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Abstract

Purpose of review—Uterine leiomyoma (fibroids) is a gynecologic disorder impacting the 

majority of women in the United States. When symptomatic, these noncancerous tumors can cause 

severe morbidity including pelvic pain, menorrhagia, and infertility. Endocrine-disrupting 

chemicals (EDCs) may represent a modifiable risk factor. The aim of this review is to summarize 

recent human and experimental evidence on EDCs exposures and fibroids.

Recent findings—Multiple EDCs are associated with fibroid outcomes and/or processes 

including phthalates, parabens, environmental phenols, alternate plasticizers, Diethylstilbestrol, 

organophosphate esters, and tributyltin. Epidemiologic studies suggest exposure to certain EDCs, 

such as di-(2-ethylhxyl)-phthalate (DEHP), are associated with increased fibroid risk and severity. 

Both human and experimental studies indicate that epigenetic processes may play an important 

role in linking EDCs to fibroid pathogenesis. In-vitro and in-vivo studies show that DEHP, 

bisphenol A, and diethylstilbestrol can impact biological pathways critical to fibroid pathogenesis.

Summary—While research on EDCs and fibroids is still evolving, recent evidence suggests EDC 

exposures may contribute to fibroid risk and progression. Further research is needed to examine 

the impacts of EDC mixtures and to identify critical biological pathways and windows of 

exposure. These results could open the door to new prevention strategies for fibroids.
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INTRODUCTION

Uterine leiomyomas, more commonly known as fibroids, are noncancerous tumors that 

develop from smooth muscle tissue of the uterus. Despite the high prevalence of this 

gynecologic disorder and its profound social and economic impacts, the cause of fibroids 

remains elusive and there are few established risk factors. Endocrine disrupting chemicals 

(EDCs), or chemicals that interfere with hormone action, may represent a modifiable risk 

factor, as estrogen and progesterone play a critical role in fibroid growth [1] and EDC 

exposures are widespread among reproductive-aged women [2]. Prior reviews support a role 

for certain EDCs in fibroid pathogenesis, such as diethylstilbestrol (DES) that may act as 

estrogen agonists [3]. In this review, we extend this prior work by examining recent human 

and experimental evidence for a broader range of EDCs including phthalates, parabens, 

environmental phenols, alternate plasticizers, DES, organophosphate esters (OPEs), and 

tributyltin.

UTERINE FIBROID DISORDER OVERVIEW

The social and economic costs of fibroids in the United States is immense, with an annual 

estimated cost of up to $34 billion [4]. Although the majority of reproductive-aged women 

will develop fibroids, only approximately 25% will experience symptoms. Among 

symptomatic women, fibroids are associated with substantial morbidity including heavy 

menstrual bleeding, pain, subfertility, and pregnancy complications. The lack of consensus 

on uterine-preserving treatments leads fibroids to be the leading indication for hysterectomy 

[5]. Black women are disproportionately burdened by fibroids, often experiencing a higher 

risk of fibroids, an earlier age of onset, and more severe symptoms compared with nonblack 

women [6]. In addition to race/ethnicity, other risk factors for fibroids include age, family 

history, nulliparity, obesity, and hormonal factors [7]. Furthermore, there is evidence that 

hypovitaminosis D also contributes to the development of fibroids [8].

ESTROGEN AND PROGESTERONE

Fibroid development depends on the ovarian steroid hormones, estrogen and progesterone, 

which explains why they arise during women’s reproductive age and typically regress after 

menopause [1]. Estrogen exerts its genomic and nongenomic effects through the estrogen 

receptors (ERα and ERβ). Genomic pathways embroil direct binding of estrogen receptor 

complexes to specific sequences in gene promoters, whereas nongenomic signaling involves 

activation of signaling cascades that result in indirect changes in gene expression [9]. 

