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Abstract

Identifying meaningful cognitive and non-cognitive predictors of mathematical competence is 

critical for developing targeted interventions for students struggling with mathematics. Here, 317 

students’ short-term verbal memory, verbal and visuospatial working memory, complex spatial 

abilities, intelligence, and mathematics attitudes and anxiety were assessed, and their teachers 

reported on their attentive-behavior in seventh-grade mathematics classrooms. Bayesian regression 

models revealed that complex spatial abilities and in-class attention were the most plausible 

predictors of seventh-grade mathematics, but not word reading, achievement, controlling for prior 

achievement. These results were confirmed with multilevel models that revealed interactions 

between these factors and prior achievement. The largest gains were among students with strong 

mathematical competencies in sixth-grade, and average or better in-class attention in seventh-

grade as well as above average spatial abilities. High mathematics anxiety was associated with 

lower attention and through this indirectly influenced achievement gains. These results have 

implications for how to best target interventions for students at risk for long-term difficulties with 

mathematics.
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There is consensus that students’ mathematical competence at school completion contributes 

to their preparation for and options in college, improves their wages in the labor market, and 

facilitates their decision making in many routine contexts, such as that related to their health 

care (Bynner, 1997; National Mathematics Advisory Panel, 2008; Reyna, Nelson, Han, & 

Dieckmann, 2009). There is also consensus that existing mathematical knowledge 

contributes to the learning of new knowledge, such that students who are behind in one 

grade will tend to remain behind in subsequent grades, controlling other factors (Duncan et 

al., 2007). At the same time, the mix of factors that contribute the most to growth in 

mathematical competencies remains uncertain. The proposed mechanisms include attitudes 

and beliefs about one’s mathematical competence and the long-term utility of mathematics 
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(Eccles & Wigfield, 2002; Lauermann, Tsai, & Eccles, 2017), mathematics anxiety 

(Ashcraft & Kirk, 2001; Dowker, Sarkar, & Looi, 2016), domain-general cognitive abilities 

(Geary, Nicholas, Li, & Sun, 2017; Lee & Bull, 2016), specific cognitive abilities (e.g., 

spatial; Mix & Cheng, 2012), and in-class attention (Fuchs et al., 2006). The wide range of 

proposed mechanisms means it is unclear how to best focus interventions for students at risk 

for long-term difficulties. To narrow this focus, we conducted a broad assessment of 

functioning in these areas with the goal of identifying the most important contributors to 

gains in mathematics during middle school.

Cognitive Mechanisms

We were particularly interested in the relation between spatial abilities and mathematics 

outcomes, as there is a consistent relation between these abilities and accomplishment in 

science, technology, engineering, and mathematics (STEM) occupations in adults (Lubinski 

& Benbow 2006; Kell, Lubinski, Benbow, & Steiger, 2013), albeit this relation is not 

consistently found in children (Mix & Cheng 2012). One potential reason is that visuospatial 

abilities are less important for much of the mathematics encountered in early grades but 

become increasingly important for mathematics encountered in later grades (Li & Geary 

2017), including some aspects of pre-algebra and algebra (Casey, Nuttall, & Pezaris, 1997; 

Casey, Nuttall, Pezaris, & Benbow, 1995; Kyttälä & Lehto 2008; Mix, 2019; Tolar, 

Lederberg, & Fletcher, 2009). Moreover, there are different types of spatial abilities that 

could be differentially related to gains in mathematics across grade levels or across different 

types of mathematical content (Gilligan, Hodgkiss, Thomas, & Farran, 2019; Hawes & 

Ansari, 2020; Uttal et al., 2013). The result is substantive ambiguity in whether and if so 

how and when various spatial abilities contribute to mathematics learning. We assessed 

students’ visuospatial working memory and two more complex spatial abilities to determine 

which aspects of spatial ability might be particularly important for mathematics achievement 

during middle school.

Intelligence and working memory (holding information in mind while engaged in other 

processes) are consistent predictors of longitudinal gains in mathematics achievement and 

thus were also included in our assessments (Bull & Lee, 2014; Deary, Strand, Smith, & 

Fernandes, 2007; Geary et al., 2017; Lee & Bull, 2016). Among other things, working 

memory processes contribute to the ease of engaging in any multi-step process, including 

performance on complex spatial tasks (Tolar et al., 2009). As with spatial abilities, the 

dynamic relations between various aspects of working memory and mathematics learning 

are not fully understood (Miller-Cotto & Byrnes, 2019; Paas & Ayres, 2014). Our inclusion 

of different types of working memory measures could help to clarify these relations. In 

addition to visuospatial working memory, we included measures of verbal short-term and 

working memory as these appear to contribute to basic number processing (Krajewski & 

Schneider, 2009), but may become less important as mathematics becomes more complex 

(Li & Geary, 2017). Moreover, correlations between spatial abilities and mathematics 

outcomes could emerge due to the influence of working memory on spatial-task 

performance and not spatial abilities per se. The simultaneous consideration of both working 

memory and spatial cognition measures helps to mitigate this potential confound.
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Attitudes, Anxiety, and In-Class Attention

Various outcomes in mathematics, including grades, standardized achievement scores, and 

pursuit of math-intensive careers are correlated with confidence or efficacy about one’s 

abilities and to beliefs about the utility of mathematics (Eccles & Wang, 2016; Eccles, J. S., 

& Wigfield, 2002). For older students and adults there appear to be bidirectional influences 

between mathematical competence and these beliefs and attitudes (Talsma, Schüz, 

Schwarzer, & Norris, 2018; Valentine, DuBois, & Cooper, 2004), but the strength of these 

relations is less certain across elementary and middle school students (Geary et al., 2019; 

Gunderson, Park, Maloney, Beilock, & Levine, 2018). In any event, Lauermann et al. (2017) 

found reciprocal relations between mathematics self-efficacy and utility beliefs and math-

intensive career plans throughout high school that in turn predicted employment in a 

mathematics-intensive profession 15 years later (controlling intelligence).

Casey et al. (1997) found that the combination of spatial ability and mathematics self-

efficacy but not math anxiety predicted SAT-Mathematics scores. Despite Casey et al.’s 

(1997) null result, relation between mathematical competencies and mathematics anxiety are 

often found (Ashcraft & Kirk, 2001; Dowker et al., 2016; Ma & Xu, 2004). For instance, 

Byrnes and Miller-Cotto (2016) found that internalizing issues, including anxiety, were 

related to slower mathematics growth across the third- and eighth-grade academic years, 

controlling many other factors. Mathematics anxiety can also result in an avoidance of 

mathematics and through this an avoidance of career paths involving even basic mathematics 

(Hembree, 1990; Meece, Wigfield, & Eccles, 1990).

Moreover, higher mathematics anxiety is associated with poor spatial abilities and anxiety 

about spatial-related activities that in turn creates a confound if only anxiety or spatial 

abilities are assessed (Ferguson, Maloney, Fugelsang, & Risko, 2015). For instance, the 

correlation between math anxiety and mathematics outcomes might be more directly related 

to a reduced use of spatial strategies during mathematical problem solving than to anxiety 

per se. Consideration of both spatial and anxiety measures enables a more rigorous 

examination of their relative contributions to mathematics achievement.

