in Table 3

6. Advances in nanoparticle diagnosis and treatment

The currently available treatment models have limited clinical response, and continuous 

efforts are being made to increase the treatment efficacy. Nanomedicine and gene therapy 

have been found to give promising preclinical outcomes in treating aggressive pancreatic 

tumors, a few of which also went into the clinical trial. Due to the complex tumor stroma 

composition in PDAC, many drugs failed to penetrate the stroma barrier that negatively 

impacted their efficiency. Nanomedicines and gene therapy have potential use in enhancing 

PDAC diagnosis and treatment [18]. Moreover, the exact mechanism of how the 

nanoparticles accumulate at the PDAC tumor site is unknown. Most of nanoparticles relay 
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on leaky vasculature (EPR effect) to be accumulated in the tumor sites, however, 

hypovasculature of PDAC tumor compromises the EPR effect and attenuates the nano-

medicines delivery [170]. Therefore, using targeted nanoparticles provide a viable solution 

to improve the diagnostic test’s sensitivity and help treat PDAC as shown in Figure 3. 

Preclinically, several nanoparticles have been synthesized to enhance PDAC therapy.

Biodegradable nanoparticles characterize by its ability to escape the immune system and 

improve in vivo circulatory time. [171]. Albumin NPs have been used widely to deliver the 

cytotoxic gemcitabine to PDAC. Albumin NPs enhance the absorption of the drug in the 

circulatory system and be renewable and economical [172]. Many studies have revealed that 

gem-albumin nanoparticles enhanced the tumor regression activity compared to free gem 

[173–175].

Liposomal formulation characterizes by its biocompatibility, longer circulation time, and 

most importantly, the potential of surface modulation by ligands for active targeting. 

Recently, NAPOLI-1 trial showed the role of using irinotecan liposomal formulation 

combined with 5-FU/folinic acid as second-line therapy for patients who received gem-

based therapy as first line therapy. NAPOLI-1 trial confirmed that receiving irinotecan 

liposomal formulation in combined with 5-FU/folinic acid improved OS (6.1 months) 

compared to 5-FU/folinic acid OS (4.2 months) [176].

Polymeric nanoparticles have several advantages: size uniformity, good release kinetics, 

malleability for customization, pH responding properties, and hydrophilic shell; all these 

properties make it a perfect PDAC delivery system that can deliver different cytotoxic drugs, 

DNA, proteins, and siRNA [177]. For example, using paclitaxel in its free form does not 

show significant activity against PDAC, but when administered via poly-lactic-co-glycolic 

acid (PLGA) nanoparticles, it penetrates the tumor and inhibits protein synthesis. The PDAC 

tumor uptake of paclitaxel PLGA nanoparticles was 5 folds higher than conventional therapy 

[178]. Furthermore, Couvreur et al. as shown in Figure 4. have enhanced Gem’s stability and 

efficiency via using self-assembled nanoparticles composed of gemcitabine and the natural 

lipid squalene (Gem-SQ) [179]. In mice bearing Panc-1 orthotopic model, Gem-SQ 

inhibited the tumor regression and enhanced the mice survivability compared to free 

[180,181].

Gene therapy is a promising way to enhance the overall PDAC therapy, but its delivery 

challenges limit its usage. For example, the main siRNA challenge is their stability issue 

within the biological systems; therefore, many researchers are trying to overcome this issue 

using drug delivery systems [182]. Khvalevsky et al. have used a biodegradable polymer 

matrix loaded with anti-KRASG12D siRNA. siG12D loader improved siRNA stability, 

overcame renal clearance, and, most importantly, knockdown KRASG12D expression, which 

improved overall tumor inhibition in the xenograft animal model [183]. Zhao et al. have 

constructed a hybrid lipid polymer nanoparticle to co-deliver siRNA (si-HIF1α) and 

gemcitabine (Gem) to target the HIF1α in PDAC cells. They have successfully shown a 

synergistic killing effect with siRNA and Gem combination therapy in vitro and in vivo and 

can inhibit tumor metastasis in the orthotopic tumor model [184]. Frederico P. et al. have 

designed pegylated polymeric nanoparticles conjugated with calcium phosphate to deliver 
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VEGF siRNA. In this work, hybrid nanoparticles enhanced the serum stability and gene 

silencing efficiency [185].