Similarly, progesterone binds progesterone receptors (PR-A and PR-B) and not only 

transduces its actions primarily via the genomic signaling pathways but also operates 

through nonclassical signaling pathways [10]. As a result of the hormonal dependence of 

fibroids, much of the pharmacological treatments suppress or modulate these hormones 

[11,12].
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DEVELOPMENTAL ORIGINS OF UTERINE FIBROIDS: ROLE OF THE MYOMETRIAL STEM 
CELLS

Fibroids are monoclonal tumors in which each fibroid nodule is derived from a distinct 

progenitor cell. Although the exact mechanisms of pathophysiology remain unclear, 

increasing research has supported the hypothesis that fibroids originate from pathologically 

transformed myometrial stem cell (MMSCs) [13,14]. Fibroid-forming MMSCs are referred 

to as tumor-initiating cells (TICs) (Fig. 1).

Smooth muscle cells of the uterus are under continuous proliferation and remodeling during 

a women’s reproductive years placing them at increased risk of genomic instability and 

DNA mutations. The conversion of MMSCs to TICs is thought to be because of the 

acquisition of one or more gene mutations, such as the most prevalent in gene mediator 

complex subunit 12 (MED12) [15]. Moreover, several genomic studies have demonstrated 

the key role of microRNAs and epigenetic regulation of gene expression in fibroids 

development [16].

As MMSCs and TICs both express relatively low levels of estrogen receptors and 

progesterone receptors, it suggests that paracrine interactions between TICs and the 

surrounding myometrium are important for fibroid growth, which is dependent on steroid 

hormones [17].

SOMATIC MUTATIONS

MED12 somatic mutations have been consistently documented in approximately 70–80% of 

sporadic fibroids [18]. MED12 protein is involved in the transcriptional regulation of the 

RNA polymerase II initiation complex. Pathway analysis has shown that the Wnt/β-catenin 

signaling is increased in fibroids with mutated MED12, which regulates fibroid development 

mainly through the expression of proteins involved in cell proliferation, as well as 

extracellular matrix (ECM) components [19]. The second most common gene alteration 

found in fibroids is overexpression in HMGA2 with a prevalence of less than 10%. This 

mutation is associated with hypomethylation and epigenetic deregulation in the HMGA2 
gene body [13,20], which is a member of the high mobility group gene family that 

influences cellular processes like differentiation, death, growth, and proliferation. These 

somatic mutations occur independently and are mutually exclusive in fibroids.

ENDOCRINE-DISRUPTING CHEMICALS

There is growing interest in the possible reproductive consequences posed by EDCs, which 

are substances in our environment, food, and consumer products that interfere with hormone 

biosynthesis, metabolism, or action resulting in a deviation from normal homeostatic control 

or reproduction [21]. Many classes of EDCs, such as environmental phenols, phthalates and 

alternate plasticizers, parabens, and organophosphate esters are commonly found in 

consumer products. They can leach, migrate, or off-gas from products over time and can 

enter the human body through ingestion, inhalation, direct dermal application, or even 

transdermal exposure from air. Once ingested, inhaled, or absorbed, these chemicals are 

rapidly metabolized and excreted in urine and feces. Urinary concentrations of the parent 

compounds or their metabolites are commonly used as exposure biomarkers. National 
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biomonitoring data from the US Centers for Disease Control and Prevention demonstrate 

that the majority of reproductive-aged women in the United States are exposed to multiple 

EDCs [2]. Biomonitoring data also suggest that exposure to EDCs, such as phthalates and 

parabens that are commonly used in personal care products, are higher among black and 

Latina women compared to white women [22].

EDCs bind to nuclear receptors, which can alter hormone functions by mimicking 

endogenous hormones and blocking their binding to the receptors or interfering with their 

function and regulation [23]. Importantly, EDCs can demonstrate nonmonotonic dose 

response curve where even low doses of EDCs can result in pathologic effects, mainly when 

the exposure to these compounds is simultaneous [24,25]. Certain EDCs are reproductive 

toxicants in animal models [26,27] and are also associated with adverse reproductive 

outcomes in humans [28,29].

