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Abstract

Primate vision is characterized by constant, sequential processing and selection of visual targets to 

fixate. Although expected reward is known to influence both processing and selection of visual 

targets, similarities and differences between these effects remains unclear mainly because they 

have been measured in separate tasks. Using a novel paradigm, we simultaneously measured the 

effects of reward outcomes and expected reward on target selection and sensitivity to visual 

motion in monkeys. Monkeys freely chose between two visual targets and received a juice reward 

with varying probability for eye movements made to either of them. Targets were stationary 

apertures of drifting gratings, causing the endpoints of eye movements to these targets to be 

systematically biased in the direction of motion. We used this motion-induced bias as a measure of 

sensitivity to visual motion on each trial. We then performed different analyses to explore effects 

of objective and subjective reward values on choice and sensitivity to visual motion in order to find 

similarities and differences between reward effects on these two processes. Specifically, we used 

different reinforcement learning models to fit choice behavior and estimate subjective reward 

values based on the integration of reward outcomes over multiple trials. Moreover, to compare the 

effects of subjective reward value on choice and sensitivity to motion directly, we considered 

correlations between each of these variables and integrated reward outcomes on a wide range of 

timescales. We found that in addition to choice, sensitivity to visual motion was also influenced by 

subjective reward value, even though the motion was irrelevant for receiving reward. Unlike 

choice, however, sensitivity to visual motion was not affected by objective measures of reward 

value. Moreover, choice was determined by the difference in subjective reward values of the two 

options whereas sensitivity to motion was influenced by the sum of values. Finally, models that 

best predicted visual processing and choice used sets of estimated reward values based on different 

types of reward integration and timescales. Together, our results demonstrate separable influences 

of reward on visual processing and choice, and point to the presence of multiple brain circuits for 

integration of reward outcomes.
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Introduction

Primates make approximately 3–4 saccadic eye movements each second, and thus the choice 

of where to fixate next is our most frequently made decision. The next fixation location is 

determined in part by visual salience (Itti & Koch, 2000), but also by internal goals and 

reward expected from the foveated target (Markowitz, Shewcraft, Wong, & Pesaran, 2011; 

Navalpakkam, Koch, Rangel, & Perona, 2010; Schütz, Trommershäuser, & Gegenfurtner, 

2012). Brain structures known to be involved in the control of saccadic eye movement have 

been extensively studied as a means of understanding the neural basis of decision-making 

(Glimcher, 2003; Sugrue, Corrado, & Newsome, 2005). Interestingly, the same structures 

also appear to contribute to the selective processing of targeted visual stimuli that tends to 

accompany saccades (Squire, Noudoost, Schafer, & Moore, 2013). Thus, it is conceivable 

that reward outcomes and expected reward (i.e., subjective reward value) control saccadic 

choice and processing of targeted visual stimuli via similar mechanisms.

Our current knowledge of how reward outcomes and subjective reward value influence the 

processing of visual information and saccadic choice comes from separate studies using 

different experimental paradigms. For instance, the effects of reward on saccadic choice are 

studied using tasks that involve probabilistic reward outcomes (Chen & Stuphorn, 2015; 

Farashahi, Azab, Hayden, & Soltani, 2018; Liston & Stone, 2008; Platt & Glimcher, 1999; 

Strait, Blanchard, & Hayden, 2014) as well as tasks with dynamic reward schedules 

(Barraclough, Conroy, & Lee, 2004; Costa, Dal Monte, Lucas, Murray, & Averbeck, 2016; 

Donahue & Lee, 2015; Lau & Glimcher, 2007; Schütz et al., 2012; Sugrue, Corrado, & 

Newsome, 2004), both of which require estimation of subjective reward value. In contrast, 

the effects of reward on the processing of visual information have been mainly examined 

using tasks involving unequal expected reward outcomes without considering the subjective 

valuation of reward outcomes (B. A. Anderson, 2016; B. A. Anderson, Laurent, & Yantis, 

2011a, 2011b; Barbaro, Peelen, & Hickey, 2017; Della Libera & Chelazzi, 2006, 2009; 

Hickey, Chelazzi, & Theeuwes, 2010, 2014; Hickey & Peelen, 2017; Peck, Jangraw, Suzuki, 

Efem, & Gottlieb, 2009; Rakhshan et al., 2020). More importantly, none of the previous 

studies has explored the effects of reward on choice and processing of visual information 

simultaneously. As a result, the relationship between these effects is currently unknown.

Understanding this relationship is important because the extent to which reward influences 

sensory processing could impact decision making independently of the direct effects of 

reward on choice. For example, in controlled decision-making paradigms or natural foraging 

settings, recent harvest of reward following saccade or visits to certain parts of the visual 

field or space could enhance processing of features of the targets that appear in those parts of 

space, ultimately biasing choice behavior. Such an influence of reward on sensory 

processing could have strong effects on choice behavior during tasks with dynamic reward 
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schedules that require flexible integration of reward outcomes over time (Bari et al., 2019; 

Donahue & Lee, 2015; Farashahi, Donahue, et al., 2017; Farashahi, Rowe, Aslami, Lee, & 

Soltani, 2017; Lau & Glimcher, 2007; Soltani & Wang, 2006, 2008; Sugrue et al., 2004). In 

addition to better understanding choice behavior, elucidating the relationship between 

sensory and reward processing can also be used to disambiguate neural mechanisms 

underlying attention and reward (Hikosaka, 2007; Maunsell, 2004, 2015), and how deficits 

in deployment of selective attention, which is characterized by changes in sensory 

processing, are affected by abnormalities in reward circuits (Volkow et al., 2009).

Here, we used a novel experimental paradigm with a dynamic reward schedule to 

simultaneously measure the influences of reward on choice between available targets and 

processing of visual information of these targets. We exploited the influence of visual 

motion on the trajectory of saccadic eye movements (Schafer & Moore, 2007), motion-

induced bias (MIB), to quantify sensitivity to visual motion as a behavioral readout of visual 

processing in a criterion-free manner. Using this measure in the context of a saccadic free-

choice task in monkeys allowed us to simultaneously estimate how reward feedback is 

integrated to determine both visual processing and decision making on a trial-by-trial basis. 