It is not surprising that there is a consistent relation between teacher-ratings of students’ in-

class attention and concurrent and longitudinal gains in mathematical competencies (Fuchs 

et al, 2006; Fuchs, Geary, Compton, Fuchs, &. Hamlett, 2014; Geary, Hoard, Nugent, & 

Bailey, 2013). These behaviors include sustained attention and attention to details during 

school-related activities, as well as distractibility in the classroom (J. M. Swanson et al., 

2012), and are not fully captured by standard measures of attentional control and working 

memory. Indeed, many of these studies have found that working memory, intelligence, and 

in-class attention simultaneously predict gains in mathematics achievement, but these studies 

have not included measures of mathematics attitudes or anxiety.

In-class attention also provides a potential mechanism through which attitudes and anxiety 

might influence students’ mathematical development. Strong self-efficacy and belief in the 

utility of mathematics should, in theory, be related to greater engagement in mathematics 

classrooms. Experimental studies have shown that mathematics anxiety can disrupt the 
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processing of mathematical information through disruption of the top-down ability to 

maintain attentional focus on problem solving (Ashcraft & Kirk, 2001; Hopko, McNeil, 

Gleason, & Rabalais, 2002; Suárez-Pellicioni, Núñez-Peña, & Colomé, 2014). The result is 

a reduction in functional working memory capacity and greater susceptibility to distraction 

by irrelevant information. It is not unreasonable to assume that mathematics anxiety might 

also result greater proneness to distraction in mathematics classrooms (Pekrun, 2006). If so, 

then mathematics anxiety might directly undermine performance on mathematical tasks and 

might indirectly reduce growth in mathematical competencies by reducing engagement in 

mathematics classrooms and thereby reducing the opportunity to learn (Byrnes & Miller-

Cotto, 2016).

Current Study

Evidence can be marshalled in support of myriad cognitive, attitudinal, and emotional 

contributors to year-to-year gains in students’ mathematics achievement. Many of the 

associated studies have assessed traits in multiple domains, allowing for an estimation of the 

relative contributions of one trait (e.g., spatial abilities) or another (e.g., self-efficacy) to 

mathematics achievement (e.g., Byrnes & Miller-Cotto, 2016; Casey et al., 1997; Geary et 

al., 2017; Lauermann et al., 2017; Tolar et al., 2009). None of these studies, to our 

knowledge, has provided a broad simultaneous assessment of all the different cognitive and 

non-cognitive traits that have been proposed as influencing children’s mathematical 

development. Moreover, there are different competencies within specific domains, such as 

spatial abilities (Uttal et al., 2013), and the relative relation of these different competencies 

with mathematical development are not well understood (Gilligan et al., 2019).

As a result, it is not entirely clear which combination of factors are the most important for 

year-to-year gains in mathematics or whether this combination varies at different points in 

children’s schooling. We provide this broad assessment and focus on the middle school 

years. Mathematical competencies during these years are particularly important because any 

deficits at this time are likely to presage difficulties with high school algebra, which is the 

cornerstone for learning more complex mathematics (National Mathematics Advisory Panel, 

2008).

Even for the studies that include the assessment of multiple traits, multi-collinearity among 

them results in potential confounds. To address these potential confounds, we used Bayesian 

methods that are better suited to identifying predictors among correlated variables than are 

standard methods. This approach allowed us to first identify the most plausible contributors 

to seventh-grade mathematics achievement within the broad non-cognitive (e.g., math 

anxiety) and cognitive (e.g., different types of spatial ability or working memory) domains. 

These contributors were then used in standard multilevel models of growth in mathematics 

achievement from sixth- to seventh-grade.
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Method

Participants

The participants were 317 (154 boys) seventh-graders enrolled in an on-going longitudinal 

study conducted in collaboration with the Columbia Public Schools in Columbia, MO. They 

were recruited across two cohorts from a larger group of 2,027 students who were assessed 

on a battery of mathematical competencies along with mathematics and English attitudes 

and anxiety at the end of sixth grade. Of this larger group, data were missing (e.g., no 

information on student sex) for 101 students, leaving 1,926 of them for construction of a 

sixth-grade mathematical competence measure (below; Geary et al., 2019). All 1,926 

students were invited to join the longitudinal component of the study and 342 of them and 

their parents did so. The 317 students included here completed all of the seventh-grade 

assessment sessions, and their mathematics teachers reported on their in-class attention. The 

mathematics teachers of the 25 students who were dropped did not report on their in-class 

attention; their sixth-grade mathematical competence did not differ from that of the 317 

remaining students (p = .947). The sixth-grade mathematical competence of the current 

sample (M = 104.66, SD = 14.98) was higher than that of the students who did not enroll for 

the longitudinal component (M = 99.00, SD = 14.74), d = .38, p < .001.

For students in the longitudinal component, demographic information was obtained through 

a parent survey. As not all questions were answered on each survey, the n varied for the 

demographic variables (n = 259 to 278, depending on the particular item). For the group of 

317 students, 88% of them were non-Hispanic, 6% were Hispanic or Latino, and the ethnic 

status of the remaining students was unknown. The racial composition was 70% White, 14% 

Black, 3% Asian, 1% Native American, 10% multiracial, with the remaining unknown. Self-

reported annual household income was distributed as follows: $0–$24,999 (12%); $25,000–

$49,999 (18%); $50,000–$74,999 (12%); $75,000–$99,999 (22%); $100,000–$149,999 

(19%); and $150,000+ (17%). Sixty-three percent of the students had at least one parent 

with a college degree. Fifteen percent of the families received food assistance, and five 

percent received housing assistance.

Sixth-Grade Mathematics Competence

The tests and detailed instructions (https://osf.io/qwfk6/), as well as the raw data (https://

osf.io/p7vzc/) for the key analyses are available at the Open Science Framework (OSF). The 

assessment included an Exponents and Radical Rules Test that is not reported here because 

of a high nonresponse rate. The remaining tests assess basic mathematics knowledge and 

skills typically expected for sixth graders. All of the tests were administered using paper-

and-pencil for the first cohort, and the Equality Problems, Fractions Comparison Test, 

Fractions Number Line, Equal Sign items, and Academic Attitudes and Mathematics 

Anxiety tasks were assessed using iPads for the second cohort. There were only 2 significant 

cohort effects (all other ps > .07), whereby students in the first cohort scored higher on the 

arithmetic fluency (p = .002, d = .14) and fractions comparison test (p < .001, d = .17). 

Given the null effects for all other measures and the small difference for the arithmetic 

fluency and fractions comparison test, the two cohorts were combined.
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Arithmetic fluency.—Students were allowed a total of 2 min to solve as many whole-

number arithmetic problems as possible; addition (n = 24; e.g., 87 + 5), subtraction (n = 24; 

e.g., 35 − 8), and multiplication (n = 24; e.g., 48 × 2). The score was the number correct 

across the three operations (M = 18.94, SD = 6.25; α = .57).

Equality problems.—This 10-item multiple choice test assessed students’ understanding 

of equality in the context of problems presented in non-standard formats, such as 8 = __ + 2 

– 3. Students did not answer 3.7% of the items and these were scored as incorrect. An 

equality composite was the percent correct for the 10 items (M = .80, SD = .24, α = .80).