RECENT EVIDENCE FROM ENVIRONMENTAL EPIDEMIOLOGY STUDIES

Since 2018, there have been four additional epidemiologic studies on exposures to EDCs 

and fibroid outcomes (Table 1). Two of the studies used data collected on women with 

symptomatic fibroids in the Washington DC metropolitan area (United States) undergoing 

invasive surgery for fibroid treatment as part of the Fibroids, Observational Research on 

Genes and the Environment (FORGE) study. The cross-sectional studies from FORGE 

examined associations between EDCs exposures and: measures of fibroid severity; and 

microRNA expression in fibroid tumors and adjacent myometrium. The other two studies 

were case–control studies that examined imaging-based fibroid prevalence as the main 

outcome among reproductive-aged women in South Korea. Collectively, these studies 

suggest associations between various EDCs and measures of fibroid prevalence and severity. 

Moreover, the preliminary results for the environmental epigenetics study suggest that 

microRNA regulation may be involved in biological pathways linking phthalates to fibroid 

pathogenesis.

Zota et al. in 2019 conducted a preliminary, cross-sectional study of 57 premenopausal 

women undergoing a hysterectomy or myomectomy for their fibroids to evaluate 

associations between phthalates exposures and measures of fibroid burden. Most women 

were black, overweight or obese, college-educated, and exposed to multiple phthalates (9 out 

of the 14 urinary phthalate metabolites were detected in >90% of participants). The 

geometric mean of three phthalate metabolites were greater than 30% higher in black 

women compared with white or Latina women. In multivariable models, higher urinary 

concentrations of several phthalate biomarkers were significantly associated with greater 

uterine volume [30▪].

The objective of the second study (2020) was to examine the associations between phthalate 

exposures and miRNA expression levels in fibroid tumors and myometrium among a subset 

of the FORGE study population (N = 45). As part of the study design, expression levels of 

754 miRNAs were quantified in tissue samples, and all analyses were adjusted for multiple 

comparisons testing. Mono-hydroxybutyl phthalate and mono(2-ethyl-5-hydroxyhexyl) 

phthalate were positively associated with miR-10a-5p and miR-577, respectively. A total of 

eight phthalate-miRNA associations varied by race/ethnicity. Pathway analysis revealed that 
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mRNA gene targets of phthalate-associated miRNAs were significantly associated with 

multiple fibroid-related processes including angiogenesis, apoptosis, and proliferation of 

connective tissues. Although these results are preliminary, validation of these findings may 

provide insight into mechanisms underlying associations between phthalates and fibroids 

and contribute to novel hypotheses regarding racial/ethnic disparities in fibroids [31▪].

The third study, by Lee et al. in 2020, examined associations between exposures to 

nonpersistent EDCs and odds of fibroid prevalence among reproductive-aged women in 

South Korea. A total of 484 women were analyzed, with 95 uterine fibroid cases and 336 

controls, and presence of fibroids was determined through transvaginal ultrasound. They 

observed that certain parabens and phthalates, including ΣDEHP, were associated with 

increased risk of fibroids. Associations between chemical exposures and fibroid risk was 

stronger among more frequent users of personal care products [32].

A fourth study out of South Korea used a similar case-control study design as Lee et al. to 

examine fibroid prevalence among reproductive-aged women but with a much smaller 

sample size (32 cases and 79 controls). They examined an expanded list of EDCs that 

included OPEs and alternate plasticizers. They observed that certain phthalates, OPEs, and 

alternative plasticizers are associated with increased risk of fibroids. Mixtures of certain 

phthalates, such as DEHP, and OPEs are also associated with increased fibroid risk [33].

Although the existing epidemiologic studies are relatively small in scope and lack 

temporality between exposure and outcome, all of the studies indicate a positive association 

between DEHP metabolites and fibroid outcomes. This is likely because of the suspected 

influence on signaling pathways, which ultimately impact cell proliferation as well as 

apoptosis.