We then used different approaches to compare the effects of objective reward value (i.e., 

total harvested reward, and more vs. less rewarding target based on task parameters) and 

subjective reward value (i.e., estimated reward values of the two targets using choice data) 

on decision making and visual processing. To estimate subjective reward values on each 

trial, we fit choice behavior using multiple reinforcement learning models to examine how 

animals integrated reward outcomes over time and to determine choice. Based on the 

literature on reward learning, the difference in subjective values should drive choice 

behavior. The MIB could be independent of subjective reward value or it could depend on 

subjective values similarly to or differently than choice. To test these alternative possibilities, 

we then used correlation between the MIB and estimated subjective values based on 

different integrations of reward feedback and on different timescales to examine similarities 

and differences between the effects of subjective reward value on choice and visual 

processing.

We found that both choice and sensitivity to visual motion were affected by reward even 

though visual motion was irrelevant for obtaining reward in our experiment. However, there 

were separable influences of reward on these two processes. First, choice was modulated 

both by objective and subjective reward values whereas sensitivity to visual motion was 

mainly influenced by subjective reward value. Second, choice was most strongly correlated 

with the difference in subjective values of the chosen and unchosen target whereas 

sensitivity to visual motion was most strongly correlated with the sum of subjective values. 

Finally, choice and sensitivity to visual motion were best predicted based on different types 

of reward integration and integration on different timescales.

Methods

Subjects.

Two male monkeys (Macaca mulatta) weighing 6 kg (monkey 1), and 11 kg (monkey 2) 

were used as subjects in the experiment. The two monkeys completed 160 experimental 
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sessions (74 and 86 sessions for monkeys 1 and 2, respectively) on separate days in the free-

choice task for a total of 42,180 trials (10,096 and 32,084 trials for monkeys 1 and 2, 

respectively). Each session consisted of approximately 140 and 370 trials for monkeys 1 and 

2, respectively. All surgical and behavioral procedures were approved by the Stanford 

University Administrative Panel on Laboratory Animal Care and the consultant veterinarian 

and were in accordance with National Institutes of Health and Society for Neuroscience 

guidelines.

Visual stimuli.

Saccade targets were drifting sinusoidal gratings within stationary, 5°–8° Gaussian 

apertures. Gratings had a spatial frequency of 0.5 cycle/° and Michelson contrast between 

2%–8%. Target parameters and locations were held constant during an experimental session. 

Drift speed was 5°/s in a direction perpendicular to the saccade required to acquire the 

target. Targets were identical on each trial with the exception of drift direction, which was 

selected randomly and independently for each target.

Experimental paradigm.

After acquiring fixation on a central fixation spot, the monkey waited for a variable delay 

(200–600 ms) before the fixation spot disappeared and two targets appeared on the screen 

simultaneously (Fig. 1A). Targets appeared equidistant from the fixation spot, and 

diametrically opposite one another. The monkeys had to make a saccadic eye movement to 

one of the two targets in order to select that target and obtain a possible reward allocated to it 

(see Reward schedule). Both targets disappeared at the start of the eye movement. If the 

saccadic eye movement shifted the monkey’s gaze to within a 5–8°-diameter error window 

around the target within 400 ms of target appearance, the monkeys received a juice reward 

according to the variable reward schedule described below.

Quantifying the motion-induced bias.

Eye position was monitored using the scleral search coil method (Fuchs & Robinson, 1966; 

Judge, Richmond, & Chu, 1980) and digitized at 500 Hz. Saccades were detected using 

previously described methods (Schafer & Moore, 2007). Directions of drifting gratings were 

perpendicular to the saccade required to choose the targets. Saccades directed to drifting-

grating target are displaced in the direction of visual motion, an effect previously referred to 

as the motion-induced bias (MIB) (Schafer & Moore, 2007). The MIB for each trial was 

measured as the angular deviation of the saccade vector in the direction of the chosen 

target’s drift, with respect to the mean saccade vector from all selections of that target within 

the session. This method for measuring deviation would yield approximately the same 

results as vertical displacement because the locations of targets were held constant 

throughout the session and angles were small, making angles a good approximation for the 

tangent of angles times the horizontal distance of the targets (vertical displacement). In order 

to compare MIB values across sessions with different target contrasts and locations, we used 

z-score values of the MIB in each session to avoid confounds due to systematic biases.
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Reward schedule.

For each correct saccade, the monkey could receive a juice reward with a probability 

determined by a dynamic reward schedule based on the location of the foveated target (Abe 

& Takeuchi, 1993). More specifically, the probability of reward given a selection of the left 

(TL) or right (TR) target was equal to:

pR TL, r, x = 1
1 + exp(− −fL + r + 10

S )
− x

pR TR, r, x = 1
1 + exp − +fL − r + 10

s

− x
(Eq. 1)

where fL is the local fraction (in percentage) of TL selections estimated using the previous 

20 trials; r (reward parameter) is a task parameter that was fixed on a given session of the 

experiment and determined which option was globally more valuable (TL for r>50, and TR 

for r<50); s is another task parameter that determines the extent to which the deviation from 

matching (corresponding to fL=r) results in a decrease in reward probability and was set to 7 

in all experimental sessions; and x is a penalty parameter that reduced the global probability 

of a reward. Positive values of x decreased reward probability on saccades to both left and 

right targets in order to further motivate monkeys to identify and choose the more rewarding 

location at the time. x was kept constant throughout a session and was assigned to one of the 

following values on a fraction of sessions (reported in the parentheses in percentage): 0 

(77%), 0.15 (6%), 0.30 (6%), or 0.40 (11%). Although the introduction of penalty decreased 

the reward probability and rate on both targets, it did not change the local choice fraction 

(fL) at which the optimal reward rate or matching could be achieved. Because of the penalty 

parameter and the structure of the reward schedule, pR(TL, r, x) and pR(TR, r, x) are not 

necessarily complementary. Finally, to ensure that the reward probabilities would not have 

negative values, any negative reward probability (based on Eq. 1) is replaced with 0.

Based on the above equations, the reward probabilities on saccades to left and right targets 

are equal at fL=r, corresponding to matching behavior, which is slightly suboptimal in this 

task. As shown in Fig. 1C, D, an optimal reward rate is obtained via slight undermatching. 

As the value of s approaches zero, matching and optimal behavior become closer to each 

other.

Reinforcement learning models.

