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Abstract

The success of immune-checkpoint blockade and chimeric antigen receptor (CAR) T cell therapies 

has established the remarkable capacity of the immune system to fight cancer. Over the past 

several years, it has become clear that immune cell responses to cancer are critically dependent 

upon metabolic programs that are specific to both immune cell type and function. Metabolic 

features of cancer cells and the tumor microenvironment impose constraints on immune cell 

metabolism that can favor immunosuppressive phenotypes and block antitumor responses. 

Advances in both preclinical and clinical studies have demonstrated that metabolic interventions 

can dramatically enhance the efficacy of immune-based therapies for cancer. As such, 

understanding the metabolic requirements of immune cells in the tumor microenvironment, as well 

as the limitations imposed therein, can have significant benefits for informing both current practice 

and future research in cancer immunotherapy.

Introduction

In order to support the tremendous growth that characterizes tumors, cancer cells engage 

unique metabolic programs (1). These programs not only serve to facilitate unbridled 

proliferation but also facilitate the ability of cancer to evade immune responses. The 

specialized metabolic programs used by cancer create a hypoxic, acidic, nutrient-depleted 

tumor microenvironment (TME), which presents a prodigious hurdle for effective antitumor 

immunity. The TME is well suited for immune cells that suppress effector function and thus 

promote tumor immune evasion. As such, therapeutically targeting metabolic pathways 

affords the unique opportunity to not only inhibit tumor growth, but also alter the TME in 

order to enhance the efficacy of immunotherapy. As our understanding of immune 

metabolism has increased, it has become apparent that targeting metabolism can also have 

the added bonus of directly enhancing antitumor immune responses. There are several in-

depth reviews delineating the metabolic pathways of both cancer and anticancer immune 

cells (2–5). In this review, at the crossroads of immunometabolism and immunotherapy, we 

seek to bring to light, for the cancer immunotherapist, the multiple different facets whereby 

targeting metabolism can potentially enhance the efficacy of cancer immunotherapy.
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Targeting Tumor Growth

The extraordinary potential of endogenous antitumor immune responses to treat cancer has 

been revealed by checkpoint blockade in a number of different tumor types (6). That is, by 

simply inhibiting an inhibitory pathway (blocking the negative signal delivered by PD-1 to T 

cells), a patient’s own tumor-specific T cells can eliminate their cancer. However, although 

remarkable, this single-agent therapy is only effective in a limited number of patients, in part 

consequent to the fact that tumor growth continues to outpace the rate of the immune 

response. Thus, it stands to reason that slowing down tumor growth and decreasing the 

tumor mass could enhance the efficacy of immunotherapy.

To this end, targeting tumor metabolism represents a powerful means to inhibit tumor 

growth. Cancer cells reprogram their metabolism to promote anabolic pathways and growth 

(7–10). In order to rapidly proliferate, cancer cells require proteins for growth, lipids for 

creating new membranes, and nucleic acids to support transcription and translation. For 

somatic cells, mitochondrial oxidation of nutrients, including glucose, amino acids, and fatty 

acids through the tricarboxylic acid (TCA) cycle, is used as an efficient means of generating 

ATP. However, because of their anabolic state, cancer cells reprogram their metabolism by 

upregulating the lactate-forming glycolysis called Warburg physiology (11, 12). This refers 

to using glycolysis to generate ATP even in the presence of oxygen, which allows for more 

rapid metabolism of glucose and regeneration of NAD+. Glycolytic intermediates enter other 

essential pathways, such as the pentose phosphate pathway, the one-carbon pathway, and the 

hexosamine biosynthesis pathway, all of which support high levels of cellular growth and 

proliferation. These pathways are readily inhibited by therapeutic agents. Studies also 

demonstrate that some cancers may use alternative fuels for energy generation, including 

lactate and branch-chained amino acids (13–15). Interestingly, many traditional 

chemotherapies such as methotrexate, 6-mercap-topurine (6-MP), and 5-fluorouracil (5-FU) 

are in fact metabolic inhibitors (16). Along these lines, the combination of carboplatin and 

pemetrexed, along with anti–PD-1, has demonstrated efficacy for the treatment of lung 

cancer (17). Although the efficacy in these trials is typically presented as a function of 

combination chemotherapy and immunotherapy, it is instructive to understand that 

pemetrexed is fundamentally a metabolic inhibitor that suppresses folate metabolism, as well 

as purine and pyrimidine synthesis.