RECENT EVIDENCE FROM EXPERIMENTAL STUDIES

A variety of experimental models have been developed for the study of fibroids [34,35]. 

However, they have not all been employed to evaluate the impact of EDCs on the 

pathogenesis of fibroids. Studies included in this review relied on human fibroid sample-

derived primary cell cultures, human fibroid cell line cultures, and rat models (Table 2).

Most of the in-vitro studies indicate that EDCs, such as DEHP and bisphenol A increased 

the proliferation of human fibroid cells, contributing to fibroid growth [36–38]. Several of 

the fibroid mechanistic studies suggest an association between EDCs and inflammation-

related pathways [37,39].

Animal models have been used to investigate possible links between early-life exposure to 

EDCs and relevant disease [39,40,41▪]. The Eker rat is one of the most used animal models 

to evaluate the role of early developmental exposure to EDCs in uterine fibroid etiology. 

These rats possess a germline heterozygous mutation on tumor suppressor gene Tsc2 and 

spontaneously develop fibroids between the ages of 12 and 16 months with ~65% of 

penetrance. However, when Eker rats are developmentally exposed to DES during early life, 

fibroids appear later in adult life at higher frequency (100% tumor penetrance), increased 

size, number, and severity versus unexposed counterparts [42]. Importantly, fibroids that 
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develop in Eker rats are hormone-responsive, and express ERα and PR. This animal model 

was used to demonstrate the increased risk of genomic instability because of early-life EDCs 

exposure. Developmental exposition to DES can alter the MMSC’s ability to repair and 

reverse DNA damage. It have been shown that DES-MMSCs accumulated more DNA 

damage than vehicle (VEH)-MMSCs, and presented less capacity to repair it [40,41▪].

An advantage of using animal models is that they are powerful tools to investigate new 

treatment options for fibroids induced by EDC exposure. Elkafas et al. [41▪] in 2020 have 

shown that vitamin D3 treatment attenuated the DNA damage load in MMSCs exposed to 

DES and restores the DNA repair signaling network in the Eker rat Model. Furthermore, a 

recent study has demonstrated that the therapy with the traditional herb pair Curcumae 
rhizoma–Sparganii rhizoma markedly reduced uterine growth and attenuated the process of 

ECM deposition provoked by the exposure to DES and progesterone in rats [43].

Moreover, several rat leiomyomas-derived cell lines have been established from these tumors 

(ELT lines), being ELT-3 cell line the most used as an in-vivo and in-vitro models for 

preclinical studies and for studying fibroid pathogenesis [44–46].

EPIGENETIC REPROGRAMMING

Accumulating evidence demonstrates that environmental exposures to EDCs can reprogram 

the epigenome of developing tissues in such a way as to increase susceptibility to disease 

later in life [47,48]. Previous studies suggest that developmental exposure to EDCs causes 

uterine diseases and increased the risk of fibroids via epigenomic reprogramming [49].

Epigenetic reprogramming at DNA methylation and histone modification levels, in response 

to exposure to EDCs have been demonstrated in hormone-dependent tumor development 

[49,50]. The highly plastic state of the stem cells during development and tissue 

maintenance provides an opportunity for aberrant cellular reprogramming via epigenetic 

mechanisms because of inappropriate exposures to EDCs and toxins. Although MMSCs 

have been identified as the cells from which fibroids originate [14], the epigenetic 

mechanism of MMSC programming because of developmental exposure to EDCs has not 

been characterized. In this regard, RNA-seq and CHIP-seq studies in rat vehicle- and DES-

exposed MMSCs have demonstrated that early-life exposure to DES reprogrammed several 

biological pathways including estrogen responsive signaling [49] and inflammatory 

pathways [51] in MMSCs in early adult stage. The increased expression of estrogen 

responsive genes significantly correlated with the enrichment of H3K4me3, an active 

epigenetic mark. In addition, bisulfite next-generation sequencing demonstrated that 

reprogrammed estrogen-responsive genes with increase in RNA expression also exhibited 

hypomethylation within their CpG islands in DES-exposed MMSCs compared with VEH-

exposed MMSCs. These studies suggested that developmental exposure to EDCs 

reprogrammed the estrogen responsive genes via histone modification and DNA methylation 

in MMSCs, from which the fibroids originate [52]. Moreover, additional genes involved in 

the pathogenesis of fibroids were also identified through multiomic analysis [53]. By ChIP-

seq analysis, inflammatory responsive genes have been identified with enrichment of 

