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Abstract

First-principles predictions play an important role in understanding chemistry at the 

electrochemical interface. Electronic structure calculations are straightforward for vacuum 

interfaces, but do not easily account for the interfacial fields and solvation that fundamentally 

change the nature of electrochemical reactions. Prevalent techniques for first-principles prediction 

of electrochemical processes range from expensive explicit solvation using ab initio molecular 

dynamics, through a hierarchy of continuum solvation techniques, to neglecting solvation and 

interfacial field effects entirely. Currently, no single approach reliably captures all relevant effects 

of the electrochemical double layer in first-principles calculations.

This review systematically lays out the relation between all major approaches to first-principles 

electrochemistry, including the key approximations and their consequences for accuracy and 

computational cost. Focusing on ab initio methods for thermodynamic properties of aqueous 

interfaces, we first outline general considerations for modeling electrochemical interfaces, 

including solvent and electrolyte dynamics and electrification. We then present the specifics of 

various explicit and implicit models of the solvent and electrolyte. Finally, we discuss the 

compromise between computational efficiency and accuracy, and identify key outstanding 

challenges and future opportunities in the wide range of techniques for first-principles 

electrochemistry.
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1. Introduction

1.1. Motivation and Scope

The electrochemical environment strongly affects reactions at the electrochemical interface. 

Precise control of electrochemical processes, from energy conversion and storage [1, 2], to 

electrochemical wastewater treatment [3–5], corrosion [6], and electrodeposition [7], relies 
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on understanding and manipulating the properties of the double layer region. Computational 

design of new materials for these applications requires an accurate description of both 

chemical interactions from first-principles calculations and the effects of the electrochemical 

environment. For instance, the effects of ion solvation, electrolyte bonding, and potential at 

the solid-electrolyte interface must be considered when designing energy materials with 

increased operating voltage windows and energy storage capacity [8]

Capturing the effects of the electrochemical interface in first-principles calculations remains 

challenging [9, 10]. Techniques to account for solvation and electrification in first-principles 

electrochemistry vary considerably in level of detail, accuracy and computational expense, 

and cross over many disciplines. There is not yet a coherent overview of all these techniques 

with a clear comparison of which physical and chemical effects they each account for, 

making it difficult for practitioners in this field to choose the appropriate technique for their 

investigation. In particular, continuum solvation models have developed significantly in 

recent years and are capable of inexpensively describing an increasing number of solvation 

effects in electrochemistry [11–18]. However, the appropriateness of these models for 

describing any given electrochemical phenomena is not yet widely known beyond the 

solvation model development community, limiting the application of recent and more 

advanced models.

In this review, we seek to help researchers applying first-principles methods to 

electrochemical systems understand the state of available techniques, ranging from 

expensive first-principles molecular dynamics to inexpensive implicit solvation models, and 

guide their selection of the most appropriate modeling approach. We also aim to provide a 

broad understanding of the outstanding issues associated with solvation model development 

for electrochemistry, targeting model developers and practitioners from diverse fields. Thus, 

we limit our focus to calculations of aqueous, charged interfaces using periodic density-

functional theory, with emphasis on the range of calculation techniques, versus specific 

application to chemical problems, reaction mechanisms, or kinetics.

This article begins by explaining the crucial differences between ultra-high vacuum surface 

science and electrochemistry and the complex, nonlinear interfacial properties that arise due 

to the charge on the electrode. We thus motivate the need for models of the electrochemical 

double layer, provide an overview of such approaches, and discuss general considerations 

for first-principles electrochemistry that span all these approaches. We then describe 

approaches that use explicit solvent and/or electrolyte atoms to describe the interface, 

followed by continuum solvation approaches in the final section.

1.2. Electrochemical interfaces

Electrochemistry and vacuum surface science both focus on interfacial properties that 

depend on surface potentials and adsorbate coverage. [19]. However, electrochemistry 

differs fundamentally from surface science in an electrolyte.

The key difference arises from the capability of mobile charges (ions) in the electrolyte to 

balance charges on the electrode, forming the electric double layer that localizes electric 

fields to the immediate vicinity of the electrode surface [20]. This makes it possible for the 
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electrode surface and adsorbates at the surface to easily adopt charged states, rapidly 

equilibrating electrons with the bulk electrode and ions with the bulk electrolyte. Further, 

equilibrium charge states of each possible atomic configuration of the interface change with 

electrode potential, making properties of the electrochemical interface strongly potential 

dependent. Consequently, the most convenient description of electrochemical interfaces uses 

the grand canonical ensemble with respect to both electrons and electrolyte ions, with the 

bulk electrode and electrolyte serving as the corresponding reservoirs.1 In contrast, the 

canonical ensemble is the most convenient description of constant-charge vacuum interfaces. 

This fundamental difference between vacuum and electrochemical interfaces [21] 

necessitates drastically different approaches for first-principles electrochemistry [22].

The chemical potential μe of electrons is a key thermodynamic parameter that governs this 

grand canonical ensemble, and is closely related – equivalent up to an offset as we discuss in 

Section 2.1 – to the electrode potential. This chemical potential directly influences the grand 

free energy Φ ≡ A−Neμe, where A is the Helmholtz free energy and Ne is the total number 

of electrons. Further, Φ is the thermodynamic quantity minimized in equilibrium in this 

ensemble and is therefore the key quantity of interest in determining electrochemical 

reaction pathways. The lowest order effect of μe is that it linearly alters the free energy Φ 
with a slope that depends on the charge state (related to Ne). The earliest first-principles 

schemes for predicting electrode properties [23] and electrochemical reaction mechanisms 

[24–26] employed this approximation of a linear relationship between Φ and μe, neglecting 

deviations from integer charge states and corresponding changes in the Helmholtz free 

energy.

However, the potential (μe) does not alter the thermodynamics of the electrochemical 

interface in this strictly linear manner. Changing μe necessarily results in a corresponding 

change of the local charge at the electrode surface, and hence Ne as well. This charge, in 

turn, generates a local electric field E ( r ) at the surface of the electrode, which affects the 

free energy, A, that may critically impact reaction mechanisms and rates [27–30]. In 

particular, the interaction of the induced dipole moments of the adsorbates with the local 

electric fields and electrostatic interactions with the surface can introduce a nonlinear change 

in the energies with field [31–33]. The net result is a complex nonlinear variation of charges, 

fields and free energies in response to the electrode potential, which are all sensitive to the 

structure and electric response of the electrochemical interface.

Figure 1 schematically illustrates this key difference between the role of the potential in 

vacuum and electrochemical interfaces. In vacuum (Figure 1(a)), the potential is applied 

relative to another electrode far away, and the electric field at the surface depends on the 

separation between these electrodes and their overall geometry. The surface charge density 

at the electrode is proportional to the surface electric field by Gauss’s law, σ = ϵ0Ez, and the 

counter charge appears only on the other electrode, so that the electric field does not vary 

spatially at the atomic scale. The electrode potential (or potential difference to the other 

electrode) in vacuum is not physically significant: only this surface electric field influences 

1The bulk regions are reservoirs by definition when the interfacial region is the system chosen for defining the thermodynamic 
ensemble.
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the energetics of processes at the vacuum interface [35]. Consequently, first-principles 

calculations sometimes apply uniform electric fields like those shown in Figure 1(a) to 

approximate the complex field effects in electrochemical interfaces [27].

The electrolyte dramatically changes this picture (Figure 1(b)) due to its solvated ionic 

charges that can move in response to the field. The ions balance the charge on the electrode 

such that the net charge up to a distance z into the electrolyte decays exponentially, and then 

by Gauss’s law, so does the electric field Ez(z). 2 Most importantly, this makes the local 

electric field distribution and charge density depend only on the electrode potential, and not 

on the overall geometry up to the far away counter-electrode (not shown) in the 

electrochemical cell. The same potential difference results in fields localized to a much 

smaller length scale than the vacuum case, resulting in much larger electric fields near the 

electrode surface, and correspondingly, much larger surface charge densities. Additionally, 

the solvent in the electrolyte also exhibits a dielectric response which further enhances the 

surface charge density, σ = ϵbEz, since the dielectric permittivity ϵb ≫ ϵo for most solvents 

used in electrochemistry. (For example, ϵb ≈ 80ϵo for liquid water at standard conditions.) 

Consequently, electric fields are typically much larger at electrochemical interfaces than 

their vacuum counterparts, resulting in substantially larger electrification effects.3 

Experimentally, these surface electric fields are often characterized using Stark shifts in 

vibrational frequencies of adsorbates [36–39], but the interpretation of these experiments 

requires careful description of the charge and electric field distribution in the double layer 

[40, 41].

This schematic picture of the potential and electric field distribution is the essence of the 

classical Gouy-Chapman-Stern model of the electrochemical interface: the electrode surface 

is adjacent to the solvent (dielectric) component of the electrolyte in a region that excludes 

ions due to their larger effective size, and the ions distribute exponentially outside this region 

[34, 42]. The dimensions and dielectric response of the solvent region, and the precise ionic 

distribution beyond, all contribute significantly in determining the relationship between the 

electrode potential, surface charge density, and electric field distributions. First-principles 

calculations that attempt to account for the local electrification of the electrode surface often 

employ fixed ions as counter-charges [43, 44] to mimic the electrolyte charge density 

(Figure 1(c)). This approach can introduce surface electric fields by controlling the counter-

charge surface density, but neglecting dynamics prevents, in general, simultaneously 

capturing realistic potential, electric field and charge distributions within the electrochemical 

interface.

1.3. Electrochemical capacitance

The charge density σ(ϕ) on an electrode surface at a given potential ϕ is determined by both 

the potential at which the electrode surface is neutral, i.e., the potential of zero charge, σ(ϕ0) 

= 0, and the electrochemical capacitance. The potential of zero charge is related to the 

2As the net charge approaches zero, the potential asymptotes to the potential of the electrons deep in the fluid, which is solely a 
property of the bulk electrolyte; the reference potential of an electron in that electrolyte.
3Note that the electric field is screened substantially by the dielectric response of the solvent within the solvent and electrolyte 
regions. However, the surface of the solvent is still subjected to the large unscreened surface electric fields, and these fields determine 
the response of the solvent.
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energy required to move an electron from the electrode to the bulk electrolyte, up to a 

constant offset in the experimental potential scale that arises from the reference electrode 

potential [45].4 It is analogous to the work function of a surface in vacuum, defined as the 

energy required to move an electron from the surface to the vacuum, but the potential of zero 

charge additionally includes solvation effects.

The variation of charge with potential is captured by the differential capacitance, C(ϕ) = 

dσ(ϕ)/dϕ, defined per unit area of the interface. Integrating from the potential of zero charge, 

the electrode surface charge density at any potential5 is given by σ(ϕ) = ∫ϕ0
ϕ dϕ′C ϕ′  The 

electrochemical capacitance quantifies the relationship between the net potential across the 

entire electrochemical interface and the (equal and opposite) charge on each side of it. It 

does not directly capture the microscopic charge, field and potential distributions discussed 

above. However, its dependence on potential and electrolyte concentration provides indirect 

information about the contributions from various spatial regions within the electrochemical 

interface.

Figure. 2(a) shows a simple idealized model for electrochemical capacitance that generalizes 

the classical Gouy-Chapman-Stern (GCS) model and assumes that the electrochemical 

interface can be decomposed into distinct spatial regions with precisely defined charges. A 

sequence of (approximately) neutral regions separate the electrode region with surface 

charge density σ from the electrolyte region with surface charge density −σ (integrated over 

the z-extent of the electrolyte).6 The original GCS model [34, 42] assumes a single neutral 

region corresponding to the solvent alone, but realistic electrochemical interfaces also 

include a ‘gap’ region with no dielectric response between the solvent and the electrode 

(where the electron density of each is negligible), and optionally, adsorbates on the electrode 

forming an additional dielectric layer [40].