Altering the TME

Targeting metabolism to directly inhibit cancer cell growth and proliferation is a 

straightforward approach to enhance the efficacy of immunotherapy. However, as mentioned 

above, tumor metabolism also profoundly influences the TME. The high metabolic activity 

of cancer cells, in addition to a disorganized, dysfunctional vasculature, can drive hypoxia 

and nutrient depletion in the TME, leading to competition for oxygen and nutrients between 

cells within the TME, including cancer and immune cells (18–20). For example, robust 

glucose uptake and glycolysis in cancer cells is associated with enhanced infiltration of 

immune-suppressive myeloid-derived suppressor cells (MDSC) and decreased antitumor 

immune responses among tumor-infiltrating lymphocytes (TIL; refs. 18–22). Targeting 

cancer cell glycolysis has been shown to preserve antitumor T-cell function and improve 
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response to checkpoint immunotherapy (23). The Cancer Genome Atlas data demonstrate 

decreased immune responses in tumors with high expression of hexokinase 2, the rate-

limiting enzyme of glycolysis (20). Amino acids may also be the subject of metabolic 

competition between cancer and immune cells. A report demonstrates that high methionine 

uptake in cancer cells can lead to epigenetic reprogramming of antitumor T cells and 

impaired antitumor function (24). Similarly, it has been reported that ovarian cancers can 

dampen T-cell glycolysis and effector function through micro-RNA-mediated suppression of 

the methyltransferase, EZH2 (25). Another study reports that TME hypoxia can induce T-

cell exhaustion, specifically through dysregulated mitochondrial dynamics in the context of 

T-cell receptor (TCR) and PD-1 signaling (26). In addition to depriving immune cells of 

necessary nutrients, tumor metabolism also leads to the production of immunosuppressive 

metabolites, such as lactic acid (27), reactive oxygen species (ROS; ref. 28), kynurenine 

(29), polyamines (30–34), adenosine (35–40), and cholesterol (41), all of which suppress 

antitumor immunity. Thus, targeting tumor metabolism can enhance immunotherapy by 

creating a TME that is more hospitable to the antitumor immune response (Fig. 1, Immune 

suppression). To this end, trials are currently under way that seek to enhance immunotherapy 

by blocking the production of adenosine by the ectonucleotidase CD73, as well as blocking 

the adenosine receptor, A2aR. Likewise, in spite of initial disappointing trials, there still 

remains interest in preventing the depletion of tryptophan and the production of kynurenine 

by inhibiting IDO1. In this regard, a study has identified interleukin-4–induced-1 (IL4I1) as 

a critical activator of aryl hydrocarbon receptor (AHR) activity through IDO1-independent 

generation of indole metabolites and kynurenic acid (42). As such, this may explain clinical 

trial failures of IDO1-specific inhibitors for immunotherapy.

Another strategy is to alter the TME by directly inhibiting tumor metabolism. For example, 

inhibition of glutamine metabolism leads to a dramatic decrease in hypoxia, acidosis, and 

lactate production, as well as enhanced availability of nutrients in the TME for immune cells 

(43). Such an approach has the benefit of both inhibiting tumor growth and altering the 

TME. Interestingly, blocking glutamine metabolism also has the added benefit of leading to 

decreased kynurenine production by inhibiting the expression of IDO (44). It has also been 

demonstrated that T cell–generated IFNγ induces tumor cell lipid peroxidation and 

ferroptosis (45). This cytotoxic effect can be pharmacologically enhanced through inhibition 

of the glutamate–cystine antiporter system, leading to improved efficacy of checkpoint 

blockade. Finally, some tumors evade immune destruction by physically blocking infiltration 

of immune cells through the elaboration of extracellular matrix (ECM). This is particularly 

evident in pancreatic cancer (46). The production and elaboration of the ECM is 

metabolically demanding. Thus, targeting metabolism has the potential to overcome 

resistance to immunotherapy by making tumors accessible to immune cells. For example, a 

particular tumor may be classified as resistant to anti–PD-1. However, it is possible that 

anti–PD-1 is actually able to successfully unleash tumor-specific T cells, but these cells 

cannot infiltrate into the tumor. Thus, inhibition of the generation of ECM through metabolic 

therapy might readily convert such anti–PD-1–resistant tumors into susceptible tumors. 