H3K4Me3 at their promoter regions in DES-MMSCs compared with VEH-MMSCs. The 

increased expression of inflammatory responsive genes was positively correlated with 

Bariani et al. Page 6

Curr Opin Endocrinol Diabetes Obes. Author manuscript; available in PMC 2021 June 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



elevated H3K4me3 mark. These studies provide compelling evidence that MMSCs are the 

direct epigenetic targets of xenoestrogenic actions and illustrate the strength of epigenomic 

profiling in revealing novel information about mechanisms that modulate the transcriptional 

landscape of MMSCs leading to increased risk of fibroid development.

CONCLUSION

This review highlights recent publications showing the current knowledge of the 

physiological and molecular effects of EDCs on uterine fibroids. In summary, exposure to 

several EDCs is linked with the development and progression of fibroids (Fig. 1). 

Epidemiologic studies suggest that exposure to environmental EDCs, such as DEHP is 

associated with increased fibroid risk and severity. In-vitro and in-vivo experimental studies 

have found that EDCs can promote antiapoptotic events and stimulate the proliferation of 

fibroids cells, leading to tumor growth. Inflammation, DNA damage, and epigenetic 

processes play a crucial role in linking EDCs to fibroid origin and evolution. Although the 

investigation on epigenetic reprogramming by EDCs and its influence on fibroids 

development has been conducted, the information in this field is still quite limited. 

Additional mechanistic studies to decipher the epigenetic biomarkers/signatures to specific 

EDCs will hold promise in precision medicine. Moreover, further analysis of the effects of 

EDCs mixtures and exposure window need to be addressed to develop prevention programs 

for fibroids.
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KEY POINTS

• Human exposure to EDCs is associated with increased fibroid risk and 

severity in reproductive-aged women.

• Effects of EDCs on fibroid development are related to inflammation, DNA 

damage, and epigenetic processes.

• EDCs can impact cell proliferation as well as apoptosis signaling, leading to 

fibroid growth.
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FIGURE 1. 
Impact of endocrine-disrupting chemicals on uterine fibroid pathogenesis. Environmental 

exposure to endocrine-disrupting chemicals (EDCs) is associated with increased fibroid 

prevalence and severity in women. EDCs can induce mutations, such as MED12 and 

epigenetic changes in myometrial stem cells (MMSCs), leading to the conversion of these 

into tumor-initiating cells (TICs). Moreover, EDCs can act on uterine fibroid differentiated 

cells stimulating their proliferation and triggering antiapoptotic events, eventually driving 

the tumor growth.
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Table 2.

Summary of the evidence of environmental EDC exposure in human and animal uterine fibroid experimental 

models.

Model Chemicals and dose Design Main results/ conclusions Reference

Primary 
culture of 
human 
uterine 
fibroid 
cells

BPA:
10 μM for 24, 48 and 
72 h

In-vitro
Fibroid primary cell culture 
from tissues extracted from 
premenopausal women 
undergoing hysterectomy 
(n=15)

BPA promoted proliferation of human fibroid cells 
by GPR30-EGFR-dependent pathway by 
essentially activating MAPK/ERK/c-fos signaling 
pathway.