Within this simple model, the electric field in each intermediate region is directly determined 

by σ using Gauss’s law, E = σ/ϵ(E), where ϵ(E) is the permittivity of that region, which 

could depend on the electric field (nonlinear response). This in turn directly determines the 

potential difference, ϕ = σw/ϵ(E), where w is the thickness of that region, and hence the 

differential capacitance, C(E) = dσ/dϕ = (ϵ(E) + Eϵ′(E))/w. The two end regions, the metal 

and the electrolyte, each generate a surface charge density that depends directly on the 

potential ϕ in that region. The net potential difference across the entire interface is the sum 

of the potential differences in each region, each forming a capacitor with the same surface 

charge density σ. Therefore, the net electrochemical capacitance is nominally the series 

combination of differential capacitances in each spatial region shown in Figure. 2(b), 

Cnet
−1 = Cm

−1 + Ca
−1 + Cg

−1 + Clq
−1 + Cion

−1.

The differential capacitance of each neutral region above could depend nonlinearly on the 

field, while the differential capacitance of each charged region could depend nonlinearly on 

4Here, we define the potential of zero charge of a surface without adsorbates. In the presence of adsorbates, the PZC depends on the 
charge transferred to the electrode, and hence is not intrinsic to solely the metal electrode [46].
5This assumes no irreversible reduction or oxidation reactions.
6The intermediate regions may only be approximately neutral, accounting for finite electron density (or spill-over) in the gap region 
and small but non-zero probabilities of ions in the liquid region.
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the potential. Therefore calculating the overall capacitance involves non-trivial coupled 

equations that require numerical solution in general. 7 The series capacitor model still serves 

as a useful first approximation, with the primary consequence that the net capacitance is 

dominated by the smallest capacitance in series. For example, the ‘quantum’ capacitance of 

the electrode Cm(ϕ) = e2wg(εF(ϕ)), where w is the thickness of the electrode and g(εF(ϕ)) is 

the electronic density of states at the Fermi level at a given electrode potential ϕ, is 

extremely large for conventional metallic electrodes and therefore negligible. In contrast, 

two-dimensional electrodes such as graphene and 2D boron can have a low quantum 

capacitance which can dominate the overall electrochemical capacitance [47, 49]. For 

example, Figure 3(a) shows that with decreasing number of layers in few-layer graphene 

electrodes, the quantum capacitance decreases proportionally and limits the total 

capacitance, even though the dielectric capacitance (Clq) increases [47].

Similarly, adsorbates on the electrode surface e.g., CO on a Pt electrode, can introduce a 

dielectric layer Ca with a low capacitance that can dominate the overall capacitance; this is 

sometimes grouped together with the electrode, resulting in a low quantum capacitance for 

electrode + adsorbate. This presents challenges for experimental probes of local electric 

fields, such as Stark shifts of the vibrational resonances of adsorbates (such as CO), because 

the introduction of adsorbates can drastically alter the field distribution by changing the 

dominant lowest capacitor [40]. Further, hydrophobic adsorbates could even strongly reduce 

the adjacent gap capacitance (discussed in Figure 2), making that the dominant contribution 

instead. For example, CO adlayers on Pt electrodes decrease the total capacitance both by 

introducing an adsorbate capacitance Ca and by reducing the gap capacitance Cg [40], as 

shown in terms of the inverse capacitance (potential profile divided by charge on the 

electrode) in Figure 3(b). Additionally, the changing local electric field with charge can alter 

the adsorbate geometry, such as in the case of Cl, Br adlayers adsorbed on Cu(100) [50, 51], 

which can result in nonlinear changes of the quantum (or adsorbate-layer) capacitance with 

electrode potential.

The gap region is typically very narrow (≪ 1Å), but can have a relatively small capacitance 

(large impact on total capacitance) due to its low dielectric constant (≈ 1). In addition to 

adsorbates as discussed above, the gap capacitance can also change with potential as the 

location of the charge responses in the electrode and solvent can vary with the applied 

potential (and corresponding local electric field). In principle, the electrode and solvent need 

not even exhibit the strict charge separation assumed above, as electrons may weakly 

delocalize across the interface, and chemical interactions leading to charge transfer can 

occur between the electrode and solvent. The impact of such ‘charge spillover’ into the fluid 

is still not completely known and remains the subject of active research [52–56].

The region to the right of the gap in Figure 2(a) consisting of solvent and electrolyte ions is 

the portion captured by the Gouy-Chapman-Stern model. The ionic capacitance increases 

strongly with magnitude of potential (Poisson-Boltzmann behavior), while the solvent 

capacitance decreases with magnitude of electric field (controlled by the potential) due to 

7Approximating this complex capacitance behavior at the interface as a constant [48] may suffice for modeling certain reactions at 
nearly neutral interfaces.
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dielectric saturation, as discussed in detail below in Sections 4.1 and 4.5. The net series 

combination results in the characteristic shape of electrochemical capacitance variation with 

potential comprising a broad hump with a narrow dip near the potential of zero charge. Low 

values of quantum, adsorbate or gap capacitances in series would typically mask this shape, 

and therefore this shape is most often seen experimentally for inert metallic electrodes in 

non-adsorbing electrolytes. A goal of modern computational electrochemistry is to probe the 

local electric field effects in realistic electrochemical interfaces beyond the GCS regime, and 

to accurately predict the total charge on the electrode as well as microscopic charge and field 

distributions as a function of potential.

1.4. Overview of approaches

First-principles calculations of electrochemical systems must correctly capture the field and 

charge distributions in order to accurately predict the potential and electrolyte dependence of 

electrochemical processes. Because of the localization of the electric field, these calculations 

only need to describe an electrochemical half-cell: a single, charged electrode and its double 

layer.8 Broadly, these calculations need electrification techniques to introduce charge on the 

surface (section 2.1) and dynamics to account for thermodynamic averaging of solvent and 

electrolyte configurations (section 2.2). These approaches classify into explicit solvation 

(section 3), where the solvent and electrolyte are included as atoms in the DFT or as 

classical atoms/molecules treated using force fields, and implicit solvation (section 4) which 

approximates only the density or distribution of solvent and/or electrolyte. Fig. 4 

schematically outlines the most common approaches used in first-principles 

electrochemistry.

Fully explicit ab initio approaches treat the entire system using DFT or another quantum 

mechanical method. These include the simplest computational hydrogen electrode 

approaches [25] that do not include any solvent molecules or electrolyte ions. Introducing 

electric fields or counter-charges [27, 43] can improve the description of the electric field 

distribution (Fig. 4), but still neglect solvation effects. Frozen configurations of solvent 

molecules and electrolyte ions (section 3.1) can somewhat improve the description of 

solvation and electric field effects, but systematically capturing these effects in an explicit 

approach requires thermodynamic sampling over all possible configurations using a 

molecular dynamics approach.

Molecular dynamics simulations of solvent and electrolytes are potentially the most accurate 

technique for first-principles electrochemistry, but incur significant computational cost both 

due to the large number of additional atoms included within the quantum-mechanical DFT 

calculation and the large number of atomic configurations that must be calculated explicitly. 

Hybrid quantum mechanics / molecular mechanics (QM/MM) methods (section 3.3) can 

relieve the number of atoms in DFT compared to full ab initio molecular dynamics (AIMD) 

calculations (section 3.2), but still require calculation of a large number of configurations. 

Most importantly, the length scales of ion distributions in an electrolyte (especially at low 

concentrations) and the time scales of equilibration of this distribution make both the system 

8Additionally, the difference in chemical potential of the electrons at two half-cells in an electrochemical cell prevents a typical 
electronically equilibrated first-principles calculation from describing the full cell.

Schwarz and Sundararaman Page 7

Surf Sci Rep. Author manuscript; available in PMC 2021 June 29.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



size and number of configurations extremely large for molecular dynamics treatment of 

electrochemical interfaces [57–59].

Implicit solvation methods (section 4) replace explicit solvent molecules or electrolyte atoms 

with continuum approximations of their densities and charge distributions. These 

distributions are implicitly averaged over all possible configurations, removing the need for 

thermodynamic sampling, making these techniques highly efficient computationally. Recent 

developments in implicit solvation models capture an increasing level of detail in the 

response of the electrolyte, potentially achieving an accurate description of solvation and 

electric field effects at low computational cost (Fig. 4).

Another way to classify these approaches is into ‘pure’ approaches that treat every atom 

with the same theory, and hybrid techniques. AIMD is arguably the only pure approach, 

while both implicit solvation models and QM/MM are hybrid techniques that contain 

regions of quantum description (using DFT) spatially separated from regions treated 

classically. The accuracy and reliability of the hybrid methods are often dependent on the 

treatment of this interfacial region. This requires careful matching between force fields and 

explicit solvent/electrolyte atoms in QM/MM methods (section 3.3) and careful 

parameterization of the solvation cavity (section 4.2) in implicit continuum solvation 

methods.

2. General considerations

2.1. Electrification schemes

In addition to choices for treating solvation effects, techniques for first-principles 

electrochemistry vary substantially in their approach for describing the effect of electrode 

potential and local electric fields (as shown in Figure 4). These range from no electrification 

(as in the computational hydrogen electrode), electrification using static countercharge 

distributions, and self-consistent electrification accounting for charge distribution in the 

electrolyte. As we discuss below in detail, these approaches differ significantly in the 

effective distribution of electric fields and potential near the electrode surface (Fig. 5).

At the simplest end of the electrification spectrum, linear free energy relation approaches 

[23, 24] such as the most basic application of the computational hydrogen electrode [25] 

only deal with neutral configurations explicitly (Fig. 5(a)). These approaches then expand 

the free energy as a linear function of potential about the neutral reference point, as 

discussed in section 1.2. Going beyond this linear approximation requires electrification: the 

treatment of charged surface configurations in order to capture the change of local 

geometries and adsorbate configurations due to the surface charge and electric field.

In periodic DFT calculations, charged surface configurations require special treatment that 

neutralize the unit cell. This is because total energies and electrostatic potentials of charged 

unit cells are not well-defined (diverge to infinity). There are many approaches for 

constructing neutral unit cells of charged surface configurations, starting from a uniform 

compensating background (jellium) charge density at the simplest level [60]. This is the 

default handling of charged unit cells in plane-wave basis DFT calculations, which set the 
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average value of the electrostatic potential to zero. As shown in Fig. 5(b), this results in a 

linear spatial variation of electric field and a corresponding quadratic variation of potential 

that differs markedly from those in a real electrolyte.

The potential profile from a uniform counter-charge distribution can be improved by 

strategically placing localized counter charges, either in the form of an explicit ion [43, 44, 

61] (Fig. 5(c)) or as a sheet of continuum charge density (equivalently a counter-electrode 

boundary condition) [62–64] (Fig. 5(d)). Both options result in an electric field localized 

between the electrode surface and this counter-charge layer, with a linear potential variation 

within that region. Ultimately, the most realistic countercharge distributions result from both 

explicit and implicit electrolyte models [65–67], combining a region with constant electric 

field and linear potential nearer to the electrode, with a region of exponentially decaying 

field and potential beyond it (Fig. 5(e)).

In summary, the electrification scheme determines the fidelity of the potential and electric 

field profiles relative to those created by the electrolyte, as illustrated by Fig. 5(f) and (g). 

The uniform countercharge approach generates a physically-incorrect non-zero electric field 

(and corresponding potential variation) within the metallic electrode due to the 

countercharge distribution that covers the entire unit cell including the metallic region. The 

counter-ion and counter-sheet generate the same electric field as the electrolyte in the 

vicinity of the electrode, but miss the screening due to the solvent and electrolyte regions. 