In our experiment, reward was assigned based on target location (left vs. right) and thus the 

targets’ motion directions were irrelevant for obtaining reward. Nevertheless, we considered 

the possibility that monkeys could incorrectly assign value to motion direction. We used 

various reinforcement learning (RL) models to fit choice behavior in order to determine 

whether monkeys attributed reward outcomes to target locations or target motions, and how 

they integrated these outcomes over trials to estimate subjective values and guide choice 

behavior. Therefore, we considered RL models that estimate subjective reward values 

associated with target locations as well as RL models that estimate subjective reward values 

associated with the motion of the two targets.
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In the models based on the location of the targets (location-based RLs), the left and right 

targets (TL and TR) were assigned subjective values VL(t) and VR(t), respectively. In the 

models based on motion direction of the targets (motion-based RLs), subjective values VU(t) 
and VD(t) were assigned to the upward and downward motion (TU and TD), respectively. For 

both types of models, values were updated at the end of each trial according to different 

learning rules described below. In addition, we assumed that the probability of selecting TL 

(or TU in motion-based RLs) is a sigmoid function of the difference in subjective values as 

follows:

p TL/U = 1
1 + exp − V L/U(t) − V R/D(t) − b (Eq. 2)

where b quantifies the bias in choice behavior toward the left target (or upward motion), 

VL⁄U denotes the subjective value of the left target in the location-based RL or upward 

motion in the motion-based RL, respectively. Similarly, VR⁄D denotes the subjective value of 

the right target in the location-based RL or downward motion in the motion-based RL, 

respectively.

At the end of each trial, subjective reward values of one or both targets were updated 

depending on the choice and reward outcome on that trial. We considered different types of 

learning rules for how reward outcomes are integrated over trials and grouped these learning 

rules depending on whether they estimate a quantity similar to return (average reward per 

selection) or income (average reward per trial). More specifically, on each trial, the monkeys 

could update subjective reward value of the chosen target only, making the estimated reward 

values resemble local (in time) return. Alternatively, the monkeys could update subjective 

reward values of both the chosen and unchosen targets, making these values resemble local 

income. We adopted these two methods for updating subjective reward values because 

previous work has shown that both local return and income can be used to achieve matching 

behavior (Corrado, Sugrue, Seung, & Newsome, 2005; Soltani & Wang, 2006; Sugrue et al., 

2004). In addition, subjective reward values for the chosen and unchosen targets could decay 

similarly or differently, and monkeys could learn differently from positive (reward) and 

negative (no reward) outcomes. We tested all these possibilities using four different types of 

RL models.

In return-based RL models (RLret), only the subjective value of the chosen target (in terms of 

location or motion direction) was updated. More specifically, if TL (TU) was selected and 

rewarded on trial t, subjective reward values were updated as the following:

V L/U(t + 1) = αV L/U(t) + Δr
V R/D(t + 1) = V R/D(t) (Eq. 3)

where Δr quantifies the change in subjective reward value after a rewarded trial and α (0 ≤ α 
≤ 1) is the decay rate (or discount factor) measuring how much the estimated subjective 

reward value from the previous trial is carried to the current trial. As a result, values of α 
closer to 1 indicates longer lasting effects of reward or integration of reward on longer 

timescales both of which indicate slower learning. In contrast, values of α closer to 0 

indicate integration of reward on shorter timescales corresponding to faster learning. We 
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note that our learning rule is not a delta rule and because of its form, (1 − α) in our models 

more closely resemble learning rate in RL models based on the delta rule. If TL (TU) was 

selected but not rewarded, subjective reward values of the two target locations or motion 

directions were updated as the following:

V L/U(t + 1) = αV L/U(t) + Δn
V R/D(t + 1) = V R/D(t) (Eq. 4)

where Δn quantifies the change in subjective reward value after a non-rewarded trial. Similar 

equations governed the update of subjective reward values when TR (TD) was selected. 

Importantly, in these models, subjective reward value of the unchosen target (in terms of 

location or motion) is not updated, making these models return-based.

In contrast, in all other models, subjective reward values of both chosen and unchosen 

targets were updated in every trial, making them income-based models. Specifically, in the 

RLInc(1) models, the subjective value of the unchosen target decayed at a rate similar to the 

subjective value of the chosen target. For example, when TL (TU) was selected, the 

subjective values were updated as follows:

V L/U(t + 1) = αV L/U(t) + Δr or Δn for no‐reward
V R/D(t + 1) = αV R/D(t) .

(Eq. 5)

In the RLInc(2) models, subjective value of chosen and unchosen targets decayed differently:

V L/U(t + 1) = αcV L/U(t) + Δr or Δn for no‐reward
V R/D(t + 1) = αuV R/D(t) (Eq. 6)

where αc, and αu are the decay rates for the chosen and unchosen targets or motion 

directions.

In the RLInc(3) models, we updated the subjective value of unchosen target location (or 

unchosen motion direction) in addition to decaying the subjective values of chosen and 

unchosen locations:

V L/U(t + 1) = αcV L/U(t) + Δr or Δn for no‐reward
V R/D(t + 1) = αuV R/D(t) + Δu . (Eq. 7)

Note that the motion directions of the two targets were the same in half of the trials. This 

makes updating of subjective value of motion directions non-trivial in trials in which the 

chosen and unchosen motion directions are the same (referred to as match trials). Therefore, 

we tested different update rules for match trials to identify the model that best describes the 

monkeys’ choice behavior. Specifically, we tested two possibilities: 1) update the subjective 

value of motion direction that was presented on a given match trial only; 2) update the 

subjective values of both present and non-present motion directions but in the opposite 

direction. We found that the second model, in which subjective values of both motion 

directions were updated, provided a better fit for our data (data not shown).
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Finally, we also tested hybrid RL models in which subjective values of both target locations 

and motion directions were updated at the end of each trial, and subsequently used to make 

decisions. Fitting based on these hybrid models were not significantly better than those using 

the RL models that consider only subjective values of target locations. Therefore, the results 

from these hybrid models are not presented here.

Model fitting and comparison.

We used the maximum likelihood ratio method to fit choice behavior with different RL 

models described above and estimated the parameters of those models. To compare the 

goodness-of-fit based on different models while considering the number of model 

parameters, we used the negative log-likelihood (−LL), Akaike information criterion (AIC) 

and Bayesian information criterion (BIC). AIC is defined as:

AIC = − 2 × LL + 2 × k (Eq. 8)

where LL is log-likelihood of the fit and k is the number of parameters in a given model. 

BIC is defined as:

BIC = − 2 × LL + ln(n) × k (Eq. 9)

where LL is log-likelihood of the fit, k is the number of parameters in a given model, and n 
is the number of trials in a given session. We then used the best RL model in terms of 

predicting choice behavior to examine whether the MIB is also affected by subjective reward 

value similarly to or differently than choice (see below).

Effects of subjective reward value on MIB.