The hypoxic TME in PDAC produces more HIFs, which are responsible for the activation of 

genes that control invasion, angiogenesis, chemoresistance, and proliferation [40]. The 

polymeric lipids coated NPs that loaded with GEM and siRNA, which was complexed to 

positively charged polylysine residues on the NPs surface, significantly inhibited the growth 

of subcutaneous PANC-1 tumor xenografts. Thus, it indicated a synergistic effect between 

HIF-1alpha inhibition and the chemotherapy (Gem). Not only that the combination 

treatment significantly shrunk the tumor size in an orthotopic PDAC model in comparison 

with un-encapsulated siRNA and GEM, or with NPs loaded with GEM only, but also, no 

peritoneal metastases were observed in the combination treatment group as shown in Figure 

5. Also, because PDAC TME becomes resistant to chemo and radiotherapy, Wason et al. 

used nanoparticles to deliver drugs using cerium oxide nanoparticles (CONPs) to regulate 

production of ROS that might sensitize PDAC cells to radiotherapy (RT) [186,187]. CONPs-

based pretreatment limited tumor growth in an orthotopic model nude mice, leading towards 

significant shrinkage in tumor weight and volume as compared to radiotherapy alone. 

Several nanomedicine-based strategies have been designed and tested for the treatment of 

PDAC. There is a need for more smart strategies to overcome these barriers and maximize 

treatment accumulation in the pancreatic tumor site [188].

7. Conclusion and Future Direction

PDAC is an extraordinarily high malignancy cancer entity, particularly characterized by poor 

prognosis and constantly increasing patient numbers. The aggressive biology and the fact 

that most patients participate in advanced or disseminated disorder stages make the 

development of new PDAC therapeutic approaches one of the superordinate modern 

oncological science tasks. Research over the last 20 years led to a systematic multi-step 

model of PDAC growth and progress. While this has certainly changed our understanding of 

PDAC as a disease, so far, neither of these findings could be successfully converted into a 

medical breakthrough. It is becoming increasingly obvious that the clinical effectiveness of 

single-agent treatments tends to lag below acceptable estimates, and smart combinations 

seem to be required instead. In addition, PDAC anti-CSC therapies of the next generation 

should be produced to attack active stroma cells and target cells such as Wnt-cell 

components, PSC, MSC, and/or TAMs that are extremely penetrable by small molecules, 

nanoparticles, or oligonucleotides and perhaps immunotherapy.

Furthermore, nanomedicines’ ability to aggregate and target tumors could be leveraged to 

enhance early tumor identification, significantly improve survival, and increase the extent of 

surgical resection. Novel compounds and nanoparticles are continuing to be developed in 

non-viral vector technology [189]. And a combination of gene therapy with these, along 

with conventional drug therapy would also prove to be beneficial.

Despite substantial advances in cancer research over the last era, PDAC seems to have very 

poor survival rates. The present failure to diagnose early-stage prevents the use of effective 

treatments. Additionally, drug resistance growth is a key factor for recognizing current 
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therapy failure in both the tumor and metastatic tissues. Hence, the improvement in survival 

of PDAC patients will occur not only through the identification of early serum markers but 

also through therapeutic approaches directed towards reducing pancreatic CSCs and 

decreasing drug resistance. Importantly, genetic analyses have strengthened our mechanistic 

and translational understanding of pancreatic cancer. Genetic principles and techniques are 

eventually applied to clinical practice, especially for precision medicine initiatives. 

However,, Epigenomics is evolving rapidly as a promising scientific and computational 

model for advancing the comprehension of this disease. More significantly, recent studies 

have identified possible actionable mechanisms supporting the assumption that prospective 

pancreatic cancer trials will include rigorous epigenomic therapy research. Therefore, 

epigenomics aims to produce a large amount of new biological as well as scientific relevant 

information.

In this respect, all the above strategies, and especially modern techniques, represent 

attractive strategies for both biologically inspired utilizing PDAC TME and immunotherapy 

strategies that might be the future for finding a new cure to manage PDAC disease.
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Figure 1: 
Pancreatic ductal adenocarcinoma (PDAC) stages and tumor microenvironments (TME). (A) 

different stages of PDAC, and the expression of oncogenes at each stage is shown. (B) The 

complexity of TME components that attenuate cytotoxic drug penetration is shown.
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Figure 2: 
Various classes of drugs that are being explored in the clinical trials in combination with 

PDAC standard therapy and/or radiation therapy to enhance the efficiency and the overall 

PDAC response are shown.