This leads to an overestimate of the potential difference between the electrode and the 

regions of the unit cell far from it. Importantly, only calculations with an electrolyte exhibit a 

potential that decays asymptotically to a constant, while all other schemes yield a potential 

whose unit cell average is zero.

Finally, we need to establish the connection between electrified calculations at a specific 

surface charge and the corresponding electrode potential. This connection can be split into 

two required components: establishing an absolute scale of electron chemical potential in the 

DFT calculations, and connecting this DFT scale with the experimental scale of electrode 

potentials. In particular, calculations that include implicit or explicit electrolytes 

automatically have a meaningful absolute scale of electrode potential because the 

electrostatic potential exponentially decays to zero far from the electrode surface (Fig. 5(e)) 

[68]. All other electrification schemes have an undetermined offset in the electrostatic 

potential far from the electrode and require an additional step of subtracting this asymptotic 

potential in referencing the electron chemical potential to an absolute scale [60]. 

Referencing the electrostatic potential to zero far from the system additionally sets the 

reference for the eigenvalues in Kohn-Sham DFT. The corresponding occupation factors of 

the Kohn-Sham orbitals are Fermi functions of these eigenvalues. Thus, the electron 

chemical potential, which is equivalent to the Fermi energy of the interface [69], is also 

referenced to zero electrostatic potential at infinity.

After fixing the electrostatic potential reference, the theoretical electron chemical potential 

must be calibrated to the experimental electrode potential scale. Implicit solvation 

approaches typically base this calibration on computed and measured potentials of zero 

charge of single-crystal metal electrodes [70]. Explicit calculations either relate the work 
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function of the solvated interface to that of the experimentally determined standard hydrogen 

potential [71–74], or calculate the value of an internal reference, such as the free energy of a 

proton [75]. See Ref. 45 for a detailed review of these approaches.

2.2. Dynamics

The equilibrium electric field distribution within the electrochemical interface is a critical 

component of first-principles electrochemistry, as discussed above. Ensuring appropriate 

distributions of solvent, electrolyte and surface species at the electrode is a general challenge 

in any approach for predicting electrochemical phenomena at or near equilibrium. Moreover, 

these equilibrium distributions should correspond to the grand canonical ensemble with 

respect to both electrons and electrolyte ions, as discussed in Section 1.2. We outline the key 

considerations for correctly sampling equilibrium distributions of the appropriate ensemble 

in electrochemical calculations below.

First consider a completely explicit treatment of solvent and electrolyte in a first-principles 

calculation, which, in principle, should provide the most accurate description of both 

solvation and electric field effects (‘AIMD electrolyte’ in Figure 4). This is extremely 

computationally expensive for two reasons. First, most electrolytes in experiment have low 

concentrations of ions. This necessitates large simulation cells with large numbers of solvent 

molecules to include a statistically significant number of ion pairs in the calculation cell 

[59]. For example, 1 mol/L of monovalent ions in water corresponds to 56 water molecules 

(~ 170 atoms) per ion pair, while 0.1 mol/L of ions corresponds to 556 water molecules (~ 

1700 atoms) per ion pair. This is significantly larger than typical DFT calculations for 

catalysis that already include 100–200 electrode atoms (surface slab and adsorbate). Second, 

in such simulation cells, the diffusion time scales for ions to sample their equilibrium 

distribution may substantially exceed the few to tens of picosecond time scales practical for 

AIMD simulations [57, 58]. This motivates replacing several solvent molecules and 

electrolyte ions in DFT with classical versions instead in the hybrid quantum mechanics / 

molecular mechanics (QM/MM) methods. Alternatively, a portion of the DFT solvent and 

electrolyte may also be replaced with continuum solvation models in hybrid explicit-implicit 

approaches [76, 77].

Electrolyte ions are the primary contributor to both issues leading to the extreme 

computational expense for full explicit solvation discussed above. Hence, current practical 

approaches to explicit solvation in electrochemistry predominantly include only solvent 

molecules, with electrolyte species, if any, restricted to those in the vicinity of the electrode. 

As a result, such calculations do not automatically capture the correct long-range variation 

of electrostatic potential and need special handling for electrification scheme, as discussed 

above in section 2.1. The grand canonical ensemble for the electrons additionally imposes a 

fluctuating electron count in these simulations, which requires a potentiostat to maintain the 

correct ensemble [78, 79]. The fluctuation of electron number can have physical 

consequences, affecting the electronic coupling of adsorbates and electrodes, which is a 

current topic of research [80–82].

Implicit solvation approaches using continuum models directly approximate the equilibrium 

distributions of the solvent and electrolyte, and thereby do not always require explicit 
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dynamics. However, the interfacial structure of the electrode may involve adsorbate 

configurations and coverages that change with potential. Sampling the ensemble of such 

configurations is also important for accurate electrochemical simulations, requiring 

statistical techniques such as cluster expansions to average over many possible 

configurations [83, 84]. Finally, all of the above approaches still require additional dynamics 

techniques to model reactions, ranging from simple and relatively inexpensive nudged 

elastic band for reactions in fully continuum electrolyte, to metadynamics for more complex 

reactions and explicit solvent and electrolyte.

3. Explicit solvation

Solvation effects in electrochemistry may be described using explicit solvent / electrolyte 

molecules or implicit models, as discussed above. This section describes explicit approaches 

in ab initio calculations, starting from the simplest ones with no or fixed solvent/electrolyte 

configurations, to molecular dynamics approaches of both the full DFT (AIMD) and 

partially classical (QM/MM) varieties.

Explicit solvation approaches differ substantially both in computational cost and accuracy. 

Explicit AIMD of solvent and electrolyte (section 3.2) provides the most conceptually 

straightforward description of the electrochemical double layer, treating the entire system on 

an equal footing at the electronic structure level. However, using semi-local DFT for the 

explicit solvent has accuracy limitations for the electronic structure, underestimating the 

band gap due to self-interaction errors and leading to incorrect predictions of redox 

potentials [85] and interfacial band alignment [86]. Hybrid functionals with exact exchange 

or higher-level methods including GW many-body perturbation [87, 88] may capture solvent 

electronic structure more accurately, but at significant computational expense.

Replacing explicit DFT solvent with classical force field models in QM/MM methods 

(section 3.3) substantially reduces computational costs compared to AIMD, but these 

methods are limited by the accuracy of the solvent force field models and their interaction 

with the DFT. Overall, molecular dynamics approaches remain computationally expensive 

regardless of DFT or classical solvent. Most applications of first-principles methods to 

electrochemistry, especially for modeling electrochemical reactions, typically avoid 

dynamics entirely by omitting solvent and electrolyte, or using frozen configurations 

(section 3.1).

3.1. Fixed / no solvent

The simplest and currently most prevalent scheme of applying ab initio methods to address 

electrochemical challenges is the Computational Hydrogen Electrode (CHE) [25]. In its 

simplest form, this approach does not include electrification or solvation effects (section 

1.4), predicting reaction potentials from neutral, unsolvated surface calculations alone using 

a linear free energy approximation (section 1.2). Here, we discuss approaches based on CHE 

that include varying levels of solvation and electrification.

The simplest form of the Computational Hydrogen Electrode model [25] captures the 

thermodynamics driven by change in potential, and can capture trends in electrochemical 
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reactions that are driven by surface chemistry. However, it neglects the contributions of 

electrolyte, kinetic barriers, and electric fields, and cannot correctly capture the potential of 

zero charge or the capacitance. In particular, this model misses the complex nonlinear 

variation of grand free energy with potential for each configuration, because it implicitly 

linearizes the grand free energy about the neutral state as discussed in section 1.2.

The lack of solvation can be partially remedied by including a layer of explicit (DFT) 

solvent in the calculation. This is sufficient for certain applications, especially those that 

require identifying trends in reactivity. For example, a CHE approach with explicit water 

applied to water splitting reactions at metal surfaces elucidated the linear relationship 

between the binding strength of the adsorbates O, OH, and OOH with the surface. [89].

The CHE method may also be extended to describe the electrolyte, through addition of 

explicit, frozen (fixed, optimized geometry) electrolyte ions. Electrolyte ions are known to 

alter the properties of electrochemical systems. For instance, cations have been shown 

experimentally to significantly impact rates of the oxygen reduction reaction [90], the peak 

position of the hydrogen underpotential deposition on Pt [91], and the Stark tuning of CO on 

Pt [92]. Including explicit electrolyte also comes with the challenges discussed above: 

enhanced DFT self-interaction errors due to localized charges on ions, and the need for 

dynamics (section 2.2). It additionally introduces new challenges due to low ion 

concentrations which require large DFT supercells.

Frozen solvent may also be combined with any of the electrification schemes described in 

section 2.1. For example, Ref. [33] compares variants of the frozen solvent approach 

coupled with CHE, a constant field, and a uniform background charge to compute the 

reduction and oxidation of water on Pt(111). These electrification schemes differ in 

complexity and provide similar results for the simple configurations considered, but the 

choice of electrification method may matter for more complex adsorbate geometries, 

especially those with large dipoles [33].

The reduced computational cost of frozen solvent/electrolyte (extended CHE) techniques 

allows for a more extensive exploration of reaction mechanisms and electronic structure 

methods. However, the CHE strategy is intrinsically limited by the fact that fixed solvent 

configurations do not capture the thermodynamics or structure of liquid water at the 

interface [93]. Attempts have been made to capture the fluid thermodynamics using a 

continuum model, and chemical bonding and electronic structure effects from frozen 

configurations of a few explicit molecules. Such approaches require particular care because 

they can re-introduce the dynamics and accuracy issues of explicit and implicit electrolytes 

respectively. Additionally, in practice there is some amount of arbitrary decision-making in 

placing these solvent molecules. These limitations can be more fully addressed by moving 

from using fixed solvent structures to performing molecular dynamics, at additional 

computational expense and increased complexity of the simulation, as discussed next.

3.2. Ab initio molecular dynamics (AIMD)

Ab initio molecular dynamics (AIMD) treats the entire electrochemical interface in an 

electronic structure method such as DFT and samples the thermodynamic phase space of 
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solvent configurations using molecular dynamics. This makes AIMD potentially the most 

accurate technique for first-principles electrochemistry in principle, but is limited by the 

substantially higher computational cost in practice. AIMD calculations must address many 

of the same challenges discussed above, including referencing the potential to an 

experimentally-measurable quantity and treating both the electrons and the electrolyte 

within the grand canonical ensemble appropriate for the thermodynamics of the 

electrochemical interface. While AIMD is still not yet computationally tractable for many 

electrochemical reactions, significant progress has been towards addressing these 

computational challenges.

The electron potential must be referenced to an experimentally accessible quantity. Early 

calculations referenced the electron potential to the water-vacuum interface [26], but large 

differences between the reference potentials and the potential range of interest introduce 

large errors. Using the solvation free energy of a proton in solution as an internal reference 

[45, 75] (Fig. 6(a)) leads to more accurate results. An extension of this hydrogen insertion 

method, or computational standard hydrogen electrode approach (distinct from the 

computational hydrogen electrode approach), has been successful for calculating the PZC of 

metal surfaces with AIMD [55].

As discussed in Sections 1.2 and 2.2, the grand canonical ensemble is the most convenient 

ensemble for computational electrochemistry. AIMD calculations have traditionally been 

designed in the canonical and microcanonical ensembles, in part because of the simplicity of 

these ensembles. These ensembles preserve the number of particles, whereas the grand 

canonical ensemble fixes the chemical potential of each species, a more difficult constraint 

to simulate. AIMD calculations in the grand canonical ensemble require a reservoir for 

excess particles, both electrons and ions, and the definitions of these reservoirs is an active 

area of research. While all ensembles are equivalent in the thermodynamic limit, the system-

size convergence of molecular dynamics and Monte Carlo simulations can differ 

dramatically, with best convergence typically obtained in the grand canonical ensemble [94].