Fractions arithmetic.—This test included sets of twelve addition (e.g., 1/3 + 1/6), twelve 

multiplication (e.g., 1/4 × 1/8), and 10 division (e.g., 2 ÷ 1/4) problems. Students had 1 min 

for each operation. The score was the sum of the number of addition (M = 5.86, SD = 3.80), 

multiplication (M = 2.98, SD = 3.04) and division (M = 1.49, SD = 2.38) problems that were 

solved correctly (α = .62).

Fractions comparison.—Students were presented with 48 pairs of fractions and were 

asked to circle the larger one within 90 sec. The 48 pairs were composed of four item types 

that reflect common problem-solving errors and strategies (Geary et al., 2013; Hecht, 1998; 

Hecht, Close, & Santisi, 2003). The first type assesses students’ understanding of the inverse 

relation between the value of the denominator and the quantity represented by the fraction; 

here, the numerator is constant but the denominator differs (e.g., 2/4 2/5). In the second type 

numerators have a ratio of 1.5 and denominators a ratio between 1.1 and 1.25 (e.g., 3/10 

2/12), making identification of the larger magnitude easier using numerators (correct) than 

denominators (incorrect). Numerators and denominators in the third type are reversed (e.g., 

5/6 6/5), which requires students to choose the fraction with the larger numerator and 

smaller denominator. The final type involves skill at using 1/2 as an anchor for estimating 

fraction values (e.g., 20/40 8/9). A composite was based on performance (correct – 

incorrect; M = 16.70, SD = 15.32) across the four item types (α = .87).

Fractions number line.—Following Siegler, Thompson, and Schneider (2011), students 

were asked to place (one at a time) 10 fractions on the 0 to 5 number line; 10/3, 1/19, 7/5, 

9/2, 13/9, 4/7, 8/3, 7/2, 17/4, 11/4. Target fractions were in large font and centered above the 

line. Students were given 4 min to complete the 10 items, and 94.4% of the lines were 

completed. The data for the remaining 5.6% of lines were estimated using the average of 

five estimates derived from the multiple imputations procedure in SAS (2014). The score for 

each item was the absolute percent deviation between the placement and the correct location, 

and the overall score was the mean of the 10 items (M = 20, SD = 14, α = .85). The latter 

was multiplied by −1 so that higher scores represent more accurate placements.

Equal sign.—Two items focused explicitly on the ‘=’ (McNeil et al., 2011). The first asked 

students to identify the meaning of the symbol ‘=’ in ‘3 + 4 = 7’; the options were ‘add the 

numbers’, ‘solve the problem’, ‘same as’, and ‘the answer’. The second asked students to 

identify the symbol that indicated that five pennies were the same as one nickel; the options 

were ‘5 cents’, ‘=’, ‘+’, and ‘don’t know.’ Performance on the first (M = 28% correct) and 

second (M = 87% correct) items was only weakly correlated (r = .12, p < .001), but each was 
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correlated with the other mathematics variables (rs = .16 to .30, ps < .001). Thus, we include 

both as separate items.

Mathematics competence.—The scores for all of the measures were submitted to a 

principle components analysis (SAS, 2014). The analysis yielded one factor with an 

eigenvalue greater than one that explained 45% of the covariance among the measures. Next, 

each individual variable was standardized (M = 0, SD = 1) and a composite was created 

based on their mean (α = .78). To make the scores comparable to the standardized measures 

(below), the composite was then rescaled (M = 100, SD = 15).

Academic Attitudes and Anxiety

The measures of mathematics and English attitudes were from the Michigan Study of 

Adolescent and Adult Transitions (http://garp.education.uci.edu/msalt.html) and are 

designed to assess students’ self-evaluated efficacy in and their beliefs about the long-term 

utility of these areas (Eccles & Wigfield, 2002; Meece et al., 1990). The mathematics 

measure included seven items on a 1-to-7 Likert scale; e.g., “How much do you like doing 

math?” rated from 1 (a little) to 7 (a lot), with the six English items being similar. Previous 

analyses using an exploratory principle components analysis, as well as parallel and MAP 

analyses (R Core Team, 2017), indicated that the mathematics items defined two factors and 

the English items one factor (Geary et al., 2019).

Mathematics attitudes.—The loadings of individual items on their respective factors 

were consistent with distinct utility (Items 1 to 4, inclusive) and self-efficacy (Items 5 to 7) 

dimensions. The scores were the sum of the corresponding items (α = .72 for utility, and .78 

for self-efficacy).

English attitudes.—The score was the mean of the six items (α = .83).

Mathematics anxiety.—The 10 items were adapted from Hopko, Mahadevan, Bare, and 

Hunt (2003). Each item (e.g., “Taking an examination in a math course”) was rated on a 1 

(low anxiety) to 5 (high anxiety) scale. All three analyses (i.e., EFA, MAP, parallel) 

indicated two factors. The first was defined by five items that involved learning mathematics 

(e.g., “Watching a teacher work an algebraic equation on the board”; items 1, 3, 6, 7, 9). The 

second factor was defined by four items that involved some type of evaluation (e.g., “Taking 

an examination in a math course”; items 2, 4, 5, 8), and the final item (i.e., “In general, how 

anxious are you about math?”). Composite scores were based on the mean of the five 

learning anxiety items (α = .76) and the five evaluation anxiety items (α =.86). The two core 

factors identified here are consistent with previous findings (Baloglu & Koçak, 2006).

In-Class Attention

We used the Strength and Weaknesses of ADHD-Symptoms and Normal-Behavior (SWAN) 

measure of in-class attention (J. M. Swanson et al., 2012). The measure includes items that 

assess attentional deficits and hyperactivity, with scores that are normally distributed and 

based on the behavior of a typical student in the classroom. The nine item (e.g., “Gives close 

attention to detail and avoids careless mistakes”) attention subscale was distributed to the 
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students’ seventh-grade mathematics and language arts teachers who were asked to rate the 

behavior of the student relative to other students of the same age on a 1 (far below) to 7 (far 

above) scale. To keep the focus strictly on mathematics, the score was the mean across the 

nine items completed by their mathematics teachers (M = 4.83, SD = 1.45; α = .98)

Standardized Measures

Intelligence.—The Vocabulary and Matrix Reasoning subtests of the Wechsler 
Abbreviated Scale of Intelligence (WASI; Wechsler, 1999) were used to estimate full scale 

IQ, following procedures detailed in the manual. The intelligence of the sample was average 

(M = 104.52, SD = 12.83).

Achievement.—Mathematics and reading achievement were assessed using the Numerical 

Operations and Word Reading subtests from the Wechsler Individual Achievement Test–
Third Edition (Wechsler, 2009), respectively. The mathematics (M = 99.68, SD = 18.36) and 

reading (M = 104.69, SD = 13.01) achievement of the students was average.

Cognitive Measures

Most of the cognitive tasks were administered on iPads using customized programs 

developed through Inquisit by Millisecond (https://www.millisecond.com). The verbal 

memory and proactive inhibition task was administered using a customized program 

developed in Qualtrics (https://www.qualtrics.com); manuals and detailed descriptions are 

available on OSF (https://osf.io/qwfk6/). All of the tasks are standard measures of short-term 

and working memory, verbal memory, and various aspects of spatial ability.