In order to estimate subjective reward values associated with a given target location, we used 

two methods of reward integration corresponding to income and return. To calculate the 

subjective income for a given target location on a given trial, we filtered the sequences of 

reward outcomes on preceding trials (excluding the current trial) using an exponential filter 

with a given time constant τ, assigning +1 to rewarded trials and Δn to non-rewarded trials if 

that target location was chosen and 0 if that target location was not chosen on the trial. To 

calculate the subjective return of a given target location, we filtered reward sequence on 

preceding trials (again excluding the current trial) in which that target location was chosen 

using an exponential filter with a given time constant τ, assigning +1 to rewarded trials and 

Δn to non-rewarded trials. Finally, we calculated the correlation between the MIB and the 

obtained filtered values for different values of τ and Δn.

Data analysis.

To assess the overall performance of the monkeys, we used static and dynamic models to 

harvest maximum rewards. In the static model, we assumed that selection between the two 

target locations in a given session was a stochastic process with a fixed probability that is 

optimized for a given set of parameters. Replacing fL with to-be-determined probability 

p(TL) in Eq. 1, one can obtain the total average reward on the two targets, Rtot, as follows:
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Rtot = p TL * pR TL, r, x + p TR * pR TR, r, x

= p TL * 1
1 + exp − −p TL + r + 10

s

− x

+ 1 − p TL * 1
1 + exp − +p TL − r + 10

s

− x ,

(Eq.10)

The optimal probability, popt(TL), was then determined by maximizing Rtot:

popt TL = argmaxp TL Rtot (Eq. 11)

In the optimal dynamic model, we assumed that the decision maker has access to all the 

parameters of the reward schedule (r, s, x) and perfect memory of their own choices in terms 

of fL. Having this knowledge, the optimal decision maker could compute the probability of 

reward on the two options, pR(TL, r, x) and pR(TR, r, x), (using Eq. 1) and choose the option 

with the higher reward probability on every trial.

We also compared the monkeys’ choice behavior with the prediction of the matching law. 

The matching law states that the animals allocate their choices in a proportion that matches 

the relative reinforcement obtained by the choice options. In our experiment, this is 

equivalent to the relative fraction of left (respectively, right) choices to match the relative 

fraction of incomes on the left (respectively, right) choices. Therefore, to quantify deviations 

from matching, we calculated the difference between the relative fraction of choosing the 

more rewarding target (left when r >50 and right when r <50) and the relative fraction of the 

income for the more rewarding target. Negative and positive values correspond to 

undermatching (choosing the better option less frequently than the relative reinforcement) 

and overmatching, respectively.

Results

We trained two monkeys to freely select between two visual targets via saccadic eye 

movement (Fig. 1A). Saccades to each target resulted in delivery of a fixed amount of juice 

reward with a varying probability. Targets were stationary apertures of drifting gratings and 

the reward probability was determined based on the location of the grating targets 

independently of the direction of visual motion contained within the gratings. More 

specifically, on a given trial, probabilities of reward on the left and right targets were 

determined by the reward parameter (r) and the choice history on the preceding 20 trials (Eq. 

1; Fig. 1B). Critical for our experimental design, the motion contained within the targets 

caused the endpoints of eye movements made to those targets to be systematically biased in 

the direction of grating motion (motion-induced bias, MIB). We first show that this motion-

induced bias can be used as a measure of sensitivity to visual motion on a trial-by-trial basis. 

Next, we use an exploratory approach to study whether and how the effects of reward on 
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choice are different or similar to the effects of reward on sensitivity to visual motion 

measured by the MIB. In this approach, we rely on known effects of objective and subjective 

reward values on choice and then test those effects for the MIB.

MIB measures sensitivity to visual motion.

The motion-induced bias of a saccadic eye movement quantifies the extent to which the 

endpoints of saccades directed toward the drifting gratings were biased in the direction of 

grating motion (Fig. 1A, Fig. 2A). Despite the stationary position of the grating aperture, 

motion in the drifting sinusoid nonetheless induces a shift in the perceived position of the 

aperture in human subjects (De Valois & De Valois, 1991) and biases saccadic endpoints in 

the direction of grating drift in monkeys (Schafer & Moore, 2007). By examining the MIB 

in different conditions, we established that it can provide a measure of sensitivity to visual 

motion even when the grating motion is not behaviorally relevant.

First, we found that the magnitude of the MIB depended on the grating contrast. More 

specifically, the MIB increased by 27% when the (Michaelson) contrast of grating increased 

from 2% to 3% (two-sided independent measures t-test, p=7.85 * 10−9; Fig. 2B). Second, we 

observed that the MIB depended almost exclusively on the motion direction of the selected 

target as it was only slightly affected by non-matching motion in the unchosen target (Fig. 

2C). Specifically, the average z-score normalized MIB measured in two monkeys across all 

trials (mean = 0.38) was altered by only 9% when the unchosen target differed in direction 

of the grating motion. Together, these results demonstrate that the MIB in our task is 

sensitive to the properties of sensory signal (grating motion direction and contrast) and thus, 

can be used to measure the influence of internal factors such as subjective reward value on 

visual processing.

Effects of objective reward value on choice behavior.

To examine effects of global and objective reward value on monkeys’ choice behavior, we 

first measured how monkeys’ choice behavior tracked the target location that was globally 

(session-wise) more valuable, which in our task is set by reward parameter r. We found that 

target selection was sensitive to reward parameter in both monkeys and the harvested reward 

rate was high, averaging 0.66 and 0.65 across all sessions (including those with penalty) in 

monkeys 1 and 2, respectively (Fig. 3A, B, D, E). To better quantify monkeys’ performance, 

we also computed the overall harvested reward by a model that selects between the two 

targets with the optimal but fixed choice probability in a given session (optimal static model; 

see example in Fig. 1C in Methods) or a model in which the target with higher probability of 

reward was chosen on each trial (optimal dynamic model; See Methods). We found that 

performance of both monkeys was sub-optimal; however, the pattern of performance as a 

function of reward parameter for monkeys 1 and 2 resembled the behavior of the optimal 

static and dynamic models, respectively (Fig. 3B, E). Since each session of the experiment 

for monkey 2 was longer, we confirmed that there was no significant difference in task 

performance between the first and second halves of sessions for monkey 2 (difference mean

±sem: 0.003 ± 0.008; two-sided paired t-test, p = 0.7, d = 0.03). Together, these results 

suggest that both monkeys followed the reward schedule on each session closely whereas 

their choice behavior was suboptimal.
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We also examined the global effects of reward on choice by measuring matching behavior. 