Alzhrani et al. Page 32

Adv Ther (Weinh). Author manuscript; available in PMC 2022 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Various types of nanoparticles for PDAC therapy. (A) surface decorated nanoparticles to 

actively enhance the tumor selectivity is shown. (B) Specific nanoparticles that actively 

target tumor cells via receptor recognition are shown. (C) The uptake of nanoparticles via 

the endocytosis process results in cancer cell eradication. (Modified from Brachi et al. 

“Nanomedicine for imaging and therapy of pancreatic adenocarcinoma.” Frontiers in 

bioengineering and biotechnology 7 (2019)
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Figure 4. Anticancer activity of SQgem in nanoparticles platform and gem (5 mg/kg equivalent 
doses) following intravenous treatment (on 0, 4, 8, and 13 days) of mice bearing P388 
subcutaneous tumors.
A) Tumor progression: Control (black spheres), saline (white spheres), gem (black 

diamonds), SQgem nano assemblies (white diamonds). B) Survival curve of mice: Control 

(solid line), saline (dotted line), gem (dashed line), SQgem nano assemblies (heavy solid 

line). * indicates P<0.05, as assessed by Kaplan–Meier test. C) Photograph showing the 

difference in tumor growth in mice following the completion of indicated treatment. 

Reproduced from [179]
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Figure 5. In vivo antitumor effect of miRNA–siRNA combination.
A study design for testing miRNA–siRNA combination efficacy in the orthotopic PDAC 

model. b Tumor growth curves from twice a week fluorescent measurement of tumor-

bearing mice treated with APA complexed with miR-34a/PLK1-siRNA, miR-34a/NC-

siRNA, PLK1-siRNA/NC-miR, NC-miR/NC-siRNA or PBS (treatments are marked with 

arrows). (n = 6, 7). Data represent mean ± SEM. One-way ANOVA. c In vivo toxicity via 

mouse body weight evaluation. Data represent mean ± SEM. d An image of a representative 

mouse from each treatment group 33 days post tumor inoculation showing the difference in 

tumor fluorescent signal. e Kaplan–Meier survival graph. Log-Rank test, P < 0.05 for the 

combination miR-34a/PLK1-siRNA compared to all other treatment groups. Reproduced 

from [188].
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Table 1:

Clinical trials of Drug delivery in PDAC (Gemcitabine based therapies)

Study Title Phase NCT number

Gene Therapy of Pancreatic Ductal Adenocarcinoma Phase 1 NCT01274455

Study to Investigate the Preliminary Efficacy and Safety of INNO-206 in Advanced Pancreatic Cancer Phase 2 NCT01580397

Study of siG12D LODER in Combination with Chemotherapy in Patients with Locally Advanced Pancreatic 
Cancer

Phase 2 NCT01676259

Atu027 Plus Gemcitabine in Advanced or Metastatic Pancreatic Cancer (Atu027-I-02) Phase 1/2 NCT01808638

Study of Gemcitabine, Abraxane® Plus Placebo Versus Gemcitabine, Abraxane® Plus 1 or 2 Truncated Courses 
of Demcizumab in Subjects with 1st-Line Metastatic Pancreatic Ductal Adenocarcinoma

Phase 2 NCT02289898

Modified FOLFIRINOX for Gemcitabine Refractory Pancreatic Cancer: A Phase II Multicenter Trial Phase 2 NCT02440958

Phase Ib/II Study of MEDI4736 Evaluated in Different Combinations in Metastatic Pancreatic Ductal Carcinoma Phase 1/2 NCT02583477

A Study of Abemaciclib (LY2835219) Alone or in Combination with Other Agents in Participants with 
Previously Treated Pancreatic Ductal Adenocarcinoma

Phase 2 NCT02981342

A Study of SLC-0111 and Gemcitabine for Metastatic Pancreatic Ductal Cancer in Subjects Positive for CAIX Phase 1/2 NCT03450018