Current approaches to electron reservoirs include modifications of the electrostatic boundary 

condition deep within the liquid [78] and counter-ions with variable charge [79], analogous 

to the counter-sheet and ion electrification schemes shown in Fig. 5. Counter-ions that can 

serve as electron reservoirs must have a wide band gap, such as the modified neon atoms in 

Ref. [79], to allow varying the Fermi level (applied potential) over a wide range (Fig. 6(b)). 

Making simulations grand canonical in atoms or ions is much more challenging [79], and 

typically requires grand-canonical Monte Carlo (GCMC) techniques. Such techniques have 

typically been practical only for classical force-field simulations [95–97] due to the 

substantial computational cost of DFT calculations with Monte Carlo moves that 

substantially change geometries (and hence, the electronic structure) at each step. Although 

computationally inefficient, an alternative is to combine several canonical AIMD 

simulations with varying numbers of charge pairs with Monte Carlo sampling as a post-

processing step [98].

Recent developments in AIMD simulations have made it possible to more accurately 

reference electrochemical predictions to the experimental scale and electrify the DFT unit 
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cell. However, the computational cost of AIMD limits the number of solvent molecules and 

typically precludes the inclusion of electrolyte species in the calculation, as discussed in 

Section 2.2. Including a single counter-ion may approximate electrification, but does not 

correctly capture the long-range electrostatic potential and capacitance of the 

electrochemical interface. Additionally, semi-local DFT errors limit the accuracy of solvent 

structure in AIMD [99, 100], requiring more expensive methods such as hybrid functionals 

to improve accuracy. Alternate strategies to retain solvent and electrolyte dynamics while 

mitigating the computational limitations of AIMD are necessary to more broadly explore 

electrochemical phenomena in first-principles calculations.

3.3. Quantum mechanics / molecular mechanics (QM/MM)

QM/MM is a broad class of hybrid molecular dynamics techniques that treat a part of the 

system quantum mechanically, while approximating the remainder using classical force 

fields [101]. QM/MM has been widely applied in biochemistry and biology, particularly for 

protein studies, and sparingly for electrochemical applications [102, 103]. The promise of 

QM/MM is to retain the chemical accuracy of ab initio molecular dynamics at a much lower 

computational cost due to the reduced size of the quantum component of the simulation. 

This allows for longer simulation times and larger numbers of simulated atoms, which is 

important for accurate sampling of electrolytes, as discussed in section 2.2.

Realizing the full potential of QM/MM requires further developments on two fronts: 

accurate force fields for the classical region and reliable approximations for the interface 

between the classical and quantum regions. These requirements further depend on how the 

overall system is partitioned into classical and quantum regions. For example, in Figure 7(a), 

treating the metal surface and adsorbate in quantum mechanics surrounded by a classical 

liquid requires accurate force fields for the liquids alone. On the other hand, including the 

metal in the classical subsystem provides further opportunity for reducing computational 

costs, but requires treatment of metal polarization in a classical force field [104].

We first discuss the considerations in selecting force fields for the classical subsystem. 

Classical force fields vary in complexity from pair potentials with fixed charges; to 

polarizable and charge-equilibration force fields with variable local dipoles or charges; and 

to reactive force fields with dynamic bond connectivity. Increasing complexity in the force 

fields allows more accurate description of charge distributions in the classical subsystem, but 

introduces challenges in force field parameterization, especially when dealing with many 

atomic species. For example, classical molecular dynamics simulations of liquid water range 

from pair potential models such as SPC/E [106] and TIP4P [107, 108], through polarizable 

force fields [109], to charge-equilibration force fields [110–113]. The latter force fields 

provide an accurate description of the structure and dielectric response of liquid water, 

including at extreme temperatures, pressures and electric fields, but are specific to pure 

water. In contrast, pair potential models do not simultaneously capture thermodynamic and 

dielectric properties of water accurately [114], but parameterization of electrolytes in pair-

potential models of water is relatively straightforward [115].

Classical force fields can either focus on specific material systems with highly detailed 

parameterization and potentially high accuracy for those materials as outlined above, or span 
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large classes of materials, trading off accuracy. General-purpose force fields such as 

COMPASS [116], CHARMM [117] and AMBER [118] are intended for organic and 

biomaterials, while universal force fields (UFF) [119] address the entire periodic table with 

lower fidelity. On the other end of the spectrum, reactive force fields such as AIREBO [120], 

COMB [121] and ReaxFF [122] can potentially describe liquids and electrolytes in much 

more detail beyond the long-range charge response alone, including their chemical reactions. 

Most reactive force fields include a charge equilibration scheme based on electron affinities 

of each atomic species to capture variable charge states. In electrochemical simulations, this 

provides an additional opportunity to account for the fixed chemical potentials of the 

electrons within the liquid / electrolyte region in the vicinity of the electrode as well [123]. 

These reactive force fields require careful parameterization with extensive first-principles 

calculations for calibration, and their reliability is typically limited to a few atomic species 

and molecular environments. Thus, embedding in QM is generally still required to achieve 

the necessary chemical accuracy for the reactive portions of the simulation.

Machine learning may hold the key to addressing challenges in classical force-field 

parameterization by automatically generating them from DFT calculations [124, 125]. 

Further, using MM potentials developed using the same level of theory as in QM regions 

potentially increases the accuracy possible for QM/MM methods [126, 127]. At present, 

however, most machine-learned potentials (e.g., gaussian-approximation potentials (GAP) 

methods [128]) only account for local interactions [129]; QM/MM for electrochemistry 

requires machine-learned potentials that also extract atomic charges [130] in order to 

correctly describe long-range interactions. Alternatively, physics-based empirical approaches 

such as density-functional tight-binding (DFTB) [131] models may provide another path 

forward for accurate QM/MM simulations of electrochemical systems.

In addition to accurate force fields for the classical region, QM/MM simulations also require 

reliable approximations for the interface between the classical and quantum regions. The 

QM/MM interface must both partition the atoms between classical and quantum regions, and 

describe the interactions between the two regions. The quantum region must include atoms 

in the vicinity of chemical processes of interest. Interfaces within liquids, in particular, 

require adaptive methods so that species can be either MM or QM depending on whether 

they have diffused in or out of a region in space designated as QM [101].

The accuracy of QM/MM depends on the treatment of electrostatic interactions across the 

interface. This can range from simple ‘mechanical embedding’ that describes the QM 

system with predetermined charges, through ‘electrostatic embedding’ that utilizes the QM 

charge density, to ‘polarized embedding’ that allows the MM charge to adjust self-

consistently [101]. Complex interaction schemes incur greater computational expense, but 

can allow reduction in the size of the QM region for equivalent accuracy [132]. All these 

schemes exclude charge transfer across the quantum-classical interface, which limits the 

accuracy of electrostatic potentials in QM/MM [133].

Lastly, to further reduce computational cost, QM/MM calculations may include both the 

electrode and the electrolyte in the classical region [104]. However, classical treatment of 

metallic regions is particularly challenging due to the strong effects of polarization and the 
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delocalization of charge [134–136]. These effects are difficult to capture in conventional 

polarizable and charge-equilibration schemes for atom charges, but are more naturally 

captured in image-charge response models of metals [105] (Fig. 7(b)). Application of such 

methods to electrochemistry requires further developments, especially in the image-charge 

treatment of non-neutral metal surfaces [135].

4. Implicit / continuum solvation models

The highly complex interactions between the atoms and electrons in the electrode and the 

electrolyte impact the equilibrium distributions of orientations, positions, and polarization of 

the solvent molecules and electrolyte ions. As discussed above, explicit solvation methods 

attempt to directly include these molecules and/or ions in the calculation, and need to invoke 

molecular dynamics to sample their distributions.

On the other hand, implicit / continuum solvation models break this complex problem into 

two simpler problems: describing where the solvent molecules or electrolyte ions are, and 

then, given this distribution, capturing how the electrolyte species respond to the electrode 

(Figure 8). This section presents a unified overview of the wide range of continuum 

solvation models applied to electrochemistry, discussing the physics they capture, strategies 

and inputs for parameterization, and their resulting accuracy for describing electrochemical 

properties.

Most continuum models approximate the distribution of solvent molecules near an electrode 

with a cavity: no molecules or ions in the region occupied by the electrode, and a uniform 

distribution outside it. The interactions between the electrolyte species and the electrode 

include mean-field electrostatic interactions and beyond mean-field effects including 

dispersion interactions, local repulsion, etc. Among these, the mean-field electrostatic 

interactions have the longest range and consequently most strongly impact the distribution of 

charges, and thus the energetics, of the electrode. The capability of continuum solvation 

models to describe specific electrochemical phenomena depends most vitally on this 

interaction, which we describe in detail next in Section 4.1. All remaining interactions are 

described approximately in terms of the shape and size of the cavity, as we discuss in 

Section 4.3. The quantitative accuracy of both the dominant electrostatic interaction and the 

remaining secondary interactions depend on the precise size of the cavity and its proximity 

to the electrode. We discuss several approaches to determine and parameterize the cavity 

subsequently in Section 4.2.

4.1. Bulk response of electrolyte

The solvent and electrolyte interact with the electrode primarily through long-ranged 

electrostatic interactions between their charge densities. This interaction significantly 

contributes to interfacial properties such as capacitance and surface free energies. The net 

electrostatic potential that governs this electrostatic interaction is determined by Poisson’s 

equation,
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− ∇2ϕ( r ) = ρtot( r )
ϵ0

, (1)

where the ρtot( r ) is the total charge density and ϵ0 is the permittivity of free space.9 The 

total charge density ρtot( r ) = ρel( r ) + ρlq( r ) includes the electrode charge density ρel( r ) in 

the electronic DFT calculation (electrons and nuclei) and the net charge density ρlq( r ) in the 

liquid region (solvent and electrolyte).

The net charge density in the liquid depends on the interactions of the liquid with the 

electrode, primarily through the dominant long-ranged electrostatic interaction mediated by 

the net electrostatic potential, ϕ( r ). However, this “response” of the fluid is rather 

complicated in general with ρlq( r ) = ρlq[ϕ]( r ), a general functional where the charge 

density at one location r  in space depends non-locally and non-linearly on the potential 

everywhere. Therefore, we can write the electrostatic potential in terms of the electrode 

charge density ρel( r ) from the electronic DFT calculation alone as

− ∇2ϕ( r ) − ρ1q[ϕ]( r )
ϵ0

= ρel( r )
ϵ0

, (2)

but that is not feasible to solve directly in general.

To arrive at practical approximations to the fluid response, continuum models focus on the 

long-range potential alone, neglecting complexities in the short-ranged interactions at the 

atomic scale. Consequently, a multipole expansion is convenient to describe both the 

interaction of a charge distribution with an electrostatic potential and the potential generated 

by that charge distribution. The most important contributions will arise from the movement 

of net charges in the potential, which are monopoles at l = 0 in the multipole expansion. The 

next contribution will be from dipoles orienting to the gradient of the potential (the electric 

field), which is l = 1 in the multipole expansion. Subsequent terms involving quadrupoles at 

l = 2, octupoles at l = 3 and so on will become successively less important in the long-range 

limit.

The multipole components present depend on the nature of the species in the fluid. The 

monopole contribution requires net charges that can move independently in response to the 

electrostatic potential, which are only present in the electrolyte ions. Consequently, the l = 0 

response dominates for electrolyte ions, and l ≥ 1 contributions are less important. For 

neutral solvent molecules without a net charge, the monopole contribution is absent and 

therefore the l = 1 dipolar response dominates.