Digit span.—The administration of the forward and backward digit span measures 

followed Experiment 1 in Woods et al. (2011). The students heard a sequence of auditory 

digits, at 1 sec intervals starting with 3 digits for the forward assessment and 2 digits for the 

backward assessment. The task is to recall the digit list in order (in either a forward or 

backward manner, respectively) by tapping the digits on a circle of digits displayed on the 

screen. If the response is correct (in digits and presentation order), the student moves up to 

the next level. If the response is incorrect, the same level is presented a second time. If a 

consecutive error occurs, the student moves down to a lower level. Each direction (forward 

and then backward) ends after 14 trials. The student’s score was the highest digit span 

correctly recalled before making two consecutive errors at the same span length (M = 5.71, 

4.59, SD = 1.12, 1.20 for forward and backward, respectively).

Verbal memory.—The verbal memory measure was taken from a longer proactive 

inhibition task. The student listens to a recording of a set of four animal words, presented in 

1-sec intervals using the iPad speakers. To prevent rehearsal of the words, the student 

immediately names colors from a sheet with rows of different colors for 10 sec. After 10 sec, 

a tone prompts the student to recall the words, in order. Responses are recorded by the 

experimenter using Qualtrics on the iPad including options for recalling a word that was not 

presented (“other”) and “don’t know.” The process is repeated with two new sets of four 

animal words, and finally with a set of four fruit words. Items were taken from Gilhooly and 

Logie (1980) and Paivio, Yuille, and Madigan (1968). The words were chosen based on 
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Imagery (I) and Concreteness (C) ratings (1 to 7 scale), with all scores > 6. The one 

exception was ‘lime’ (imagery of 5.7), which was included because it was the closest (to 

6.0) available one-syllable fruit word. Each quartet included one moderate to high frequency 

word and three low frequency words (< 10/million), and three one syllable and one two-

syllable words. All within-list words started with different letters and presentation orders 

were initially randomized, and subsequently presented in the same order to all students. We 

used percent correct on the first quartet of words as a measure of short-term verbal memory 

(M = .68, SD = .28).

n-back.—An adaptive version of a single n-back task with letters was administered 

following Jaeggi et al. (2010). The student is shown a “target” letter and then a sequence of 

20 stimulus letters (all consonants; 6 are target; 14 are not; order determined randomly), and 

asked to indicate whether the currently presented letter is a target by tapping a key, or is not 

a target by not responding. The target letter could be the first stimuli presented (N = 0) or 

could be the same as the one that preceded it (N = 1) or the same as one presented in the two 

(N = 2) or three (N = 3) trials that preceded it.

Each trial presents a letter for 500 ms, followed by a 2,500 ms blank screen, and then by the 

next letter in the sequence. Students have the entire 3,000 ms to respond by tapping a key if 

they detect a target. After instructions and three 10-item practice blocks for levels N = 0 to 

N= 2, all participants start on level N = 0. Depending on performance, they move up, stay on 

the current level, or move down a level for five total blocks (<3 errors – move up; 3 – 5 

errors – repeat level; >5 errors – move down). Performance feedback (percent correct) is 

displayed after each block. Hits (H), Misses, False Alarms (FA), and Correct Rejections are 

recorded and summarized by block. The score is (H – FA)/(total blocks); M = 3.80, SD = 

0.76.

Spatial span.—The forward Corsi Block Tapping Task was administered following 

Kessels, van Zandvoort, Postma, Kappelle, and de Haan (2000). Students are presented with 

a display of nine squares that appear to be randomly arranged. The squares “light up” in a 

pre-determined sequence (constant across participants), and students are asked to tap on the 

squares in the same order they were lit. The sequence length starts at two squares (level = 2) 

and could increase to up to nine squares. Students have two attempts at each sequence 

length. If one of the sequences is recalled correctly, the next sequence level begins; if both 

sequences at a level are recalled incorrectly, the task is terminated. The score is the total 

number of correctly recalled sequences across the whole task (M = 8.34 SD = 1.83).

Spatial ability.—The first spatial measure was the Judgment of Line Angle and Position 

Test (JLAP), following Collaer, Reimers, and Manning (2007). The task requires students to 

match the angle of the single presented line to one of 15-line options in an array at the 

bottom center of the iPad screen. There are 20 test items presented one at a time, and the 

student uses the touch screen to select the matching angle. Each stimulus is presented for a 

maximum of 10 sec, and when a selection is made, a reaction time is recorded and the next 

stimulus is immediately presented. The outcome is the number correct (M = 13.33, SD = 

3.03).
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The second measure was Peters et al.’s (1995) Mental Rotation Task (MRT-A). On each 

trial, the student views images of 3D drawings of 10 connected cubes. For each trial, there is 

one target and four choice options, and the task is to select the two options that are the same 

figure as the target, only rotated to various degrees. After four self-paced practice problems, 

students are presented with 24 problems in two blocks of 12 problems each (3 min per 

block). The score is the number of problems on which the student chose both correct options 

(M = 8.75, SD = 4.13).

Procedure

The 45-min end of sixth-grade assessment was administered in mathematics classrooms to 

groups of 14 to 32 students. For the longitudinal component, students were administered the 

intelligence, achievement, attitudes, anxiety, and cognitive measures individually at a quiet 

location in their school across three 45-min assessments. As shown in Table 1, with the 

exception of the verbal memory task (due to time constraints), the cognitive measures were 

administered the first semester of seventh grade, and the remaining measures in the second 

semester. Parents provided informed written consent, and assent was obtained from 

adolescents for all assessments. The University of Missouri Institutional Review Board 

(IRB; Project 2002634, “Algebraic Learning and Cognition”) approved all methods included 

in this study.

Analyses

We first used Bayesian regressions to provide a robust and transparent means for selecting 

the best set of cognitive and non-cognitive predictors for inclusion in the main analyses 

(Gallistel, 2009; Rouder & Morey, 2012), using the BayesFactor package in R (v0.9.12–4.2; 

Morey & Rouder, 2015). Default prior scales for standardized slopes were used, rscale = ½. 

Bayes factors provide straightforward information regarding whether the inclusion of 

specific variables improves model fit above and beyond other specified variables. This 

model selection method is more robust than standard linear regression, especially with 

potential multi-collinearity, as with the current data. Bayes factors are higher when one of 

two highly correlated variables are included in relation to models containing both or none, 

providing the ability to compare the relative contribution of the predictors. In separate 

analyses, we selected the best combination of cognitive and then non-cognitive predictors of 

raw seventh-grade Numerical Operations scores. The variables identified from each of these 

analyses were subsequently used in a follow-up analysis to identify the best combination of 

cognitive and non-cognitive predictors of these scores. In a final model, sixth-grade 

mathematical competence scores were included with this combination to control for prior 

achievement. The sequence of analyses provides structured, step-by-step information on the 

best set of cognitive, non-cognitive, and combined predictors of seventh-grade mathematics 

achievement.