Likewise, such a strategy mightserveto enhance the efficacy of adoptive cellular therapy 

(ACT).
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Suppressive Myeloid Cells

Myeloid-derived cells make up a considerable proportion of the cells in the TME, 

contributing up to 40% of the mass of a tumor in some cancers (47). Many of these cells 

play important roles in promoting tumor immune evasion. In addition to expressing the 

immunosuppressive ligands PD-L1 and PD-L2, tumor-associated macrophages (TAM) also 

express immunosuppressive metabolic enzymes such as arginase-1, as well as IDO (30–33, 

48, 49). Notably, the metabolism of TAMs is distinct and resembles the metabolic 

programming of M2 macrophages (50, 51). For example, similar to T-regulatory cells (Treg), 

M2 macrophages rely more on fatty acid oxidation (FAO) and oxidative phosphorylation 

(OXPHOS) and are more reliant on glutamine metabolism than inflammatory M1 

macrophages (50, 51). Studies have uncovered a distinct role for lipid uptake, accumulation, 

and oxidation, which are critical for TAM polarization and immunosuppressive activity (52). 

As such, blockade of lipid uptake or FAO suppresses the protumor activity of TAMs in 

mouse models. Similar to the M2-like immunosuppressive TAMs, tumor-associated 

immunosuppressive MDSCs also possess distinct metabolic programs. Blocking glycolysis 

or glutamine metabolism has been shown to inhibit the expansion and function of these 

suppressive cells in the TME (44, 53). Indeed, blocking glutamine metabolism with 6-

Diazo-5-oxo-l-norleucine (DON) not only inhibited MDSC accumulation in tumors but also 

promoted the generation and function of inflammatory M1 macrophages. Thus, metabolic 

therapy has the potential to inhibit tumor growth, inhibit the generation and function of 

suppressive TAMs/MDSCs, and promote the accumulation of inflammatory M1 

macrophages (Fig. 1, Immune promotion).

Enhancing Antitumor T Cells

The discussion thus far has emphasized the concept that targeting metabolism can inhibit 

tumor growth AND also positively influence the antitumor response by conditioning the 

TME and inhibiting the generation and function of suppressive cells. Effector CD4+ and 

CD8+ T cells are critical executors of the antitumor immune response. Upon activation, in 

the context of costimulation, these cells reprogram their metabolism to support their own 

prodigious growth and anabolic function (54). Early studies highlight the similarities in 

metabolic programming between activated, proliferating T cells and cancer cells (55–60), 

whereby activated T cells increase glycolysis even in the presence of oxygen (known as 

Warburg physiology). However, it is important to note that increased TCA cycle metabolism 

and OXPHOS are also instrumental (55–60). The similarity between tumor metabolism and 

activated T-cell metabolism raises the concern that targeting tumor metabolism might in fact 

inhibit antitumor T cells. As it turns out, this is not necessarily the case, as work has 

demonstrated that targeting tumor metabolism can simultaneously enhance antitumor T cells 

(43, 44). Indeed, in spite of their metabolic similarities, it has become clear that it is possible 

to differentially target cancer growth and the anticancer immune response. Although many 

cancer cells can be rigid in their metabolic programs, T cells can be plastic. It has been 

shown that acetate metabolism can overcome glucose restriction in CD8+ T-effector cells 

(61). Similarly, although blockade of glutamine metabolism can inhibit tumor growth, T 

cells can overcome this blockade by acquiring carbon via acetate metabolism (43).
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Nonetheless, in spite of these alternative pathways, similar to cancer cells, targeting T-cell 

metabolism can inhibit proliferation and clonal expansion. Triple combination therapy using 

the glycolysis inhibitor 2-deoxyglucose (2-DG), glutamine inhibitor DON, and 

mitochondrial inhibitor metformin can inhibit activated T-cell proliferation and cytokine 

production (62), which has been shown to be an effective approach to preventing allograph 

rejection. Despite these dramatic suppressive effects through the simultaneous blockade of 

three independent metabolic pathways, targeted inhibition of any single pathway may 

actually enhance critical attributes, such as effector response upon rechallenge and resistance 

to activation-induced cell death. Blocking glycolysis with the inhibitor 2-DG will mitigate 

clonal expansion. However, it has been shown that 2-DG can also condition T cells to 

become more robust long-lived memory cells (63). To this end, inhibiting mTOR or AKT 

signaling, both of which will inhibit tumor growth, has been used to enhance the robustness 

of the antitumor T-cell response (63–65).