The picture so far is still fully general in terms of the locality of the response. This multipole 

expansion can, in principle, capture the effect of an atomic-scale charge distribution within 

the ion or molecule moving, rotating and polarizing in response to the electrostatic potential 

9Note that many density-functional theory and continuum solvation model articles use atomic units with Gaussian/cgs system for 
electrical quantities, within which ϵ0 = 1/(4π).
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over the same length scales. Additionally making a linear-response approximation (with 

respect to electrostatic potential) allows the entire fluid response due to both molecules and 

ions to be written as a series of differential operators D(2l) of order 2l for each multipole 

order,

ρlq( r ) = ∑
nl

wnl ∗ D(2l) wnl ∗ ϕ( r ) (3)

along with convolutions wnl∗ to capture the nonlocality of the interaction, where n indexes 

different contributions at each l. This is the basis of the SaLSA continuum solvation model 

[18] that captures the nonlocal response of both solvents and electrolytes, but within a linear 

response approximation.

Most solvation models neglect this non-locality of the response, which effectively reduces 

all species in the fluid to point particles. In this limit, only the dominant multipole 

contributions of each species remains relevant, reducing the response to l = 0 alone for ions 

and l = 1 alone for solvent molecules. As we discuss next, this general perspective results in 

the family of Poisson-Boltzmann approaches.

The simplest model for the monopole response of ions is to treat them as an ideal non-

interacting gas of particles, such that the local concentration of ions at any point is 

proportional to their potential energy. For a general electrolyte with several species of ions 

with charges Zi and bulk concentrations Ni (satisfying ∑iNiZi = 0 for charge neutrality), 

this results in an ionic charge density

ρlq
ion( r ) = ∑

i
NiZieexp −Zieϕ( r )

kBT , (4)

where e is the elementary charge. For a symmetric Z : Z electrolyte containing cations and 

anions of charges ±Z with the same bulk concentration Nion, the above simplifies to

ρlq
ion( r ) = − 2NionZesinh Ze

kBT ϕ( r ) . (5)

At low potentials where Ze|ϕ | ≪ kBT , we can approximate sinh(x) ≈ x and substitute back 

into the Poisson equation to yield the linearized Poisson-Boltzmann equation

− ∇2ϕ( r ) + ϕ( r )
λ2 = ρel( r )

ϵ0
, (6)

with the Debye screening length λ given by

λ−2 = 2NionZ2e2

ϵ0kBT . (7)

(Note that ϵ0 will be replaced by ϵb, the net dielectric permittivity of the electrolyte after 

accounting for the solvent dielectric response below.) The solution to the linearized Poisson-
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Boltzmann equation in regions without charge takes the form e−r/λ, causing the potential to 

exponentially decay with a characteristic length scale given by the Debye screening length 

λ.

More generally, without making the small potential approximation above, the Poisson-

Boltzmann equation for a symmetric electrolyte is

− ∇2ϕ( r ) + ϕ( r )
λ(ϕ)2 = ρel( r )

ϵ0
, (8)

with a potential-dependent Debye screening length λ(ϕ) given by

λ−2(ϕ) = 2NionZe
ϕ sinh Ze

kBT ϕ . (9)

Figure 9(a) compares the Debye screening length of aqueous 1:1 (Z = 1) electrolytes at Nion 

= 1 mol/liter in the linearized and nonlinear potential-dependent forms. As expected, the 

linear form is appropriate only when the potential satisfies Ze|ϕ | ≪ kBT  (lower x-axis), 

which corresponds to ϕ ≪ 0.026 V at room temperature of 300 K (upper x-axis). The Debye 

length exponentially decays to zero with increasing potential, which corresponds to an ionic 

charge density ρlq
ion ∝ λ−2 that diverges to infinity. This is an unphysical consequence of 

assuming that the ions are non-interacting. The modified Poisson-Boltzmann approach [137] 

mitigates this issue by enforcing a ‘packing limit’ on the ions, resulting in

λ−2(ϕ) = 2NionZe
ϕ

sinh Ze
kBT ϕ

1 + 2η cosh Ze
kBT ϕ − 1

, (10)

where η = Nion∑i 4πRi
3/3  is the volume fraction of ions with radii Ri (i = cation, anion) in 

the bulk electrolyte. Figure 9(a) shows that this modified Poisson-Boltzmann equation 

results in a lower bound on the Debye screening length, corresponding to an upper bound in 

the concentration and charge density of the ions. Without this upper bound, the Poisson-

Boltzmann equation may lead to an unphysical pile-up of ionic densities near the electrode 

and a corresponding divergence of the solvation energetics [13].

As discussed above, the monopole l = 0 response dominates for ions in the local response 

limit, while for neutral species like solvent molecules, the monopole response is forbidden 

and the dipole l = 1 response dominates. Unlike the monopole response corresponding to 

translational motion of charges, there are two classes of response that contribute at the dipole 

order. First, analogous to the movement of charge monopoles, molecules with permanent 

dipoles can rotate to align with the electric field, creating a net dipole moment with 

contributes an induced charge density. Additionally, the electric field can polarize the 

molecules both by distorting the electron density and by stretching / bending bonds, creating 

an induced dipole which contributes an induced charge density. In both cases, each molecule 

in the fluid generates a net dipole moment p = CαE  in response to the local electric field 
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E = − ∇ϕ, where α is the polarizability of the molecule. The local field coefficient, C, is a 

constant that accounts for the difference between the local electric field seen by the 

molecule, compared to the net electric field E  which includes the contribution of that 

molecule and its surroundings. Mean-field theory with C = 1 is inadequate except for 

extremely dilute gases. For liquids with low dielectric constants, determining C by placing 

the molecule in a spherical cavity of the net dielectric constant determined self-consistently 

(i.e., Clausius-Mossoti theory [139]) works much better. High dielectric constant, polar 

liquids like water typically require more advanced theories of the correlated response of 

molecules [140], or an empirical approach as we will discuss below.

In a solvent with density Nlq of the molecules described above, the electric field induces a 

polarization density P = Nlq p , which in turn leads to an induced charge density of the 

solvent

ρlq
solv( r ) = − ∇ ⋅ P = ∇ ⋅ NlqCα∇ϕ( r ) . (11)

For a uniform fluid without any ions, substituting back into the Poisson equation, reduces it 

to the form

− ∇2ϕ( r ) − ∇ ⋅ NlqCα
ϵ0

∇ϕ( r ) = ρel( r )
ϵ0

, (12)

which can be rearranged to − ∇2ϕ = ρel/ϵb with an effective bulk dielectric constant

ϵb = ϵ0 + NlqCα . (13)

Each of the contributions to the overall dipole response including polarization and rotation 

contribute a term above with a separate polarizability α.

The electronic and vibrational polarizability of the molecule contribute an αpol that is 

typically assumed constant with respect to field strength E. This is because the characteristic 

energy and length scales of this response are several eV and a few Å respectively, requiring 

fields substantially exceeding the V/Å = 1010 V/m scale in order to modify the response 

substantially. However, the rotational response of permanent molecular dipoles, such as in 

liquid water, occur at the much smaller thermal energy scale ~ kBT (0.026 eV at room 

temperature). Correspondingly, this response may be strongly affected by fields on the 108 

V/m scale, which is easily exceeded at an electrochemical interface. In particular, a typical 

electrode surface charge density of 10 μC/cm2 corresponds to an electric field of 1.1 × 1010 

V/m or 11 V/nm, and fields of this magnitude have been measured experimentally using the 

vibrational Stark effect in a number of material systems [141, 142]. It is therefore vitally 

important to account for the nonlinear rotational response of solvents.

The simplest model for the rotational response of solvent molecule dipoles, much like the 

corresponding case for ions above, assumes the dipoles all respond freely and independently 

to the external field. A simple statistical-mechanical derivation writing out the Boltzmann 
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probabilities for dipoles aligning to the field with potential energy − p ⋅ CrotE  [139] and 

computing the average dipole moment yields the field-dependent polarizability

αrot(E) = pmolCrot
E coth pmolCrotE

kBT − kBT
E2 . (14)

Here pmol is the magnitude of the solvent molecule dipole and Crot is the rotational 

contribution to the local field coefficient discussed above. This polarizability has the highest 

value of (pmolCrot)2/(3kBT) for low electric fields E → 0. It reduces in magnitude with 

increasing E when most dipoles have aligned completely with the field, resulting in 

saturation of the response. The net dielectric constant of the fluid is therefore

ϵb(E) = ϵ0 + Nlq Cpolαpol + αrot(E) . (15)

The local field coefficients Cpol and Crot for the polarization and rotational responses can be 

determined by matching the E → 0 limit of the dielectric response to experiment. 

Specifically, matching ϵb(E) to the low-frequency dielectric constant ϵb (≈ 78.4 for water at 

300 K), and matching ϵb without the rotational term to the experimental optical-frequency 

dielectric constant ϵ∞ (≈ 1.8 for water) yields two conditions that fix both Cpol and Crot [13, 

114].

Figure 9(b) demonstrates for water that ϵb(E) varies significantly with applied field, and that 

ϵb(0) only approximates ϵb(E) at the smallest applied field strengths. The simple model 

described above, incorporated into the NonlinearPCM solvation model [13], agrees very 

well with a more detailed classical density-functional theory prediction for the nonlinear 

dielectric response [114]. Specifically, note that the relative permittivity of water reduces by 

a factor of two for a surface charge density of 15 μC/cm2, a rather nominal value for 

electrochemical interfaces. It is therefore critical to include nonlinear dielectric response in 

solvation models used for first-principles electrochemistry. Most continuum solvation 

models in widespread use currently do not include it as detailed in section 4.4, which lead to 

an incorrect qualitative description of electrochemical capacitance as discussed in section 

4.5.

Above, we have discussed models for the nonlinear response of electrolyte ions and solvent 

molecules in a bulk fluid. For a continuum solvation model, the fluid will only be present in 

the region not occupied by the electrode or any adsorbates or surface species treated using 

electronic DFT. As discussed next in section 4.2, this is described by a cavity shape function 

s( r ) that is zero in the electrode region and one in the bulk fluid region. With that 

modification, the electrostatic potential ϕ( r ) in a local-response continuum solvation model 

is very generally given by the generalized Poisson-Boltzmann equation

−ϵ0∇2ϕ( r ) − ϵb( ∇ϕ ) − ϵ0 ∇ ⋅ (s( r )∇ϕ( r ))

+ ϵbs( r )ϕ( r )
λ(ϕ)2 = ρel( r ) . (16)
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This is obtained from the above by modulating the bulk solvent density Nlq and ion density 

Nion by the cavity shape function. Different local solvation models assume different 

simplified models for ϵb(E) and λ(ϕ), with the simplest limit being the fully linearized 

Poisson-Boltzmann where ϵb(E) and λ(ϕ) are each replaced by their low-field and low-

potential limits.

4.2. Defining the cavity

The previous section discusses how the solvent and electrolyte environment respond; a 

complete model for the electrochemical interface must also account for where this 

environment response is present. Continuum solvation models approximate the real atomic-

scale environment response with the bulk environment response outside the solute 

(electrode) region modeled explicitly in the first principles calculation. All these models 

effectively scale the bulk response by a cavity shape function s( r ) that switches from zero in 

the solute region to one in the solvent region, but differ substantially in how they 

parameterize and determine s( r ). Additionally, for an electrolyte, a shape function s( r )
determines where the ions respond, which in general could be different from s( r ). We first 

discuss the solvent cavity s( r ) in detail below, before discussing similar considerations for 

the electrolyte cavity at the end of this section.