To that end, we compared choice and reward fractions in each session and found that both 

monkeys exhibited undermatching behavior (Fig. 3C, F). More specifically, they selected the 

more rewarding location with a probability that was smaller than the relative reinforcement 

obtained on that location (monkey 1 median(choice fraction – reward fraction) = −0.115; 

Wilcoxon signed rank test, p=1.67×10−612,d=−1.35; Fig. 3C inset; monkey 2 median(choice 

fraction – reward fraction) = −0.03, p=1.76×10−12,d=−0.83; Fig. 3F inset). Furthermore, the 

degree of undermatching was larger for Monkey 1 than Monkey 2 (diff =−0.086; Wilcoxon 

rank sum test, p=2.57×10−6,d=−0.37).

Effects of objective reward value on sensitivity to visual motion.

In the previous section we observed that choice behavior is affected by objective measures of 

reward value in a given session. We repeated similar analyses to examine whether objective 

reward values have similar effects on sensitivity to visual motion measured by MIB. To that 

end, we first computed the correlation between the difference in the session-based average 

MIB for saccades to the more and less rewarding target locations and reward parameter r in 

each session. However, we did not find any evidence for such correlation for either of the 

two monkeys (Spearman correlation; monkey 1: r = 0.04, p = 0.8; monkey 2: r = 0.11, p = 

0.39). Second, we examined whether the average MIB for all saccades in a given session 

was affected by the overall performance in that session. Again, we did not find any evidence 

for correlation between the session-based average MIB and performance for either of the 

two monkeys (Spearman correlation; monkey 1: r = −0.07, p = 0.54; monkey 2: r = 0.13, p = 

0.21). Finally, we did a similar analysis to matching behavior to examine whether 

differential MIB on the two target locations is related to objective reward values of those 

locations. In this analysis, we computed correlation between the difference in average MIB 

on the better and worse target locations and the difference in total reward obtained on those 

locations but found no evidence for such correlation (Spearman correlation; monkey 1: r = 

0.003, p = 0.99; monkey 2: r = 0.03, p = 0.83).

Together, these results indicate that unlike choice, the MIB is not affected by objective 

reward value of the foveated target or the overall harvested reward. Observing this 

dissociation, we next examined the effects of subjective reward value on choice and the 

MIB.

Effects of subjective reward value on choice behavior.

The analyses presented above show that the overall choice behavior was influenced by 

global or objective reward value of the two target locations in a given session. In contrast, 

sensitivity to visual motion was not affected by global or objective reward value. This 

difference between the influence of objective reward value on choice and MIB could simply 

reflect the fact that due to task design, monkeys’ choices and not MIB determine reward 

outcomes on current trials and influence reward probability on subsequent trials (reward 

probability was a function of r and monkeys’ choices on the preceding trials). Therefore, we 

next examined similarities and differences between effects of subjective reward value on 

choice behavior and sensitivity to visual motion.

Soltani et al. Page 11

J Cogn Neurosci. Author manuscript; available in PMC 2021 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To investigate how reward outcomes were integrated over time to estimate subjective reward 

values and guide monkeys’ choice behavior on each trial, we used multiple reinforcement 

learning (RL) models to fit the choice behavior of individual monkeys on each session of the 

experiment. These models assume that selection between the two targets is influenced by 

subjective values associated with each target, which are updated on each trial based on 

reward outcome (see Methods). Although reward was assigned based on the location of the 

two targets (left vs. right) in our experiment, the monkeys could still assume that motion 

direction is informative about reward. Therefore, we considered RL models in which 

subjective values were associated with target locations as well as RL models in which 

subjective values were associated with the motion of the two targets, using four different 

learning rules. Considering the observed undermatching behavior, we grouped learning rules 

depending on whether they result in the estimation of subjective value in terms of local (in 

time) return or income.

In RLret models, only the subjective value of the chosen target (in terms of location or 

motion) was updated, making them return-based models. In RLInc(1) models, in addition to 

updating the subjective value of the chosen target, the subjective value of the unchosen target 

decayed at a rate similar to the subjective value of the chosen target, making these models 

income-based. In RLInc(2) models, the subjective value of chosen and unchosen targets were 

allowed to decay at different rates. Finally, in RLInc(3) models, we also assumed a change in 

the subjective value of the unchosen target or motion direction in addition to the decay. 

Because the subjective value of both chosen and unchosen target locations were updated on 

each trial in RLInc(2) and RLInc(3) models, we refer to these models as income-based 

similarly to RLInc(1). However, we note that only RLInc(1) models are able to estimate local 

income accurately.

We first compared the goodness-of-fit between the location-based and motion-based RLs 

using negative log likelihood (−LL), Akaike information criterion (AIC), and Bayesian 

information criterion (BIC) in order to test which of the two types of models can predict 

choice behavior better. Such comparisons based on the three measures yield the same results 

because the two types of models have the same number of parameters for a given learning 

rule. We found that for both monkeys, all the location-based models outperformed the 

motion-based RLs (Table 1). This demonstrates that both monkeys attributed reward 

outcomes to target locations more strongly than to target motions, and used subjective value 

attributed to target locations to perform the task.

After establishing that monkeys used target location to integrate reward outcomes, we next 

examined how this integration was performed by comparing the quality of fit in location-

based models with different learning rules. We found that for monkey 1, RLret and RLInc(1) 

models provided the best fit of choice data; although goodness-of-fit measures were not 

significantly different between these models, these models provided better fits than the 

RLInc(2) and RLInc(3) models (Fig. 4). Interestingly, fitting choice behavior with the 

RLInc(1) model resulted in decay rate (α) that were close to 1 for many sessions (mean and 

median of α were equal to 0.77 and 1.0, respectively). This result indicates that monkey 1 

integrated reward over many trials to guide its choice behavior. This is compatible with the 
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pattern of performance as a function of reward parameter for this monkey (Fig. 3B), which 

resembles the pattern of the optimal static model.

The same analysis for monkey 2 revealed a similar integration of reward outcomes but on a 

different timescale. More specifically, we found that the RLInc(1) model provided the best fit 

for choice behavior as the goodness-of-fit in this model was better than the return-based 

model (RLret) and more detailed income-based (RLInc(2), and the RLInc(3)) models (Fig. 4). 

In contrast to monkey 1, the estimated decay rate based on the RLInc(1) model were much 

smaller than 1 for many sessions for monkey 2 (mean and median α were equal to 0.32 and 

0.33, respectively). These results indicate that monkey 2 integrated reward over a shorter 

timescale (a few trials) than monkey 1 to guide its choice behavior. This is compatible with 

the pattern of performance as a function of reward parameter for this monkey (Fig. 3E), 

which resembles the pattern of the optimal dynamic model.