Along these lines, tumor immune evasion can take the form of chronic, nonproductive 

antigen-specific activation. CD8+ T cells in the TME can adopt a state of functional 

exhaustion, wherein they are poorly proliferative and unable to generate sufficient 

cytotoxicity against target cancer cells. Interestingly, exhausted T cells can also be defined 

by their (dysregulated) metabolism. Exhausted T cells can be characterized not just by the 

upregulation of PD-1 and loss of cytokine production, but also by mTOR signaling in the 

absence of productive glycolytic function and anabolic processes. To this end, PD-1 

signaling inhibits the expression of peroxisome proliferator-activated receptor-γ coactivator 

1α (PGC1α), which in turn leads to diminished mitochondrial function and less oxidative 

capacity compared with normal effector T cells (66, 67). Targeting metabolism can in part 

reverse this phenotype and restore function.

An important subtype of T cells, called regulatory T cells (Treg), relies on distinct metabolic 

programs and plays a critical role in dampening antitumor immune responses. This 

suppressive subset is defined by the FoxP3 transcription factor, which reprograms 

metabolism toward mitochondrial respiration (OXPHOS) through MYC suppression (68). 

Unlike antitumor effector T cells, immunosuppressive Tregs adapt to metabolic challenges 

within the TME, resisting lactate-induced suppression of function and proliferation. 

Interestingly, work has demonstrated that targeting CD36-mediated lipid metabolism in 

intratumoral Tregs can disrupt their ability to function in lactate-enriched environments and 

improve antitumor immune responses (69).

Enhancing ACT

Currently, checkpoint blockade and ACT in the form of chimeric antigen receptor (CAR) T 

cells represent the two stalwarts of clinically approved cancer immunotherapy. CAR-T cells 

are approved to treat a number of hematologic malignancies and have shown remarkable 

efficacy in patients with leukemia and lymphoma with extensive cancer burden. However, 

the progress of this approach has been stymied by two hurdles. First, it is clear that even 

after initial responses, lack of persistence of the adoptively transferred cells is a major 

mechanism of relapse (70). Second, in spite of the successes in hematologic malignancies, 
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CAR-T cell therapy has yet to induce impressive, durable responses in solid tumors (71). 

Both of these problems have the potential to be overcome with metabolic therapy.

By design, CAR-T cells are generated through ex vivo activation and expansion. This 

process lends itself to metabolic intervention. For example, expanding T cells in the 

presence of an inhibitor of glycolysis can promote memory cell generation leading to 

enhanced persistence and function when the cells are adoptively transferred into tumor-

bearing mice (63). In a similar fashion, inhibiting AKT signaling during ex vivo processing 

can promote the generation of T cells with transcriptional and metabolic profiles associated 

with enhanced memory (72). Likewise, the inclusion of increased arginine or potassium in 

the culture media can promote the enhanced generation of long-lived memory cells (73, 74). 

Other strategies, including inhibition of lactate dehydrogenase (LDH), the critical enzyme in 

aerobic glycolysis, T-cell sorting based on low mitochondrial membrane potential, and 

limiting ROS metabolism in T cells, can also enhance the generation of long-lived or stem-

like antitumor T cells and enhance adoptive immunotherapy regimens (75–77).

The fact that CAR-T cells are genetically altered creates the opportunity for metabolic 

reprogramming by genetic means. First, it has been noted that the 4–1BB signaling domain 

is superior to the CD28 signaling domain in promoting the expansion of central memory T 

(Tcm) cells with increased mitochondrial biogenesis and oxidative metabolism (78–83). In 

this case, the design of the CAR itself can reprogram the cells metabolically. However, 

strategies to genetically engineer T cells further have also been used. For example, 

overexpression of phosphoenolpyruvate carboxykinase 1 (PCK1), which converts 

oxaloacetate (OAA) into phosphoenolpyruvate (PEP), has been shown to enhance the 

efficacy of adoptively transferred T cells (20). Likewise, it has been demonstrated that 

forced overexpression of PGC1a in donor T cells can promote mitochondrial fitness and 

prevent exhaustion of adoptively transferred cells (66). Alternatively, pharmacologically 

promoting mitochondrial fusion and inhibiting mitochondrial fission can lead to superior 

control of adoptively transferred T cells by enhancing memory generation with increased 

mitochondrial mass, OXPHOS, and spare respiratory capacity (SRC; ref. 84).