Intuitively, the solvent cavity shape function s( r ) accounts for the fact that solvent 

molecules can reach the solute or electrode surface up to a distance of nearest approach, 

which limits the spatial extent of their response. However, the spatial extent of the response 

is not precisely defined by the location of the solvent molecules, either in terms of their 

geometric centers or their constituent atoms (Figure 10(a–b)). The primary reason for this 

difference is that, fundamentally, the response is nonlocal at the atomic scale. For example, 

the rotation of a water molecule dipole depends on the electric field over the spatial extent of 

the molecule, and produces a charge distribution over this spatial extent as well.

Most continuum solvation models approximate the response as local, and in order to 

reproduce the energetics of the true non-local response, they should still produce induced 

charge density at the correct locations (Figure 10(c)). This implies that the effective local 

response must extend closer to the solute than the location of the geometric centers of 

molecules. Consequently, the cavity needs to ‘switch on’ somewhere between the distance of 

nearest approach of solvent geometrical centers (farther from solute) and that of the solvent 

atomic or electronic charge densities (nearer to solute). In most cases, this cavity distance 

requires empirical parameterization. Solvation models with nonlocal response [18] can 

mitigate this empiricism, as described below in Section 4.4, but most continuum solvation 

models employ local response because of easier implementation and lower computational 

cost.

Despite the complexities discussed above, ultimately, the cavity correlates with the distance 

of nearest approach of solvent molecules to the solute. This distance is related to the 

effective sizes of the constituent atoms for non-bonded interactions, often described using 

van der Waals (vdW) radii. The atom size, in turn, arises from the strong repulsion when 

electron densities of two atoms overlap. Therefore, continuum solvation models have 
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adopted two broad classes of strategies to determine the cavity s( r ): atomic spheres based 

on empirical atomic radii, and iso-density approaches based on electron densities.

Atomic sphere cavities use atomic radii to define the solute region (s = 0) based on a union 

of spheres centered on the atoms of the solute. The simplest approach directly defines the 

cavity as a union of atom-centered spheres, with radii that account for the solute atom radius 

and an additional empirical distance to the start of the solvent response. More complex 

approaches first estimate the cavity governing the solvent molecule centers, called the 

solvent accessible surface (SAS), from atom-centered spheres with radii equal to the sum of 

solute atom and solvent molecule radii. They then remove spheres of an empirical radius 

centered on the SAS to form a smaller cavity (s = 0 region), called the solvent excluded 

surface (SES), which then determines the location of the response (Fig. 11). This approach 

results in a smoother cavity surface and avoids spurious placement of solvent response in 

small gaps between solute atoms. See Ref. [143] and [144] for comprehensive reviews on 

the large number of approaches used for atomic-sphere cavity determination in traditional 

solvation methods.

On the other hand, iso-density approaches correlate the position of the cavity to the electron 

density of the solute. They typically allow the solvent response (s = 1 region) to occupy all 

space where the solute electron density n( r ) is smaller than a characteristic value nc, below 

which it is assumed to not significantly repel the solvent. In this case, nc is treated as an 

empirical parameter that controls the size of the cavity that directly determines the location 

of the solvent response (Fig. 11).

Comparing the two types of approaches, atomic-sphere based parameterizations are highly 

flexible, with potentially a large number of parameters that can be adjusted to deliver high 

accuracy in domains with a lot of data to parameterize the models. They are predominant in 

describing the solvation of organic molecules, for which extensive solvation free energy 

databases from thermochemical measurements can be used for fitting a large number of 

atomic radii and scale parameters. On the other hand, iso-density cavity approaches typically 

incur fewer parameters, such as a single global nc for a solvent, making them more 

transferable to domains with less reliable data.

Both the atomic radius and the electron density approaches define a surface at which the 

solvent cavity turns on. The solvent-solute transition can either occur abruptly in space 

across this surface, or smoothly over some distance. This smoothing function can serve two 

purposes: to approximate the nonlocal nature of this transition, and to improve the numerical 

stability of ab initio calculations near these interfaces. Smooth solvation cavities are 

particularly important for the stability of ab initio calculations employing a plane-wave basis 

sets and those performing molecular dynamics [11, 145, 146]. Implementations vary in the 

precise functional form for deriving s( r ) from n( r ), including a function of log(n/nc) 

transitioning over a width σ [13, 70, 147] or a sigmoidal function transitioning over a range 

nmin to nmax [11, 12], but generate very similar results when parameterized to the same data 

sets [148].
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These cavity definition strategies, originally developed for the solvation of small organic 

molecules [143], are particularly successful when the charge density is comparatively 

uniform and unchanging for the same atomic species in different chemical environments. 

However, these approaches have been less successful for charged species and 

electrochemical interfaces. Charged species are problematic for the atomic radius strategy 

because species with different charges, and hence different electron densities at the surface, 

are treated using the same atomic radii. The electron density approach does not resolve this 

problem either because positive and negative charges affect the solvent in different ways 

with different magnitudes, and this effect is not captured by a simple electron density 

threshold. This effect is solvent specific. For instance, water more strongly solvates anionic 

species relative to cations and neutral molecules, effectively requiring a smaller cavity for 

anionic species to account for this effect [149]. Acetonitrile has the opposite response, more 

strongly solvating cationic species [17]. Intuitively, this charge asymmetry occurs because of 

the asymmetry in the solute accessibility of the solvent. In the case of water, the positive 

charge center (the hydrogen) can more closely approach the solute, favoring solvation of 

negatively charged species. For acetonitrile, the negative charge center (the nitrogen) is more 

solute-accessible than the buried but positively charged central carbon atom.

Continuum solvation models do not automatically capture such charge asymmetry effects 

because they reduce molecules to point dipoles. Some solvation models empirically address 

the charge asymmetry problem by defining separate parameters for anionic and cationic 

cavities [149]. This reduces solvation energy errors, but application of these solvation 

models is limited to systems with only one charged species, excluding the study of systems 

such as zwitterions and ionic surfaces. A more general approach is a cavity that dynamically 

contracts or expands in response to the local electric field, capturing the asymmetry of 

solvation within a single parameterization [17, 151].

The approaches described above for handling charged species are all intrinsically empirical, 

requiring fitting parameters and/or a choice of functional form in the dependence of cavity 

size on local electric field [17, 149, 151]. Extensive databases of molecular solvation free 

energies are available to determine these fitting parameters and functional forms for 

solvation models for organic species and small ions [152–154]. Describing solvation at 

electrochemical (charged) interfaces is challenging for similar reasons as charged ions and 

molecules. However, interfaces are additionally difficult to benchmark because similarly 

systematic experimental data sets for calibrating interfacial solvation do not yet exist. Most 

continuum solvation studies of electrochemical interfaces so far employ models 

parameterized exclusively to molecular and ionic data sets. Improving the accuracy and 

reliability of electrochemical solvation requires alternate strategies to define cavities at 

charged interfaces and to benchmark energetics of charged surfaces.

The above discussion focuses on the cavity s( r ) that defines the dielectric response of the 

solvent. Describing an electrolyte requires an additional cavity Sion( r ) that defines the ionic 

response of the electrolyte, which should be distinct from s( r ) in general. In fact, the 

concept of an “ionic cavity” predates solvation models and is implicit in the Gouy-

Chapman-Stern (GCS) model of the electrochemical double layer [34]. Electrolyte ions are 
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limited in their approach to the surface because of their solvation shells, leaving a region 

adjacent to the electrode with solvent alone (Fig. 2(a)). The width of this solvent-only 

region, typically denoted x2, is therefore approximately equal to the solvated radius of the 

electrolyte ions. (This notation follows from defining x1 as the width of the ‘vacuum gap’ 

between the electrode and the solvent-only region, as shown below in Fig. 12(a).)

Construction of a separate ionic cavity Sion( r ) should be straightforward in principle based 

on the above considerations. However, a combination of numerical challenges and 

parameterization issues makes ionic cavities more difficult to define, and most prior 

solvation models applicable to electrochemical systems utilize a single cavity for both 

solvent and ionic response [12–14, 17, 18, 70, 149, 155]. Numerical challenges in defining 

ionic cavities result primarily from the greater distance of the ionic cavity from electrode 

atoms, larger by x2 compared to the solvent cavity. Solvation models applied to 

electrochemistry predominantly employ iso-density cavity parameterizations, which will 

require an extremely low nc to describe a further-away ionic cavity due to the exponential 

decay of electron density away from the surface. This exponential decay constant will 

additionally differ between electrodes depending on their work function and resulting orbital 

localization precluding a single, numerically-stable nc that can capture a given x2 for 

different electrodes. These numerical challenges may be avoided either by using an atomic 

parameterization with x2 added to the atomic radii [65], or by using convolution tricks to 

expand iso-density solvent cavities by a specified width x2 independent of the electron-

density exponential decay constant [150].

The greater challenge in defining ionic cavities is identifying reliable experimental data to 

parameterize x2. As discussed above, solvation cavity parameterization relies on extensive 

thermochemical databases of solvation free energies determined from temperature-

dependent solubility measurements [152]. Importantly, the solvation energies depend 

primarily on the solvent dielectric response even for solvation in electrolytes, especially with 

highly-polar solvents like water in aqueous electrolytes. The solvent region strongly screens 

the electric field of the electrode and thereby reduces the energetic contribution of electrode-

ion interactions. Correspondingly, thermochemical data do not constrain x2 sufficiently to 

identify deviations from the zeroth-order guess of x2 = ion radius, such as reduction of x2 

with increasing field strength as ions are strongly attracted to the interface, or asymmetry 

with the field direction due to different ionic sizes. Precise parameterization of ionic cavities 

therefore require experimental measurements of ion distributions, which are significantly 

more challenging and sparsely available than solvation energies. Accurately capturing field-

dependent ionic cavities may be important in future work for correctly predicting the 

electrostatic potential and capacitance in first-principles calculations of electrochemical 

interfaces.

4.3. Non-electrostatic free energy terms

Continuum solvation models adopt several approaches to define the cavity that separates the 

continuum liquid (or electrolyte) subsystem from the solute (or electrode) subsystem treated 

using DFT, and make different levels of approximations for the electrostatic interaction 

between these subsystems as discussed above in Sections 4.2 and 4.1 respectively. The 

Schwarz and Sundararaman Page 25

Surf Sci Rep. Author manuscript; available in PMC 2021 June 29.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



electrostatic interaction is the dominant contribution to the overall effect of solvation on 

energetics, especially for highly charged systems, but accurate modeling of free energies in 

solvated environments requires accounting for the sub-dominant non-electrostatic 

interactions as well. Briefly, the three most important physical effects that contribute beyond 

the electrostatic interaction are the cavitation free energy required to remove liquid from a 

region of space and replace it with the solute, dispersion interactions between solute and 

solvent, and the repulsion between these subsystems [143]. Solvation models either treat 

these physical effects separately in detail, or adopt an empirical approach for their overall 

energetic contribution, as we discuss below.

The cavitation free energy, defined as the free energy cost of forming the cavity in the 

solvent, exhibits a complex dependence on the size and shape of atomic-scale cavities 

relevant for solvation as predicted by molecular dynamics simulations [114, 156]. It reduces 

to the surface tension energy proportional to the cavity surface area in the macroscopic limit 

of large cavities, but transitions to a volume-proportional contribution over cavity 

dimensions comparable to the solvent-molecule size. Solvation models can estimate size-

dependent cavitation free energies using scaled-particle theory estimates for spherical 

cavities [157–159]. More generally, nonlocal models based on convolutions of s( r ) derived 

from classical density-functional theory can efficiently describe the cavity size and shape 

dependence of this free energy contribution [150]. It is important to account for this 

dependence because the net cavitation free energy for atomic-sized cavities is significantly 

smaller than the estimate based on macroscopic surface tension and the cavity surface area.