Together, fitting of choice behavior shows that both monkeys associated reward outcomes 

with the location of the chosen target. Moreover, both monkeys estimated subjective reward 

values in terms of income by integrating reward outcomes over multiple trials and used these 

values to make decisions.

Effects of subjective reward value on sensitivity to visual motion.

Our experimental design allowed us to simultaneously measure choice and the MIB, as an 

implicit measure of sensitivity to visual motion, on each trial. We next examined whether 

subjective reward value based on integration of reward outcomes over time influenced 

sensitivity to visual motion.

To that end, we first examined whether reward feedback had an immediate effect on the MIB 

in the following trial. Combining the data of the both monkeys, we found that the MIB was 

larger in the trials that were preceded by a rewarded rather than unrewarded trials (mean

±s.e.m.: 0.03±0.009; two-sided t-test, p = 6.95 × 10−4, d = 0.18). When considering data 

from each monkey individually, however, this effect only retained significance for monkey 1 

(monkey 1: mean±s.e.m.: 0.05±0.01; two-sided t-test, p = 6.5 × 10−4, d = 0.09; monkey 2: 

mean±s.e.m.: 0.01±0.01; two-sided t-test, p = 0.21, d = 0.09). These results suggest that the 

MIB is weakly affected by the immediate reward outcome in the preceding trial.

In the previous section, we showed that the best model for fitting choice behavior was one 

that estimates subjective reward value based on the income on each target location and uses 

the difference in incomes to drive choice behavior (RLInc(1) model) (Fig. 4). However, it is 

not clear if the MIB is influenced by subjective reward values of the two targets in a similar 

fashion. To test this relationship, we computed correlations between the trial-by-trial MIB 

and estimated subjective reward values of the chosen target location, the unchosen target 

location, and their sum and difference. We considered subjective reward values based on 

both income and return (see Effects of subjective reward value on MIB in Methods).

We made several key observations. First, we found that the MIB was positively correlated 

with subjective reward values of both the chosen and the unchosen target (Fig. 5A–B, Fig. 

5E–F) and as a result, was most strongly correlated with the sum of subjective reward values 
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of the two targets (Fig. 5C, Fig. 5G). In contrast to choice, the MIB was poorly correlated 

with the difference in subjective reward values of the chosen and unchosen target (Fig. 5D, 

Fig.5H, Supplementary Fig. 1). Therefore, choice was most strongly correlated with the 

difference in subjective reward values, whereas the MIB was most strongly correlated with 

the sum of subjective reward values from the two targets. Second, although the 

aforementioned relationships were true for subjective reward value based on return and 

income, we found that correlations between the MIB and subjective return values were 

stronger than correlations between the MIB and subjective income values (compare Fig. 5 

and Supplementary Fig. 2). Third, the maximum correlation occurred for the values of τ at 

around 15–20 trials and for negative values of Δn, similarly for both monkeys. This indicates 

that for both monkeys, the MIB was influenced by reward integrated over many trials, and 

the absence of reward on a given trial had a negative influence on the MIB on the following 

trials (Δn< 0).

Considering that local choice fraction (fL in Eq. 1) has opposite effects on pR(TL) and 

pR(TR) due to task design, we tested the relationship between estimated subjective values 

(based on return) for the two target locations. We found that the correlation between 

estimated reward values depends on the values of τ and Δn and is not always negative (data 

not shown). Nevertheless, for all values of τ and Δn, the MIB was most strongly correlated 

with the sum of subjective reward values while being positively correlated with the value of 

both chosen and unchosen targets. These results indicate that the dependence of the MIB on 

the sum of subjective value is not driven by our specific task design.

Finally, to better illustrate distinct effects of reward on decision making and visual 

processing, we used two sets of parameters (τ = 15 and Δn= 0, τ = 15 and Δn= −0.5) that 

resulted in significant correlations between choice and targets’ subjective income values 

(Supplementary Fig. 1) and between the MIB and targets’ subjective return values in all 

cases (Fig. 5). We then used these two sets of parameters and choice history of the monkeys 

on the preceding trials to estimate subjective income values and return values in each trial 

(see Effects of subjective reward value on MIB in Methods). We then grouped trials into bins 

according to estimated subjective reward values of TL (left target) and TR (right target) for 

choice, or of the chosen and unchosen targets for the MIB, and computed the average 

probability of choosing the left target and the average MIB for each bin. We found that the 

probability of choosing the left target for both monkeys was largely determined by the 

difference in subjective values of the left and right targets, as can be seen from contours 

being parallel to the diagonals (Fig. 6A, B, E, F). In contrast, the MIB was largely 

determined by the sum of subjective values, as can be seen from contours being parallel to 

the second diagonals (Fig. 6C, D, G, H). These results clearly demonstrate that reward has 

distinct effects on choice behavior and sensitivity to visual motion.

Discussion

Experimental paradigms with dynamic reward schedules have been extensively used in 

different animal models to study how reward shapes choice behavior on a trial-by-trial basis 

(Barraclough et al., 2004; Donahue & Lee, 2015; Herrnstein, Loewenstein, Prelec, & 

Vaughan, 1993; Lau & Glimcher, 2005; Li, McClure, King-Casas, & Montague, 2006; 
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Sugrue et al., 2004). A general finding is that animals integrate reward outcomes on one or 

more timescales in order to estimate subjective reward value and determine choice. In 

contrast, the influence of reward on selective processing of visual information, which is 

often described as attentional deployment, has been mainly studied using fixed reward 

schedules with unequal reward outcomes (B. A. Anderson et al., 2011a, 2011b; Barbaro et 

al., 2017; Della Libera & Chelazzi, 2006, 2009; Hickey et al., 2010, 2014; Hickey & Peelen, 

2017; Peck et al., 2009). The main findings from these studies are that targets or features 

associated with larger reward can more strongly capture attention and alter visual processing 

immediately or even after extended periods of time (reviwed in B. A. Anderson, 2013, 

2016).

However, it has proven difficult to link the effects of reward on saccadic choice and selective 

processing of visual information mainly because of separate measurements of these effects 

in different tasks. Indeed, the poorly described relationship between reward expectation and 

the processing of visual information has been implicated as a confounding factor in the 

interpretation of many past behavioral and neurophysiological results (Maunsell, 2004, 

2015). An exception to this is a study by Serences (2008) in which the author utilized a task 

with dynamic reward schedule to demonstrate that the activity in visual cortex is modulated 

by reward history (i.e., integrated reward outcomes over many trials). Compatible with these 

results, we find that processing of visual information is affected by subjective reward value 

estimated by integration of reward outcomes over many trials.