The first set of Bayes factors are noted as MCm, where m = the specific set of cognitive (C) 

predictors in the model (M) and comparisons as BCmn, with B representing the comparison 

ratio of Bayes factors between models m and n. BCm0 represents a contrast of the selected 

model to a null model with no predictors. These analyses assess the likelihood of the data for 

alternative models. As an example, the full model MC1 included the backward digit span, 
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Corsi, JLAP, MRT, and IQ measures (below). Each of these predictors was then iteratively 

dropped one-by-one and change in the odds of the model was evaluated. For instance, 

dropping MRT resulted in model MC3 and the comparison to the full model as BC31. The 

latter resulted in a Bayes factor ratio of .0521, meaning the model without MRT was 5.21% 

as probable as the model with MRT, or the model including MRT was preferred 19 times to 

1 (1/.0521). Dropping JLAP resulted in a model that was 57.43% as probable (MC41), or 

with the model including JLAP only being preferred 1.74 times to 1. Here, lower Bayes 

factors indicate greater evidence for a predictor. As a rule of thumb, models that are less than 

33% as probable without the variable provide evidence for retaining it, and models that are 

less than 10% as probable provide strong evidence for retaining it (Jeffreys, 1961; Raftery, 

1995). We used the 33% criterion to retain variables, corresponding to a commonly used 

cutoff for positive evidence (e.g., Bayes factor of three, Kass & Raftery, 1995).

As described below, in-class attention and MRT were the only predictors to survive the 

Bayesian analyses. These variables were included with sixth-grade mathematical 

competence in the prediction of Numerical Operations scores. The model included 

interactions between sixth-grade mathematical competence and in-class attention and MRT 

scores, as well as the three-way interaction. To control for potential demographic confounds, 

we first used student ethnicity (Hispanic or not), race, family income, housing assistance 

(yes, no), food assistance (yes, no), and parental education as predictors of sixth-grade 

mathematical competence. Student race and family income were the only significant 

predictors (ps < .001). To control for these, we created dummy coded (0,1) variables for the 

six income categories and dummy coded race variables for Black, White, and Asian 

students. These were included in all models.

Participants were recruited from six schools and there were small but significant school 

effects for Numerical Operations scores, F(5, 311) = 3.94, p = .0018, R2 = .06. To control for 

these effects, we used multilevel models with Proc Mixed (SAS, 2014), using students as 

level 1 units and 7th-grade schools as level 2 units, allowing intercepts to vary randomly for 

schools. Seventh-grade Numerical Operations and predictor variables were centered (M = 0, 

SD = 1), but uncentered scores are shown in Table 1 and correlations among variables in 

Figure 1.

Results

Bayesian Analyses

Mathematics achievement.—As shown in the top section of Table 2, the best Bayes 

model for the cognitive variables included digit span backward, Corsi, JLAP, MRT, and IQ. 

The BCm0 is very large for this first model and all alternative models, providing strong 

evidence for some combination of cognitive predictors of Numerical Operations scores 

relative to the null. Dropping IQ resulted in a model that was < 1% as probable as the model 

with IQ. As noted, the model without MRT was 5.21% as probable as the model with it, 

while the model without JLAP was 57.43% as probable. The next two models indicated that 

dropping the Corsi and digit span backward variables resulted in models that were 35.45% 

and 4.59% as probable as the models with them, respectively. The results suggest that the 

inclusion of JLAP and Corsi does not substantively improve the prediction of Numerical 
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Operations scores relative to the models without them. However, dropping both variables 

resulted in model that was only 8.5% as probable as the model with only digit span 

backward, MRT, and IQ (not shown in Table 2), suggesting that either Corsi or JLAP should 

be retained. The model with JLAP was only 62% as probable as the model with Corsi and 

thus we retained digit span backward, MRT, IQ, and Corsi for the combined analysis.

The second section of Table 2 indicates that the best set of non-cognitive predictors of 

Numerical Operations scores included in-class attention, mathematics anxiety for learning, 

and mathematics efficacy. Dropping each of these variables in succession resulted in models 

that were < 8% as probable as the models without them. Thus, all three variables were 

retained for the combined analysis.

The combined analysis included digit span backward, MRT, IQ, Corsi, in-class attention, 

mathematics anxiety for learning, and mathematics efficacy and the best model included all 

of them, except for mathematics anxiety for learning. As shown in the third section of Table 

2, dropping each of these variables in succession suggested the elimination of Corsi but 

retention of the remaining variables.

The final set of models included the five retained variables from the combined analysis and 

sixth-grade mathematical competence. As shown in the last section of Table 2, the 

combination of mathematical competence, in-class attention, and MRT predicted Numerical 

Operations scores. Dropping any of these variables resulted in models that were < 4% as 

probable as the models with them. In other words, there is very strong evidence that in-class 

attention and MRT contribute to seventh-grade mathematics achievement above and beyond 

prior mathematics knowledge and thus all three were retained for the multilevel models.

Word reading achievement.—To assess the discriminant validity of the Bayes models 

that predict Numerical Operations scores, we ran the same models for Word Reading scores. 

As shown in the top section of Table 3, the best Bayes model for the cognitive variables 

included digit span forward, MRT, and IQ. The BCm0 is very large for this first model and 

all alternative models, providing strong evidence for some combination of cognitive 

predictors of Word Reading scores relative to the null. Dropping IQ and digit span forward 

resulted in models that were < 1% as probable as the models with them, whereas dropping 

MRT resulted in a model that was 33.74% as probable. This suggests that the inclusion of 

MRT does not substantively improve the prediction of Word Reading scores. Follow-up 

assessments indicated that dropping either digit span forward or IQ resulted in models that 

were < 1% as probable as the model that included both of them. Thus, we retained digit span 

forward and IQ.

The second section of Table 3 indicates that the best set of non-cognitive predictors of Word 

Reading scores included mathematics utility, English attitudes, mathematics anxiety for 

learning, and in-class attention. Dropping each of these variables in succession resulted in 

models that were < 4% as probable as the models without them. Thus, all variables were 

retained for the combined analysis.
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The combined analysis included digit span forward, IQ, mathematics utility, English 

attitudes, mathematics anxiety for learning, and in-class attention. The third section of Table 

3 shows that only digit span forward and IQ were included in the top model, indicating that 

the non-cognitive variables did not add substantively to the prediction of Word Reading 

scores. The bottom section of the table indicates that these variables should be retained in a 

model that includes them and sixth-grade mathematical competence. The key finding here is 

that the core predictors of seventh-grade Word Reading achievement differ from those that 

predict seventh-grade mathematics achievement.

Multilevel Models

Preliminary analyses revealed no sex differences for Numerical Operations scores, F(1, 315) 

= 0.46, p = 0.499, and thus sex was not considered further. As noted, the initial model 

included sixth-grade mathematical competence, in-class attention, and MRT. We also 

included the interactions between the two latter variables and sixth-grade mathematical 

competence, and the three-way interaction; the income and race variables were included as 

controls. The interactions allowed us to explore, for instance, whether the benefits of strong 

spatial abilities or in-class attention varied depending on the prior level of mathematical 

knowledge. These types of interactions are sometimes found, but vary across grades and 

mathematical content (Gilligan et al., 2019) and we assessed whether this was the case for 

our sample.

The three-way interaction was not significant, F(1, 296) = 1.34, p = .248, and thus dropped. 