Scheduling Nab-paclitaxel With Gemcitabine Phase 2 NCT03529175

Nab-Paclitaxel + Cisplatin + Gemcitabine in Untreated Metastatic Pancreatic Adenocarcinoma Phase 2 NCT03915444

Retrospective Analysis of 2nd-line Nab-Paclitaxel + gemcitabine After 1st-line FOLFIRINOX in Pancreatic 
Cancer

N/A NCT04133155
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Table 2:

Clinical trials of Drug delivery in PDAC (Immunotherapy for PDAC)

Study Title Phase NCT number

A Study of Epacadostat in Combination with Pembrolizumab and Chemotherapy in Subjects with Advanced or 
Metastatic Solid Tumors (ECHO-207/KEYNOTE-723)

Phase 1/2 NCT03085914

Paclitaxel Protein Bound Plus Cisplatin Plus Gemcitabine and Paricalcitol for Pancreatic Adenocarcinoma 
(NABPLAGEMD)

Phase 2 NCT03415854

Second-line Study of PEGPH20 and Pembro for HA High Metastatic PDAC Phase 2 NCT03634332

Study of Pembrolizumab With or Without Defactinib Following Chemotherapy as a Neoadjuvant and Adjuvant 
Treatment for Resectable Pancreatic Ductal Adenocarcinoma

Phase 2 NCT03727880

Trial of Neoadjuvant and Adjuvant Nivolumab and BMS-813160 With or Without GVAX for Locally Advanced 
Pancreatic Ductal Adenocarcinomas.

Phase 1/2 NCT03767582

A Multiple Ascending Dose Study of MEDI7247 in Advanced or Metastatic Solid Tumors Phase 1 NCT03811652

Nivolumab in Combination with Chemotherapy Before Surgery in Treating Patients with Borderline Resectable 
Pancreatic Cancer

Phase 1/2 NCT03970252

Pooled Mutant KRAS-Targeted Long Peptide Vaccine Combined with Nivolumab and Ipilimumab for Patients 
with Resected MMR-p Colorectal and Pancreatic Cancer

Phase 1 NCT04117087

Mutant KRAS G12V-specific TCR Transduced T Cell Therapy for Advanced Pancreatic Cancer Phase 1/2 NCT04146298

A Multi-Cancer, Multi-State, Platform Study of Durvalumab (MEDI4736) and Oleclumab (MEDI9447) in 
Pancreatic Adenocarcinoma, Non-Small Cell Lung Cancer and Squamous Cell Carcinoma of the Head and Neck 
to Correlate Clinical, Molecular and Immunologic Parameters with DNA Methylation

Phase 2 NCT04262388
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Table 3.

Potential Targets in Pancreatic Cancer.

Molecular targets Molecular pathways Reference

a. Transmembrane Receptor Proteins and downstream 
signaling cascade

The receptor tyrosine kinases (RTKs): Ras/MAPK, PI3K/AKT, 
PLCγ/PKC, and JAK/STATs.

[190,191]

The phosphoinositide 3 kinases/AKT/ mammalian target of 
rapamycin (PI3K/AKT/mTOR) signaling
pathway

[191]

EGFR: detected in up to 90% of PDAC [192]

FGF/FGFR: The fibroblast growth factor (FGF)/FGFR pathway 
plays a key role in PDAC development and
progression.

[193]

IGF/IGFR: high expression of Insulin-like Growth Factor-1 
(IGF-1) and IGF1R

[192]

TRK: TRK gene fusions [194,195]

Vascular endothelial growth factor (VEGF)/vegfr): Angiogenesis 
pathway

[192]

b. Other pathways WNT/β-CATENIN: [196,197]

NOTCH: [197]

ROUNDABOUT (ROBO) RECEPTORS/ SLIT 
GLYCOPROTEIN LIGANDS (SLIT):

[198,199]

TRANSFORMING GROWTH FACTOR BETA (TGF-β): [192,197]

HEDGEHOG (Hh): [35,200,201]

NEUREGULIN-1 (NRG1): [202]

c. Tumor-Suppressor Genes TP53: [197]

SMAD4 (DPC4): [203]

BRCA: [204–206]

MMR DEFICIENCY [145]

EMT [193,197,207]

Extracellular Matrix (ECM) [208,209]

Cancer Stem Cells [210]
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