Using tasks designed specifically to dissociate subjective reward value from a target’s 

behavioral significance, or salience, a few studies have identified brain areas that respond 

primarily to the expected reward or the salience of a target (or both) in various species 

including rats (Lin & Nicolelis, 2008), monkeys (Roesch & Olson, 2004), and humans 

(Anderson et al., 2003; Cooper & Knutson, 2008; Jensen et al., 2007; Litt, Plassmann, Shiv, 

& Rangel, 2011). However, in these studies, the saliency signal observed in neural responses 

might reflect a number of different processes, such as motivation, attention, motor 

preparation, or some combination of these. In the present work, we exploited the influence 

of visual motion on saccades as an independent and implicit measure of visual processing 

during value-based decision making. This enabled us for the first time to measure choice and 

visual processing simultaneously and to test whether reward has differential effects on these 

two processes.

Although motion was not predictive of reward and thus processing of motion direction was 

not required to obtain a reward, we found that similar to decision making, visual processing 

was influenced by subjective reward values of the two targets. However, subjective reward 

values of the two targets affected visual processing differently than how they affected choice 

in three ways. First, although choice was correlated most strongly with the difference 

between subjective values of chosen and unchosen targets, visual processing was most 

strongly correlated with the sum of subjective values of the two targets. The latter indicates 

that the overall subjective value of targets in a given environment could influence the quality 

of sensory processing in that environment. Second, choice was more strongly affected by the 

subjective income value of the target whereas sensitivity to visual motion was more strongly 

affected by subjective return values of the targets. Third, the time constant of reward 
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integration, and the impact of no-reward were different between decision making and visual 

information processing. In contrast to subjective reward value, we found that objective 

reward value only affected choice and not sensitivity to visual motion. Together, these results 

point to multiple systems for reward integration in the brain.

We found certain differences between the results for the two monkeys that could indicate 

that they used different, idiosyncratic strategies for performing the task. For example, fitting 

results of reinforcement learning models indicated that monkey 1 used the reward history 

over many trials to direct its choice behavior. In contrast, monkey 2 used the reward history 

over few trials to direct its choice behavior. This difference was also apparent in the 

correlation between choice and the difference in subjective values of the two target 

locations. Despite this difference in integration time constant, choice in both monkeys was 

most strongly correlated with the difference between estimated subjective values of the two 

targets. Furthermore, the MIB for both monkeys was most strongly correlated with the sum 

of estimated subjective values of the two targets, even though they integrated reward 

outcomes on different timescales.

The observed differences in reward effects on visual processing and decision making have 

important implications for the involved brain structures and underlying neural mechanisms. 

First, they suggest that brain structures involved in decision making and processing of visual 

information receive distinct sets of value-based input; e.g., ones that integrate reward over a 

different number of trials. The set of input affecting decision making carries information 

about subjective reward value of individual targets whereas the set that affects visual 

processing carries information about the sum of subjective values of targets. Indeed, there 

are more neurons in the anterior cingulate cortex and other prefrontal areas that encode the 

sum of subjective value of available options than subjective value of a given option (Kim, 

Hwang, Seo, & Lee, 2009), and these neurons might contribute to enhanced sensory 

processing. In addition, it has been shown that the activity of basal forebrain neurons 

increases with the sum of subjective values of choice array options (Ledbetter, Chen, & 

Monosov, 2016) and this could enable basal forebrain to guide visual processing and 

attention based on reward feedback independently of how reward controls choice behavior 

(Monosov, 2020). Finally, the frontal eye field (FEF) also receives inputs from the 

supplementary eye field (SEF), which contains neurons whose activity reflects subjective 

reward value of the upcoming saccade (Chen & Stuphorn, 2015). Such input from the SEF 

could drive target selection in the FEF. Importantly, our findings can be used in future 

experiments to tease apart neural substrates by which reward influences visual processing 

and decision making.

Second, a plausible mechanism that could contribute to the observed differences in the 

effects of reward is the differential influence of dopaminergic signaling on the functions of 

FEF neurons. Recent work demonstrates that the modulatory influence of the FEF on 

sensory activity within visual cortex is mediated principally by D1 receptors, and that D2-

mediated activity is not involved (Noudoost & Moore, 2011). However, activity mediated 

through both receptor subtypes contributes to target selection, albeit in different ways 

(Noudoost & Moore, 2011; Soltani, Noudoost, & Moore, 2013). This evidence indicates that 

the neural mechanisms underlying target selection and visual processing are separable if 
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only in terms of the involvement of different dopaminergic signals. Considering the known 

role of dopamine in reward processing (Schultz, 2007) and synaptic plasticity (Calabresi, 

Picconi, Tozzi, & Di Filippo, 2007), these two dopaminergic signaling pathways may 

provide a mechanism for the separate effects of reward on sensory processing and selection.

Third, in most choice tasks with dynamic reward schedules, local subjective return and 

income values are typically correlated, and the question of which quantity is the critical 

determinant of behavior has been debated for many years (Corrado et al., 2005; Gallistel & 

Gibbon, 2000; Gallistel, Mark, King, & Latham, 2001; Herrnstein & Prelec, 1991; Mark & 

Gallistel, 1994; Soltani & Wang, 2006). The observation that differences in subjective 

income values are a better predictor of choice behavior may reflect the fact that income 

values provide information about which target is globally more valuable in each session of 

the task. In contrast, the dependence of visual processing on the sum of subjective return 

values is more unexpected. This indicates that visual processing may more strongly depend 

on target-specific reward integration because the return value of a given target is updated 

only after selection of that target.

Finally, the separable influences of reward could be crucial for flexible behavior required in 

dynamic and high-dimensional reward environments (Farashahi, Rowe, et al., 2017). For 

example, processing of visual information of the saccade target that has multiple visual 

features based on the sum of subjective reward values of available targets could allow 

processing of previously neglected information from the less rewarding targets and thus, 

improve exploration. Future studies are needed to test whether disruption of this processing 

can reduce flexibility in target selection and choice behavior.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
The free-choice task and reward schedule example. (A) Task design. On each trial, a fixation 

point appeared on the screen, followed by the presentation of two drifting-grating targets. 

The monkeys indicated their selection with a saccade. Targets were extinguished at the onset 

of the saccade. A juice reward was delivered on a variable schedule following the saccade. 