While cavitation results from a modification of the solvent distribution, the remaining effects 

are a consequence of solvent-solute interactions. Dispersion interactions are longer-ranged 

attractive interactions with an r−6 dependence on separation, and proportional to the atomic 

polarizabilities of the interacting species [160, 161]. Repulsion interactions resulting from 

solute-solvent electron overlaps are shorter-ranged with an exponential decay with 

separation [143]. The finite range of these interactions makes their energy contributions 

dependent on the size and shape of the cavity; this dependence is approximately proportional 

to the surface area only for cavities much larger than the range of interaction. Nonlocal 

dispersion models [150] that directly employ pairwise interactions between solute and 

solvent atoms [160, 161] capture the size and shape dependence automatically. These 

approaches often also combine repulsion and dispersion into a single ‘interaction 

contribution’ to the non-electrostatic free energy [162].

Several solvation models instead employ an overall empirical approach to the non-

electrostatic contribution, such as E = αS+βV, combining terms proportional to the surface 

area S and volume V of the cavity, scaled by fitting parameters α and β [12, 13]. 

Importantly, the coefficient α is an empirical effective tension that differs from the surface 

tension of the liquid because of the size and shape dependence of cavitation discussed above, 

and because it also includes dispersion and repulsion contributions. The volume term βV can 

improve fits to solvation energies of molecules [12], but is not meaningful for surface slab 

calculations used for electrochemical interfaces since the cavity volume then depends on the 

number of layers and diverges in the macroscopic limit. Therefore, electrochemical 

Schwarz and Sundararaman Page 26

Surf Sci Rep. Author manuscript; available in PMC 2021 June 29.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



calculations should exclusively use non-electrostatic parameterizations with surface terms 

alone, or the more detailed nonlocal models discussed above.

Additionally, an empirical effective tension α depends only on the solvent and does not 

account for the solute dependence of the repulsion and dispersion terms contained within. 

For example, such models for water with a positive α for water [12–14] predict a positive 

interfacial energy for metal-water interfaces [163], while models with explicit dispersion 

terms [17, 18] result in a net-negative interfacial energy because the attractive dispersion 

contribution exceeds cavitation and repulsion in this geometry. Some atomic-cavity solvation 

models [164] address this with solute-atom-dependent cavity tension parameters, but this 

results in a large number of parameters that makes parameterization significantly more 

challenging.

Finally, empirical models of the non-electrostatic term introduce fitting parameters such as α 
and β that may be highly covariant with the parameters that determine cavity size (such as nc 

or {nmin, nmax}), making the reliable determination of these parameters from solvation 

energy databases more challenging [165]. At present, for the specific solvation models 

applicable to electrochemical systems discussed below (Table 1), only SaLSA [18] and 

CANDLE [17] employ nonlocal cavitation and dispersion models [150] that avoid empirical 

tension parameters. The choice of non-electrostatic free energy model impacts energy 

calculations necessary for reaction energy predictions, but does not affect the electrostatic 

potential that determines charging behavior and capacitance of electrochemical interfaces. 

We focus on electrostatic potential variations in the remainder of this review and therefore 

do not discuss non-electrostatic energy terms in the comparisons between models below.

4.4. Solvation model implementations

The previous sections outline the three main components of continuum solvation models: 

electrostatic response, fluid distribution (cavity determination) and non-electrostatic energy 

contributions. In addition, implementations of solvation models differ greatly between finite 

basis set codes used for molecular simulation and plane-wave DFT codes used for surface 

calculations. Correspondingly, solvation models in finite basis set codes, including the SMx 

(Solvation Model x) series [164, 168, 169] and the PCM (Polarizable Continuum Model) 

series [143, 144, 170, 171], are parameterized and applied predominantly to organic 

molecules in solution. See Ref. 143 for a detailed review of these models.

Here, we focus on solvation models developed for plane-wave DFT that are suitable for first-

principles calculation of electrochemical interfaces. Table 1 compares such solvation models 

based on their electrostatic response (Section 4.1) and cavity determination technique 

(Section 4.2) which strongly affect the predicted electrochemical capacitance and charge 

distributions, as we discuss below in Section 4.5. We ignore details in the non-electrostatic 

energy contributions (Section 4.3) which are important for reaction energy predictions, but 

do not affect capacitance.

The vast majority of solvation models employ a linear response approximation for both the 

dielectric (ϵ) and ionic screening (κ) of the fluid; this is also the case for most finite basis-set 

solvation models [143, 144, 164, 168–171] not shown in Table 1. Only a small subset of the 

Schwarz and Sundararaman Page 27

Surf Sci Rep. Author manuscript; available in PMC 2021 June 29.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



solvation models in plane-wave DFT codes capture nonlinearity in the ionic or dielectric 

response [13, 65, 148, 166, 167].

Most solvation models employ a smoothened iso-density cavity [11, 145] parameterized 

either in terms of an electron density range {nmin, nmax} as in the self-consistent continuum 

solvation (SCCS) models [12, 149], or a critical electron density nc as in the joint density-

functional theory (JDFT) based solvation models [13, 14, 70, 147]. Iso-density cavities may 

exhibit instabilities for surfaces of non-close-packed solids due to low electron density in 

voids that may get incorrectly filled with fluid [150]. Nonlocal cavities determined from the 

overlap of solute and solvent electron densities (n) avoid such issues by ensuring that the 

fluid only occupies regions of space that can fit an entire solvent molecule [17, 18].

Finally, most solvation models currently used for first-principles electrochemistry use the 

same cavity for the dielectric and ionic response, effectively setting x2 = 0. Only one model 

shown in Table 1 includes a separate ionic cavity (x2 ≠ 0), nonlinear dielectric response, and 

nonlinear ionic response, all of which are necessary to predict electrochemical capacitance 

correctly, as we discuss next.

4.5. Example: capacitance of Ag(100)

The ultimate goal of solvation models for electrochemistry is to accurately predict potential-

dependent charge distributions and their impact on energetics and reaction mechanisms at 

the interface. Here, we delineate the importance of each solvation model component 

discussed above by comparing electrochemical capacitance predictions against 

measurements for a single-crystal Ag(100) electrode in an aqueous non-adsorbing 

electrolyte (Figure 12). The experimental capacitance (dashed black line in Figure 12(b)) is 

roughly symmetrical about the potential of zero charge indicated by the vertical line at the 

center of the plot. This system exhibits the ‘double-hump’ behavior of an ideal 

electrochemical interface with non-adsorbing electrolytes. The minimum at the potential of 

zero charge arises from the low ionic capacitance in the diffuse electrolyte region for the 

neutral interface, as shown schematically in Fig. 2(b).

We consider a model of the electrochemical interface, Figure 12(a), containing features of 

the interface that may be necessary for a correct description of the capacitance with 

potential. Specifically, we consider a vacuum-only region with width x1, a solvent-only 

region with width x2, dielectric nonlinearity ϵ(E) and ion-packing effects treated using a 

modified Poisson-Boltzmann (mPB) approach. The model capacitance including all of these 

features (solid black line in Fig. 12(b)) is in good agreement with the experimental 

capacitance. The remaining lines in Fig. 12(b) depict the capacitance of the model with each 

one of these four features excluded. Except for mPB, all remaining features of this model are 

necessary for achieving quantitative agreement with experiment.10

The first two features control the spatial structure (i.e., solvation cavities) of the model, 

starting from the metal surface and moving outward towards the bulk electrolyte. The atomic 

10All curves in Fig. 12(b) include nonlinearity in the ionic response at the Poisson-Boltzmann (or mPB) level, without which the 
capacitance would not even exhibit a minimum at the potential of zero charge.
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length-scale gap, x1, between the metal and solvent regions corresponds to the separation 

between the induced charges on the metal surface and the nearest solvent molecules. This 

gap is necessary to reduce the magnitude of the capacitance and bring it in agreement with 

the experimental value near the PZC. Next, x2, is the distance of closest approach of the 

solvated electrolyte ions as described in the Gouy-Chapman-Stern model. Without x2, the 

ionic response is much closer to the metal surface and exhibits an overall higher capacitance 

with broader humps. Note that both x1 and x2 are necessary to simultaneously capture the 

capacitance magnitude at PZC and width of the humps in agreement with experiment.

The remaining two features considered in Fig. 12(b) relate to the nonlinearity of the fluid 

response. Specifically, ε(E) is the nonlinear dielectric response of water and mPB (modified 

Poisson-Boltzmann) constrains the density of electrolyte ions by enforcing a packing limit 

(see Section 4.1 and Fig. 9). Both features cause a reduction of the capacitance at potentials 

far from the PZC, due to saturation of the dielectric response in ε(E) and the saturation of 

the ionic response in mPB. For the aqueous KPF6 electrolyte considered here, the dielectric 

saturation is a much stronger effect than ion packing in mPB. The presence or absence of 

mPB does not significantly change the capacitance curves for common aqueous electrolytes 

due to the strong nonlinear dielectric response and the relatively small ionic sizes. For larger 

organic ions, as is typical in ionic liquids, packing effects are more important requiring 

mPB, even at potentials near the PZC. [173]11

In summary, capturing electrochemical capacitance in agreement with experiment requires 

nonlinearity in both the solvent dielectric response and ionic response, and both x1 and x2 

regions. Most solvation models currently in use ignore nonlinearity of the dielectric response 

(Table 1), which would lead to capacitance curves that exhibit a much broader hump than 

experiment and overestimate the charge on the electrode at potentials far from the PZC. 

Additionally, using the same cavity for solvent and ions, which amounts to assuming x2 = 0 

also leads to capacitance curves with the wrong shape. The nonlinear electrochemical soft-

sphere (NESS) solvation model [65] incorporates all features discussed above and exhibits 

qualitative agreement with experiment. However, applying this solvation model in a DFT 

calculation introduces asymmetries not seen in experiment or the toy model above due to a 

variation in the location of the electrode-induced charge density with potential [174], 

effectively making x1 vary with potential. Therefore, no solvation model currently captures 

electrochemical capacitance with the accuracy shown in Fig. 12, necessitating further 

developments in cavity parameterizations for metal electrodes.

4.6. Structured / cavity-less implicit solvation

The solvation models discussed above all invoke a cavity to represent the distribution of the 

solvent and electrolyte, and then treat the response of this fluid distribution. Even nonlocal 

solvation models like SaLSA [18] which capture atomic-scale structure in the response of 

the liquid still assume a cavity distribution of the fluid as a starting point for perturbatively 

capturing the liquid response. An alternative strategy to continuum solvation treats the fluid 

distribution as an independent variable and optimizes it based on the interaction of the fluid 

11Ignoring dielectric nonlinearity can lead to the erroneous conclusion that packing effects dominate the saturation in the response. In 
particular previous studies have used incorrectly large ionic radii, amplifying the ion saturation effect [66].
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with the solute. Such approaches can capture features in the distribution of the fluid, such as 

shell structures in solvation with oscillations in the fluid density at the size scale of the 

solvent molecule. Rearrangement of fluid charge distribution also captures the response 

implicitly, thereby unifying response and cavity considerations from solvation models above 

into a single problem of self-consistently optimizing the equilibrium fluid density.

Two complementary approaches provide a pathway to determine the equilibrium fluid 

density with atomic-scale structure around a solute. Integral equation theories establish 

nonlocal integral equations on the fluid density based on correlation functions and 

interaction potentials of the liquid [175–180]. Briefly, these theories work with the Ornstein-

Zernike relation,

gαβ r , r ′ = δαβ + cαβ r , r ′

+ ∑
γ
∫ dR cαγ( r , R ) gγβ R , r ′ − δγβ Nβ r ′ . (17)

This connects the pair distribution function gαβ r , r ′ , related to probability of finding atom 

type α at r ′ given an atom of type β located at r ′, with the direct correlation function 

cαβ r , r ′ , related to the second functional derivative of the free energy with respect to the 

densities Nα( r ) and Nβ r ′  of each atom type in the fluid. These theories additionally 

require an approximate “closure” relation between gαβ and cαβ e.g., the Percus-Yevick or 

hypernetted chain approximation, typically derived from diagrammatic expansions of the 

partition function of the fluid [181]. The free energy can then be estimated from the 

equilibrium fluid densities and direct correlation functions obtained by solving the equations 

[182–184].