Table 4 shows the results for the model with only the two two-way interactions. The results 

confirm the Bayes factors regarding the importance of in-class attention and spatial ability in 

predicting seventh-grade mathematics achievement, controlling prior achievement (ps 

< .002).

The sixth-grade mathematical competence by in-class attention interaction, F(1, 297) = 5.99, 

p = .015, is broken down in the upper panel of Figure 2. The high and low groups were 

defined by cutoffs 1 SD above or below the mean, respectively. The interaction was 

strongest in the high-attention group [b = 1.08, SE = 0.19], followed in turn by the middle- 

[b = 0.85, SE = 0.13] and low-attention [b = 0.63, SE = 0.11] groups (ps < .05). A contrast 

of these slopes indicated a significant difference across the high- and low-groups, t(307.57) 

= 2.38, p = .018, and a trend for the difference across the middle- and low-groups, t(307.99) 

= 1.67, p = .097; the difference across the high- and middle-groups was not significant, 

t(307.46) = 1.45, p = .148. The lower panel shows the overall relation between predicted 

scores derived from sixth-grade mathematical competence, in-class attention, and their 

interaction in the prediction of Numerical Operations scores.

As shown in Table 4, the sixth-grade mathematical competence by MRT interaction was 

only a trend, F(1, 297) = 3.00, p = .085, but given the potential importance of high spatial 

abilities for learning in some areas of mathematics, we broken the interaction down. The 

high and low groups were defined by cutoffs 1 SD above or below the mean, respectively, 

and are shown in Figure 3. The interaction was strongest in the high-MRT group [b = 1.23, 

SE = 0.19], followed in turn by the middle- [b = 0.83, SE = 0.15] and low-MRT [b = 0.67, 

SE = 0.14] groups (ps < .05). A contrast of these slopes indicated a significant difference 
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across the high- and low-groups, t(309.23) = 2.93, p = .004, and the high- and middle-

groups, t(309.92) = 2.89, p = .004; the difference across the middle- and low-groups was not 

significant, t(310.06) = 1.08, p = .282. The lower panel shows the overall relation between 

predicted scores derived from sixth-grade mathematical competence, MRT scores and their 

interaction in the prediction of Numerical Operations scores.

Sixth-Grade Mathematics Attitudes and In-Class Attention

The finding of no direct relations between the non-cognitive measures and Numerical 

Operations scores does not preclude indirect effects. As noted in the introduction, such 

effects could be related to attention in mathematics classrooms and through this indirectly 

influence mathematics achievement. To assess this, we conducted a series of analyses that 

examined the relation between the sixth-grade non-cognitive variables and in-class attention 

in seventh grade and assessed whether there were any indirect relations between these non-

cognitive measures and Numerical Operations scores.

Among the sixth-grade attitudes variables only mathematics utility, mathematics efficacy, 

and mathematics anxiety for learning were correlated with both in-class attention and 

Numerical Operations scores (ps < .02). A Bayesian regression indicated that mathematics 

efficacy and mathematics anxiety for learning were the best set of predictors of in-class 

attention. Dropping mathematics anxiety resulted in a model that was 2.77% as probable as 

the model with it, whereas dropping mathematics efficacy resulted in a model that was 

40.0% as probable as the model without it. These results indicate that among the sixth-grade 

non-cognitive measures, mathematics anxiety for learning is the most likely to have an 

indirect effect on Numerical Operations scores through in-class attention.

Indeed, Figure 4 shows a simple mediation model that only included mathematics anxiety 

for learning, in-class attention, and Numerical Operations. In this model, all of the paths are 

significant and the indirect relation between mathematics anxiety for learning and Numerical 

Operations scores is significant, b = −0.97 [95% CI = −1.45 to −0.49], z = −3.971, p < .001, 

and partially mediated by in-class attention.

As shown in Figure 5, with control of sixth-grade mathematical competence, MRT scores, 

the covariances between them and with in-class attention and mathematics learning for 

anxiety, the c path is no longer significant; c = −.49, [95% CI = −1.11 to 0.14], z = −1.52, p 
= .127. Hayes (2009) argued that the significance of this path is not necessary to assess 

indirect effects, although in this situation the results are not typically called mediated effects. 

In any case, in this model there is a significant indirect relation between mathematics 

anxiety and Numerical Operations scores through in-class attention, b = −0.37 [95% CI = 

−0.60 to −.14], z = −3.16, p = .002, but now the direct relation between mathematics anxiety 

and Numerical Operations scores is not significant, b = −.12 [95% CI = −0.72 to 0.48], z = 

−0.39, p = .699.

Discussion

Students who develop strong mathematical competencies have enhanced educational 

opportunities in college and a smoother path to well-paid employment and better long-term 
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opportunities for career advancement than do their less-prepared peers (Bynner, 1997; 

National Mathematics Advisory Panel, 2008). Identifying the factors that contribute the 

most to this development is a critical step in the building of supportive educational 

environments. The myriad proposals regarding these factors might actually result in more 

confusion than direction for the building of such environments, because it is it not clear 

which factors should be prioritized, whether the most important ones vary from one grade to 

the next, and whether there are interactive or indirect effects among these factors.

Our very broad assessment of the associated theoretical terrain allowed for the identification 

of the most plausible factors, at least for middle school students. The overall results 

indicated that students with strong prior knowledge, average- to above-average in-class 

attention, and above average spatial abilities made stronger gains in mathematics during 

seventh grade than did other students, controlling student race and family income. Moreover, 

students with high levels of mathematics anxiety were less attentive in mathematics 

classrooms, and this in turn appeared to contribute to their relatively lower gains in 

mathematics during seventh grade. We discuss the implications with respect to the cognitive 

and non-cognitive factors that appear to contribute to the development of mathematical 

competencies.

Cognitive Mechanisms

The results of several prior studies are confirmed with the identification of complex spatial 

abilities as a robust predictor of seventh-grade mathematics achievement and by the finding 

that students with above-average spatial abilities and strong prior mathematical knowledge 

made the highest gains in seventh-grade mathematics (Casey et al., 1995, 1997; Li & Geary, 

2017; Mix & Cheng, 2012). More precisely, the results are consistent with prior studies that 

have identified visuospatial abilities as contributing to mathematics learning in middle 

school and beyond. These results, however, do not indicate which aspects of mathematics 

learning are facilitated by spatial abilities, and we might speculate that it is the more 

complex or more novel mathematics at this grade level (Mix et al., 2016, 2017). This is 

because the best scores on the seventh-grade Numerical Operations test indicated successful 

students were correctly solving several spatially represented basic geometry problems. The 

problems that were successfully solved by average- and lower-achieving students were 

largely computational whole number and fractions arithmetic problems which should be 

familiar to most students and for which spatial abilities might not be as helpful (Geary & 

Widaman, 1987), but this is not certain (Hawes & Ansari, 2020; Xie, Zhang, Chen, & Xin, 

2019).