Although ex vivo metabolic interventions are appealing, treating patients either before or 

during ACT can be an effective strategy as well. The efficacy of even the most potent 

adoptively transferred cells may be readily thwarted by lack of access to the tumor. 

Likewise, the potency of antitumor T cells can be mitigated upon tumor infiltration by a 

hostile TME. To this end, the addition of metabolic therapy to CAR-T therapy might 

facilitate the success of this modality for solid tumors. Indeed, metabolic therapy can 

facilitate inhibiting tumor growth and condition the TME to make it more hospitable to 

antitumor immune responses during the period of cell processing. Treating patients with 

metabolic therapy post ACT has the potential to enhance the robustness of the adoptively 

transferred cells. As previously discussed, the inhibition of a number of metabolic targets, 

such as glutamine metabolism, glycolysis, mTOR, and AKT, not only serves to mitigate 

tumor growth but also promotes long-lived T-cell memory (63, 72, 73, 85). Thus, for 

example, the continued treatment with an inhibitor of glutamine metabolism, even after 

ACT, has the potential to both keep tumor growth in check and promote long-lived memory 

in the adoptively transferred cells (85).
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Targeting Metabolism to Enhance the Depth and Breadth of Immunotherapy

Undoubtedly, the success of checkpoint blockade and CAR-T therapy has revolutionized the 

treatment of cancer. Patients with significant tumor burdens can now be cured by 

endogenous (checkpoint blockade) and exogenous (ACT) antitumor immune responses. 

However, although the successes have been impressive, it is clear that the task ahead is to 

build on these successes to enhance the depth of immunotherapy in patients with tumors 

deemed sensitive and the breadth of immunotherapy to tumors that have not, as of yet, 

demonstrated robust responses to immunotherapy. The addition of metabolic therapy to both 

target tumor metabolism and regulate immune metabolism has the potential to accelerate 

these goals (Fig. 1). Indeed, we view the addition of pemetrexed to immunotherapy for non–

small cell lung cancer (NSCLC) as just the beginning. Specifically, targeting metabolism has 

the potential to enhance the efficacy of immunotherapy in NSCLC, melanoma, renal cell 

carcinoma, and other cancers for which checkpoint blockade has already been approved. 

Likewise, for cancers, such as prostate cancer, breast cancer, pancreatic cancer, and others, 

where immunotherapy has yet to show significant efficacy, targeting metabolism has the 

potential to both alter the TME and increase immune infiltration, converting these resistant 

tumors to susceptible ones. For these same reasons, metabolic therapy has the potential to 

facilitate the expansion of CAR-T therapy to solid tumors, as well as improve the overall 

efficacy of this approach, by enhancing the persistence of adoptively transferred cells.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Metabolic intervention has pleiotropic effects on tumor immunology. The metabolic 

programs of cancer cells function as immune checkpoints within the TME through a number 

of mechanisms, including depletion of oxygen and nutrients, generation of toxic metabolites 

(e.g., acid, adenosine, and lactate, polyamines), and the production of aberrant extracellular 

matrix (ECM; left, Immune suppression). These characteristics favor immune-suppressive 

phenotypes, including regulatory T cells, MDSCs, and tumor-associated macrophages, and 

suppress antitumor effector responses of T cells and natural killer cells. Targeted 

interventions designed to dismantle cancer cell metabolism can simultaneously suppress 

cancer cell growth, decrease the production of ECM components, limit nutrient deprivation, 

curtail generation of toxic metabolites, and reprogram the immune response, favoring T-cell 

persistence and inflammatory myeloid infiltration (right, Immune promotion). CAR-T, 

chimeric antigen receptor T cell; CC, cancer cell; iMϕ, inflammatory macrophage; TAM, 

tumor-associated macrophage; Teff, effector T cell; Tmem, long-lived memory T cell; Treg, 

regulatory T cell.
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