On the other hand, classical density functional theory minimizes a free energy functional of 

the fluid density

Φ1q = min
Nα( r )

kBT ∑
α
∫ d r Nα( r )(lnNα( r ) − 1 − μα)

+Φex Nα( r )
(18)

to simultaneously find the equilibrium free energy Φlq and fluid density profile Nα (density 

of atom type α). The first term is the exact non-interacting free energy of the fluid, while the 

second term Φex is the excess functional that accounts for interactions, analogous to 

exchange-correlation functionals in electronic DFT. Classical DFT is exact in principle 

[185], but require approximation of the excess functionals in practical calculations for real 

liquids [114, 138]. Formally, integral equation theories may also be viewed as a pathway to 

approximate the free energy functional of classical DFT. In practice, integral equation 

theories typically yield more accurate density profiles, while classical DFT generally 

produces more accurate free energies.

Both approaches can be combined with DFT calculations of a solute or electrode to achieve 

a structured or cavity-less technique for implicit solvation. For example, integral equation 
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theories in the reduced interaction-site model (RISM) framework [186, 187] have been 

combined with the electrostatic screening medium (ESM) [63] technique for DFT solvation 

in the ESM-RISM approach [67]. Classical DFT of solvents and electronic DFT of solutes 

combine together in joint density-functional theory (JDFT) of the solvated system [147, 188, 

189]. Formally both such approaches can be summarized within the JDFT framework of 

minimizing a combined free energy functional of the solvated system,

ΦJDFT n, Nα = AHK[n] + Φ1q Nα + ΔΦ n, Nα . (19)

The first term is the Hohenberg-Kohn electronic functional in terms of the electron density 

n( r ) alone, the second term is the classical DFT liquid functional discussed above, and the 

final term is a coupling functional capturing interactions between the electronic and fluid 

systems. In practice, JDFT approaches directly approximate the free energy of the liquid and 

coupling terms as functionals of the densities [147, 188], while integral equation solvation 

approaches approximate the coupling based on interaction potentials (e.g. pair potentials) 

between solute and solvent atoms [67].

Solvation approaches which capture liquid structure may provide a level of solvation 

intermediate in accuracy and computational cost between conventional implicit models and 

explicit molecular dynamics techniques (Fig. 4). At present, these techniques need further 

work in developing stable and accurate free energy functionals for electrolytes (in addition 

to pure solvents), and algorithms to efficiently optimize the free energy or self-consistently 

determine the fluid densities.

5. Conclusions and outlook

In this review, we have described the diversity of methods used in ab initio electrochemical 

modeling, from the simplest methods with no solvent or electrolyte, to continuum, to full 

AIMD of solvent and electrolyte. We have discussed the fundamental challenges of 

electrochemical modeling for atomistic-level computation, namely the relatively long range 

of the electric fields and the need to describe thermodynamics of liquid solvent and 

electrolyte.

All explicit and implicit electrolyte implementations approximate interfacial physics, 

compromising between computational expense and accuracy. While no perfect method exists 

yet, both classes of methods have recently made significant progress towards describing the 

interface. The newest generation of continuum models have evolved to include the saturation 

of the dielectric response with electric field, and AIMD methodology has developed over the 

past decade to more accurately identify the applied potential in a given simulation.

However, challenges remain, especially in accessing longer length scales. Challenges in 

implicit solvation focus on capturing the capacitance of the interfacial region, and defining 

the near-surface region boundary. In explicit DFT solvation, challenges include reducing 

computational expense and designing computations in the grand canonical ensemble. In 

classical explicit solvation, preserving electronic structure information, and properly 

handling charge transfer and polarization at large length-scales remain as unsolved 

challenges. Machine learning is rapidly changing computational science, and incipient fields 
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such as machine-learned force fields and novel electronic structure approximations may hold 

the key to addressing these challenges. Continued methods development on multiple fronts 

is needed to capitalize on these opportunities, and to expand the application of 

computational electrochemical modeling.

Lastly, computational efforts are most useful in their relationship to experimental reality. 

Further experimental work to unravel atomically precise double layer structure [190], 

visualize electric fields, and evaluate capacitance [191] will provide new opportunities to test 

these models and parameterizations, and build new models.

Abbreviations and Symbols

DFT Density Functional Theory

PCM Polarizable Continuum Model

GCS Gouy-Chapman-Stern

CHE Computational Hydrogen Electrode

SHE Standard Hydrogen Electrode

AIMD Ab initio molecular dynamics

QM/MM Quantum Mechanics/Molecular Mechanics

mPB Modified Poisson Boltzmann

μe Electron chemical potential

Φ Grand free energy

A Helmholtz free energy

C Differential capacitance

kBT Thermal energy at temperature T

Ne Number of electrons

ϕ Electrode potential

ϕ0 Potential of zero charge

σ Surface charge density

Ez Electric field normal to surface

ϵo Dielectric permittivity of vacuum

ϵb Relative permittivity of bulk material
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Figure 1: 

Schematic comparison of electrostatic potentials ϕ and electric fields E  in (a) vacuum 

between a pair of electrodes, (b) in an electrode-electrolyte interface (for simplicity, 

sketched using the Gouy-Chapman-Stern model [34]) and (c) with a fixed configuration of 

counter charges. For equal potential differences, Debye screening with inverse-length κ in 

(b) localizes fields within a half cell and increases capacitance relative to (a). For equal 

surface charge density generating the same surface field, static counter charges do not 

generally capture the thermodynamically-averaged field distribution, potential and 

capacitance.
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Figure 2: 
(a) Schematic spatial decomposition of electrochemical capacitance of Pt(111) with 

adsorbed CO into metal (quantum, Cm), adsorbate (Ca), gap (Cg), solvent (Clq) and ionic 

(Cion) capacitances in series, and (b) their typical corresponding dependencies on electrode 

potential. (Adapted with permission from Ref. 40.)

Schwarz and Sundararaman Page 45

Surf Sci Rep. Author manuscript; available in PMC 2021 June 29.

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript

N
IS

T
 A

uthor M
anuscript



Figure 3: 
(a) Total capacitance is dominated by quantum capacitance rather than the electrochemical 

double layer (EDL) or dielectric contributions for few-layer graphene electrodes [47], and 

(b) by the adsorbate and gap (a, g) capacitances in CO adsorbed on Pt electrodes rather than 

the metal or diffuse (m, d) capacitances [40]. (Adapted with permission from Refs. 40 and 

47.)
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Figure 4: 
First-principles electrochemical simulations vary widely in accuracy of solvation effects, 

electric field distributions and computational efficiency. Pure DFT techniques (shown in red) 

may employ no solvent molecules / electrolyte ions, fixed configurations thereof, or full 

molecular dynamics (AIMD). Hybrid techniques can achieve significant gains in 

computational efficiency, including QM/MM approaches (shown in blue) that treat solvent/

electrolyte atoms with force fields, and continuum approaches (shown in green) that treat 

solvents/electrolytes using density and charge distributions alone.
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Figure 5: 
Schematic charge distributions in various approaches to electrification of a perfect metallic 

electrode, including (a) No electrification, various static counter-charge distributions such as 

(b) uniform compensating background, (c) static ions or (d) compensating charge layer / 

boundary condition, and (e) self-consistent countercharge distribution in an electrolyte. (f) 

Corresponding electrostatic potentials and (g) electric fields in one half of an inversion-

symmetric unit cell for a periodic calculation.
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Figure 6: 
(a) Computational standard hydrogen electrode in ab initio molecular dynamics (AIMD) 

simulations by aligning electrostatic potentials in metal/water interface and bulk water 

simulations containing an excess proton [55]. (b) An electron reservoir approach in AIMD 

utilizing neon atoms as a wide-band gap counter-electrode to control charge and field in the 

remainder of AIMD unit cell [79]. (Adapted with permissions from Refs. 55 and 79.)
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Figure 7: 
(a) Quantum mechanics/molecular mechanics approaches may partition electrode, 

electrolyte and surface species in numerous ways, e.g., using different molecular mechanics 

approaches for the metal electrode and the electrolyte, surrounding a quantum molecule 

[104]. (b) Molecular mechanics models may treat metal electrodes using image charges, 

shown above for the top two atomic layers of Au(111) [105]. (Adapted with permissions 

from Refs. 104 and 105.)
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Figure 8: 
Continuum solvation models describe the equilibrium effect of electrolytes on electrodes by 

approximating the distribution of solvent molecules and ions near the electrode in the form 

of a cavity, and then approximating the interaction of the rotation, polarization and 

translation of molecules and ions with the electrode.
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Figure 9: 
(a) Nonlinear Debye screening length due to Poisson-Boltzmann ionic response, and its 

saturation (lower bound) due to ion packing in the modified Poisson-Boltzmann (mPB) 

approach [137], shown for 0.01 M aqueous KPF6 (assuming 2.4 Å and 2.8 Å ionic radii). (b) 

Nonlinear dielectric response of water due to saturation of dipole rotations, captured in the 

NonlinearPCM solvation model [13] and classical DFT [114, 138].
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Figure 10: 
(a) Schematic distance of nearest approach of atoms in solvent molecules near an electrode 

surface, compared to (b) the electron density n( r ) of the electrode and induced charge 

density ρlq( r ) in the solvent. (c) Local solvation models require cavity shape functions s( r )
that transition at the induced charge density peak, rather than solvent atom approach 

distances.
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Figure 11: 
Atomic-sphere cavities typically define an outer solvent-accessible surface (SAS), from 

which an inner solvent-excluded surface (SES) defining the location of the solvent response 

is constructed. Iso-density approaches define cavities by thresholding the electron density 

n( r ) and typically correspond directly to the solvent-response surface (SES). (Adapted with 

permission from Ref. 150.)
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Figure 12: 
(a) Series capacitance model for a metal immersed in a non-interacting electrolyte with 

vacuum gap (x1) and solvent-only (x2) regions between electrode and electrolyte. (b) 

Capacitance predictions including x1, x2, nonlinear dielectric (ϵ(E)) and modified Poisson-

Boltzmann (mPB) agrees with experimental measurements of Ag(100) in aqueous 0.1 mol/L 

KPF6 electrolyte from Ref. 172. Each of these features (except mPB) is critical to obtain a 

qualitatively correct variation of electrochemical capacitance with potential. (Adapted with 

permission from Ref. 65.)
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Table 1:

Categorization of solvation models for electrochemistry by linearity of fluid dielectric (ϵ) and ionic (κ) 

response, cavity parameterization type, and presence of a separate ionic cavity (x2 ≠ 0). Here L = linear, NL = 

nonlinear, n = solute electron density (iso-density models), ϕ = solute electrostatic potential and Atom = 

atomic spheres. n is nonlocal electron density. Modified with permission from Ref. [65].

Model
Response Cavities

Year
ϵ κ Type x2 ≠ 0

Linear response

Gygi et al. [145] L none n No 2002

SCCS [12, 149] L L n No 2012

LinearPCM [13, 70]
= VASPsol [14] L L n No 2013

2014

CANDLE [17] L L n, ϕ No 2015

SaLSA [18] L L n No 2015

Soft-sphere [155] L none Atom No 2017

Nonlinear response

DFT+mPB [166] L NL n Yes 2008

Dabo et al. [167] L NL n Yes 2010

NonlinearPCM [13, 148] NL NL n No 2013

NESS [65] NL NL Atom Yes 2018
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