Xie et al.’s (2019) meta-analysis revealed that spatial abilities (visuospatial memory and 

more complex abilities) are correlated with most mathematical competencies, including 

arithmetic, but these analyses do not typically control for potential confounds, such as 

working memory and intelligence. With control of these confounds, Li and Geary (2013, 

2017) found that the relation between visuospatial working memory and performance on the 

Numerical Operations test grew stronger as students moved through elementary school and 

into middle school and high school. In other words, as the complexity of the mathematics 

increased, the importance of visuospatial abilities, or at least visuospatial working memory, 
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appeared to increase. Our results suggest that any such relation is better captured by the 

Mental Rotation Test than by measures of visuospatial working memory (Casey et al., 1995, 

1997), and that the contributions of spatial abilities to gains in mathematics learning may 

depend on pre-existing mathematical knowledge.

This conclusion is tentative because different aspects of visuospatial abilities might 

contribute to different aspects of mathematical learning (Gilligan et al., 2019; Hawes & 

Ansari, 2020) which is not captured by our composite measure, and any such specific 

relations could vary from one grade to the next (Mix et al., 2016, 2017). The results 

nonetheless indicate that more detailed studies of the relation between different spatial 

abilities and the learning of complex arithmetic and pre-algebraic competencies is 

warranted. The reason for the interaction between prior achievement and MRT scores in 

predicting seven-grade achievement needs follow-up studies as well. One prosaic possibility 

is that students with average or better mathematical competence in sixth grade solved more 

items on the Numerical Operations test and thus were exposed to more items that had a 

spatial component (e.g., geometry). Students with strong spatial abilities would, on average, 

be more successful than other students at solving such problems. It is also possible that 

strong prior knowledge facilitates the use of spatial strategies for solving more complex 

problems, but this remains to be determined.

At first blush, our results would appear to contradict many previous studies that have 

suggested that intelligence and working memory contribute to mathematical learning (Bull 

& Lee, 2014; Deary et al., 2007; Geary et al., 2017), but this is not the case. Prior to 

inclusion of sixth-grade mathematical competence, the Bayesian analyses indicated that 

intelligence and working memory (backward digit span) were strong independent predictors 

of seventh-grade mathematics achievement, in addition to spatial abilities. This means that 

there was considerable overlap in individual differences in working memory and intelligence 

and sixth-grade mathematical competencies. As might be expected based on prior studies 

and theory (Cattell, 1987), intelligent students with strong working memory skills acquired 

more mathematical knowledge by the end of sixth grade than did other students, masking the 

direct effect of intelligence and working memory. Nevertheless, the results do suggest that at 

this grade level, prior knowledge might be relatively more important or at least just as 

important as domain-general abilities in facilitating further learning (Geary et al., 2017; Lee 

& Bull, 2016).

Non-Cognitive Mechanisms

Our finding for attention in mathematics classrooms is consistent with studies of younger 

students, whereby teachers’ ratings of student engagement in these contexts predict gains in 

mathematics achievement above and beyond the contributions of various cognitive abilities 

(Fuchs et al., 2006, 2014; Geary et al., 2013). The finding of an interaction between prior 

knowledge and attention is more novel and revealed that the highest achievers at the end of 

seventh grade had strong prior mathematical competencies and at least average in-class 

attention (Figure 2), controlling spatial abilities. Most of the students with below average 

engagement in the classroom also performed poorly on the sixth-grade mathematics 

measure. Without information on their in-class attention in prior grades, we cannot 

Geary et al. Page 16

J Educ Psychol. Author manuscript; available in PMC 2022 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



determine whether their low attentive-behavior in seventh-grade classrooms is causing 

smaller gains in achievement, reflects a general disengagement with mathematics or 

schooling more generally, or some combination. Close inspection of Figure 2 reveals that 

even low-attentive students with average or better sixth-grade mathematical competencies 

gained less in seventh-grade than did their more attentive peers, suggesting a causal relation. 

One implication is that interventions for lower-achieving students might need to incorporate 

components on self-regulation (Wang et al., 2019) or enhancement of classroom 

management strategies (Korpershoek, Harms, de Boer, van Kuijk, & Doolaard, 2016).

In keeping with previous studies, a combination of mathematics attitudes and anxiety 

predicted seventh-grade mathematics achievement (Dowker et al., 2016; Eccles & Wang, 

2016), but these did not survive the inclusion of prior mathematics achievement. As with 

working memory and intelligence, this does not necessarily mean that these factors do not 

affect mathematical development but rather they were not directly critical for gains from 

sixth- to seventh-grade. Indeed, our finding that mathematics anxiety for learning indirectly 

contributed to seventh-grade mathematics achievement through in-class attention suggests a 

nuanced relation between non-cognitive factors and achievement. The finding is consistent 

with Byrnes and Miller-Cotto’s (2016) finding of a relation between internalizing issues, 

including anxiety, and gains in mathematical knowledge across the academic year, and 

suggests that students’ engagement in the classroom–influencing their opportunity to learn–

might contribute to this effect.

Over the longer term, attitudes and anxiety about mathematics contribute to future course 

and career choices (Lauermann et al., 2017), and these types of relations would not be 

detectable with our study design. Moreover, we assessed a fairly narrow slice of students’ 

mathematical development. As was noted earlier, meta-analyses of cross-lagged relations 

suggest that attitudes might be a more consistent influence on later achievement in students 

older than those assessed in our study (Talsma et al., 2018; Valentine et al., 2004).

Limitations and Conclusions

The primary limitation is the correlational nature of the data that precludes strong causal 

statements. Although we assessed a much broader array of cognitive and non-cognitive 

factors than in typical studies of students’ mathematical development, there may be other 

factors that we did not include. Although our findings for in-class attention and spatial 

abilities is consistent with many previous studies, this does not necessarily mean that they 

will emerge as key predictors of mathematical gains in earlier or later grades. Also, our 

sample had higher sixth-grade mathematical competencies scores than the full sixth-grade 

sample, was from relatively high-income families, and not ethnically diverse. Thus, the 

extent to which these findings generalize to other populations remains to be determined. 

Despite these limitations, the broad assessment of cognitive and non-cognitive factors 

enabled a more thorough assessment of individual differences in gains in mathematics 

achievement among middle school students than is typical in this literature and have 

implications for targeted interventions for students at-risk for long-term difficulties with 

mathematics.
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Educational Impact and Implications Statement

Students’ in-class attention and their spatial abilities emerged as predictors of gains in 

mathematics from sixth- to seventh-grade, with mathematics anxiety indirectly related to 

these gains through in-class attention. Strategies to enhance students’ engagement in the 

classroom, possibly by addressing anxiety for some of them, might facilitate the learning 

of at-risk students, and further study of the relation between spatial abilities and 

mathematics could result in the development of new interventions.
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Figure 1. 
Correlations among key variables. Highlighted cells indicate significant (blue = positive; red 

= negative) correlations. JLAP = Judgment of Line Angle and Placement; Eval = Evaluation; 

Learn = Learning; Op = Operations.
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Figure 2. 
The upper panel shows the interaction between sixth-grade mathematical competence and 

in-class attention, with the high and low attention-groups including students 1 SD above and 

below the mean, respectively. The lower panel shows the relation between predicted scores 

derived from sixth-grade mathematical competence, in-class attention, their interaction and 

Numerical Operations scores.
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Figure 3. 
The upper panel shows the interaction between sixth-grade mathematical competence and 

Mental Rotation Test (MRT) scores, with the high and low MRT groups including students 1 