Event plots indicate the sequence of presentation of the visual targets; dashed lines denote 

variable time intervals. Horizontal eye position traces are from a subset of trials of an 

example experiment, and show selection saccades to both left target (TL, downward 

deflecting traces) and right target (TR, upward deflecting traces). (B) Examples of reward 

probability as a function of the percentage of left choices, separately for left and right targets 

(pR(TL, r, x) and pR(TR, r, x)) for different values of reward parameter r and penalty 

parameter x (see Eq. 1). (C) Plotted is the reward harvest rate on each target as a function of 

the percentage of TL selections, f(TL), for r=80 and x=0. (D) Total reward harvest rate as a 

function of reward parameter r and the percentage of TL selections for x=0. The gray dashed 

line shows f(TL) = r corresponding to matching behavior. The black dashed line indicates the 

percentage of TL selections that results in the optimal reward rate. Slight undermatching 

corresponds to optimal choice behavior in this task.
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Figure 2. 
MIB measures sensitivity to visual motion. (A) Plotted are the example distributions of the 

angle of saccade vector (relative to the fixation dot) for upward (open) and downward 

(filled) drifting targets. (B) MIB significantly increased as the contrast of grating is 

increased from 2% (purple) to 3% (yellow). (C) Comparison of the z-score normalized MIB 

when the directions of motion in the chosen and nonchosen targets matched or did not 

match. The MIB is z-score normalized for each monkey separately within each session.
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Figure 3. 
Global (session-wise) effects of reward on choice behavior. (A) Choice behavior was 

sensitive to reward parameter. Percentage of TL selections is plotted as a function of r, which 

varied across experimental sessions for monkey 1. The colored lines are linear fits, and the 

black dashed line shows the optimal f(TL) for a given value of r assuming selection between 

the two targets with a fixed probability (optimal static model). The gray dashed line shows 

unit slope. Each data point correspond to one session of the experiment. (B) The overall 

performance was suboptimal. Plotted is harvested rewards per trial as a function of reward 

parameter r for zero penalty sessions for monkey 1. The solid colored lines show fit using a 

quadratic function. The colored and black dashed lines indicate harvested reward rates of the 

optimal dynamic and static models, respectively. (C) Proportion of TL selections is plotted 

as a function of the fraction of harvested reward on the left target. The colored lines are 

linear fits and the gray dashed line shows the diagonal line corresponding to matching 

behavior. Monkey 1 showed significant under-matching by selecting the more rewarding 

target with a choice fraction smaller than reward fraction. The inset shows the difference 

between choice and reward fractions with negative and positive values corresponding to 

under- and over-matching. The gray dashed lines indicate the medians of the distributions 

and asterisks show the significant difference from 0 (i.e. matching) using Wilcoxon signed 

rank test (p<.05). (D–F) Similar to panels A–C but for monkey 2.
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Figure 4. 
Comparison of goodness-of-fit between different location-based RL models reveals that 

RLInc(1) model provided the best overall fit. (A) The difference between BIC for fits based 

on the RLInc(1) model and the three competing models (indicated on the x-axis). Bars show 

the median of the difference in BIC and errors are s.e.m. Reported p-values are based on a 

two-sided sign test. Each data point shows the goodness-of-fit for one session of the 

experiment. For monkey 1, fits based on the RLInc(1) and RLret models were not 

significantly different. (B) The same as in A but based on the difference in AIC. (C–D) 

Similar to panels A and B but for monkey 2.
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Figure 5. 
MIB was most strongly correlated with the sum of subjective reward values of the two 

targets based on return. (A–D) Plotted are the correlations between the MIB and subjective 

reward values of the chosen (A) and unchosen (B) targets based on return, and their sum (C) 

and their difference (D) for different values of τ and Δn. The inset in each panel shows the 

correlation between the MIB and the corresponding subjective return values for different 

values of τ and a specific value of Δn (indicated with an arrow in the main panel C) for 

monkey 1. The arrow in panel C points to the value of Δn that results in the maximum 

correlation between the MIB and sum of subjective return values of the two targets for 

monkey 1. (E–H) The same as in A–D but for monkey 2. The arrow in panel G points to the 

value of Δn that results in the maximum correlation between the MIB and sum of subjective 

return values of the two targets for monkey 2.
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Figure 6. 
The choice probability for both monkeys was largely determined by the difference in 

estimated subjective values whereas the MIB was largely determined by the sum of 

subjective values of targets. (A–B) Plots show the probability of choosing the left target as a 

function of subjective values of the left and right targets for monkey 1, using τ = 15 and two 

values of Δn as indicated on the top. (C–D) Plots show the MIB as a function of subjective 

values of the chosen and unchosen targets for monkey 1, using τ = 15 and two values of Δn 

as indicated on the top. (E–H) The same as in A–D but for monkey 2.
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Table 1.

Comparison of goodness-of-fit between location-based and motion-based RL models using −LL, AIC or BIC. 

Δ(−LL, AIC, or BIC) shows the median of the difference between location-based and motion-based RL 

models fitted for each session separately. Note that all differences in goodness-of-fit measures (based on −LL, 

AIC, and BIC) are similar because the number of parameters is the same across location-based and motion-

based models. P-values indicate the significance of the statistical test (two-sided sign-test) for comparing the 

goodness-of-fit between the location-based and motion-based RLs.

RLret RLInc(1) RLInc(2) RLInc(3)

Monkey 1 Δ(−LL, AIC, or BIC)=−5.48
p=2.55 * 10−7

Δ(−LL, AIC, or BIC)=−7.19
p=2.58 * 10−9

Δ(−LL, AIC, or BIC)=−6.53
p=1.39 * 10−8

Δ(−LL, AIC, or BIC)=−8.06
p=5.32 * 10−10

Monkey 2 Δ(−LL, AIC or BIC)=
−60.96

p=2.74 * 10−21

Δ(−LL, AIC or BIC)=
−105.71

p=2.58 * 10−26

Δ(−LL, AIC, or BIC)=
−103.46

p=2.58 * 10−26

Δ(−LL, AIC, or BIC)=
−107.25

p=2.58 * 10−26

J Cogn Neurosci. Author manuscript; available in PMC 2021 June 29.


	Abstract
	Introduction
	Methods
	Subjects.
	Visual stimuli.
	Experimental paradigm.
	Quantifying the motion-induced bias.
	Reward schedule.
	Reinforcement learning models.
	Model fitting and comparison.
	Effects of subjective reward value on MIB.
	Data analysis.

	Results
	MIB measures sensitivity to visual motion.
	Effects of objective reward value on choice behavior.
	Effects of objective reward value on sensitivity to visual motion.
	Effects of subjective reward value on choice behavior.
	Effects of subjective reward value on sensitivity to visual motion.

	Discussion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Table 1.