SD above and below the mean, respectively. The lower panel shows the relation between 

predicted scores derived from sixth-grade mathematical competence, MRT, their interaction 

and Numerical Operations scores.
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Figure 4. 
In-class attention is a partial mediator of seventh-grade Numerical Operations scores.
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Figure 5. 
Mathematics anxiety is indirectly related to Numerical Operations scores though in-class 

attention, with control of prior achievement and Mental Rotation Test scores.
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Table 1

Age of administration and timing of assessments

Task Name Mean (SD) 6th Grade Spring 7th Grade Fall 7th Grade Spring

 Mean Age at test 147 153 156

 Mathematics Competence (6th grade) 104.66 (14.98) x

 Mathematics efficacy 5.00 (1.02) x

 Mathematics utility 5.27 (1.00) x

 Mathematics anxiety for learning 1.72 (0.66) x

 Mathematics anxiety for evaluations 2.63 (0.96) x

 Digit span forward 5.71 (1.12) x

 Digit span backward 4.59 (1.20) x

 N-back 3.80 (0.76) x

 Corsi 8.34 (1.83) x

 JLAP 13.33 (3.03) x

 Mental Rotations Test 8.75 (4.13) x

 Verbal Memory 0.68 (0.28) x

 Intelligence 104.52 (12.83) x

 Word Reading 104.69 (13.01) x

 Numerical Operations 99.68 (18.36) x

 In-class attention (math classroom) 4.83 (1.45) x

Note: Age is in months, SDs range between 4.41 and 4.50 months. JLAP = Judgment of Line Angle and Position.
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Table 2

Bayes factor analyses of predictors of 7th grade mathematics achievement

Model: Top Cognitive Predictors BCm0 Excluded BCm1

MC1 DSB + Corsi + JLAP + MRT + IQ 1.38 ×1027 --- 1

MC2 DSB + Corsi + JLAP + MRT 1.28 × 1020 IQ .0000

MC3 DSB + Corsi + JLAP + IQ 7.19 × 1025 MRT .0521

MC4 DSB + Corsi + MRT + IQ 7.93 × 1026 JLAP .5743

MC5 DSB + JLAP + MRT + IQ 4.90 × 1026 Corsi .3545

MC6 Corsi + JLAP + MRT + IQ 6.34 × 1025 DSB .0459

Model: Top Non-Cognitive Predictors BNCm0 Excluded BNCm1

MNC1 MEff + MAnxLearn + Atten 1.22 × 1026 --- 1

MNC2 MEff + MAnxLearn 2.28 ×109 Atten .0000

MNC3 MEff + Atten 4.74 × 1024 MAnxLrn .0390

MNC4 MAnxLearn + Atten 9.20 × 1024 MEff .0756

Model: Top Combined Predictors BAm0 Excluded BAm1

MA1 MEff + Atten + DSB + Corsi + MRT + IQ 5.21 × 1038 --- 1

MA2 MEff + Atten + DSB + Corsi + MRT 1.07 ×1037 IQ .0205

MA3 MEff + Atten + DSB + Corsi + IQ 1.08 ×1037 MRT .0207

MA4 MEff + Atten + DSB + MRT + IQ 2.31 × 1038 Corsi .4440

MA5 MEff + Atten + Corsi + MRT + IQ 3.30 × 1036 DSB .0063

MA6 MEff + DSB + Corsi + MRT + IQ 1.34 × 1031 Atten .0000

MA7 Atten + DSB + Corsi + MRT + IQ 5.78 ×1036 MEff .0111

Model: Top Combined and 6th-Grade Mathematics BASm0 Excluded BASm1

MAS1 Atten + MRT + 6th-Grade Mathematics 1.43 × 1062 --- 1

MAS2 Atten + MRT 1.89 × 1028 Math .0000

MAS3 Atten + 6th-Grade Mathematics 5.33 × 1060 MRT .0374

MAS4 MRT + 6th-Grade Mathematics 5.26 × 1058 Atten .0004

Note. DSB = Digit Span Backward; Corsi = Corsi Block Tapping Task; JLAP = Judgment of Line Angle and Position Test; MRT = Mental 
Rotation Test; Meff = Mathematics Efficacy; MAnxLearn = Mathematics Anxiety for Learning; Atten = in-class attention in mathematics 
classrooms; MC = Models for cognitive variables; MNC = Models for non-cognitive variables; MA = Models for all, that is, top cognitive and non-

cognitive variables; MAS = Top models from MA and 6th-grade mathematics scores.

J Educ Psychol. Author manuscript; available in PMC 2022 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Geary et al. Page 31

Table 3

Bayes factor analyses of predictors of 7th grade word reading achievement

Model: Top Cognitive Predictors BCm0 Excluded BCm1

MC1 DSF + MRT + IQ 7.09 × 1028 --- 1

MC2 DSF + MRT 2.00 × 1016 IQ .0000

MC3 DSF + IQ 2.39 × 1028 MRT .3374

MC4 MRT + IQ 1.21 × 1023 DSF .0000

Model: Top Non-Cognitive Predictors BNCm0 Excluded BNCm1

MNC1 MUtil + EnglishAtt + MAnxLearn + Atten 1.68 × 109 --- 1

MNC2 MUtil + EnglishAtt + MAnxLearn 1.09 × 105 Atten .0000

MNC3 MUtil + EnglishAtt + Atten 7.58 × 106 MAnxLrn .0045

MNC4 MUtil + MAnxLearn + Atten 5.15 × 107 English .0307

MNC4 EnglishAtt + MAnxLearn + Atten 1.81 × 107 MUtil .0108

Model: Top Combined Predictors BAm0 Excluded BAm1

MA1 DSF + IQ 2.39 × 1028 --- 1

MA2 DSF 1.94 × 1010 IQ .0000

MA3 IQ 1.50 × 1022 DSF .0000

Model: Top Combined and 6th-Grade Mathematics BASm0 Excluded BASm1

MAS1 DSF + IQ + 6th-Grade Mathematics 1.42 × 1030 --- 1

MAS2 DSF + IQ 2.39 × 1028 Math .0169

MAS3 DSF + 6th-Grade Mathematics 2.12 × 1022 IQ .0000

MAS4 IQ + 6th-Grade Mathematics 3.46 × 1025 DSF .0000

Note. DSF = Digit Span Forward; MRT = Mental Rotation Test; MUtil = Mathematics Utility; MAnxLearn = Mathematics Anxiety for Learning; 
Atten = in-class attention in mathematics classrooms; EnglishAtt = Attitudes about English; MC = Models for cognitive variables; MNC = Models 
for non-cognitive variables; MA = Models for all, that is, top cognitive and non-cognitive variables.
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Table 4

Multi-level Model of Gains in Mathematics Achievement from Sixth- to Seventh-Grade

Variable Estimate se t p

Intercept 34.37 3.81 9.03 .001

Mathematics Competence (6th grade) 4.48 0.32 13.89 .001

In-class attention 1.35 0.29 4.72 .001

Mental Rotation Test 0.82 0.27 3.09 .002

Math × In-class attention 0.59 0.24 2.45 .015

Math × Mental Rotation Test 0.42 0.25 1.73 .085

Note. The income and race contrasts are not shown. The level 2 school effect was not significant (p = .159)
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