Li et al., 2019 
[36]

Culture of 
human 
uterine 
fibroid 
cell line

DEHP:
Low dose: 0.01 μM
High dose: 1 μM for 
24 and 48 h

In vitro
GM10964 human fibroid cell 
line

DEHP-treated fibroid cells presented increased 
viability and PCNA protein levels, and higher 
protein levels of Bcl-2, an anti-apoptotic protein, as 
well as lower apoptosis rates (TUNEL, Annexin V-
PI) compared with controls when treated with 
0.01μM (48 h) or 1μM (24 and 48 h). Also, low and 
high dose DEHP treatment promoted cell viability 
and anti-apoptotic protein expression and induced 
the expression of inflammatory proteins such as 
HIF-1α and COX-2 in human fibroid cells after 
48h of treatment.

Kim, 2018 
[37]

BPA:
Dose range: 10−6 - 200 
μM for 24, 48, and 72 
h

In vitro
ht-UtLM human fibroid cell 
line

BPA at low concentrations triggered the entry of 
cells into S phase and increased proliferation 
whereas, higher concentrations of BPA (100 μM–
200 μM) decreased growth. Moreover, low doses of 
BPA significantly induced gene and protein 
expression of ERα36 which is involved in the 
proliferative effects on fibroid cells induced by this 
EDC, through activation of Src, EGFR, Ras, ERK 
nongenomic signaling.

Yu et al., 
2019 [38]

Rat TBT: 10 and 100 
ng/kg/day
BPA: 50 μg/kg/day 
(positive control)
VEH:10% ethanol- 
90% sesame oil/day
SC injection on PND 
1–16

In vivo treatment
Sprague-Dawley rats (n=13 
each group)
Ex vivo
Uteri from TBT- and BPA-
treated rats at 6-month-old

TBT led to uterine dysplasia of endometrial 
epithelial cells and glands, in part through changes 
on Wnt-β-catenin signaling. TBT activated TNFα 
and NF-κB signaling pathways causing 
inflammation and upregulated the TGF-β1/SMADs 
signaling pathway which trigged uterine fibrosis.

Chen et al., 
2020 [39]

DES: 10 μg/day
VEH: 50 μl of sesame 
oil/day
SC injection on PND 
10–12

In vivo treatment
Long Evans Eker rats (Tsc2 
Ek/+) (n=5 each group)
In vitro
Isolation of VEH and DES-
exposed MMSC using 
Stro-1/CD44 surface markers 
from 5-month-old rats and 
culture

DES-MMSC showed decreased DNA end-joining 
ability, higher levels of DNA damage, and impaired 
ability to repair DNA double-strand breaks relative 
to VEH-MMSC, leading to acquisition of 
mutations that may promote the origin and progress 
of tumors in adult life. Early-life developmental 
DES exposure increases DNA damage and alters 
MMSC’s ability to repair and reverse DNA damage

Prusinski 
Fernung et 
al., 2018 [40]

DES: 10 μg/day
VEH: 50 μl of sesame 
oil/day
SC injection on PND 
10–12

In vivo treatment
Long Evans Eker rats (Tsc2 
Ek/+) (n=5 each group)
In vitro
Isolation of VEH and DES-
exposed MMSC using 
Stro-1/CD44 surface markers 
from 5-month-old rats and 
culture

Early-life DES exposure increased DNA damage 
and altered MMSC–s ability to repair DNA 
damage, through the downregulation of RAD50 
and MRE11, which are critical DNA double-strand 
breaks sensors on homologous recombination DNA 
repair pathway, causing genomic instability.

Elkafas et al., 
2020 [41*]

Notes: BPA: Bisphenol A; COX-2: Cyclooxygenase-2; DEHP: Di-(2-ethylhxyl)-phthalate; DES: Diethylstilbestrol; GFR: Epidermal growth factor 
receptor; ERK: extracellular signal-regulated kinase; ERα: Estrogen receptor alpha; ERα36: Estrogen receptor alpha variant 36; GPR30: G protein-
coupled receptor for estrogen; h: hours; HIF-1α: hypoxia inducible factor 1α; MMSCs: Myometrial Stem Cells; n: sample size; NP: Nonylphenol; 
OP: Octylphenol; PCNA: Proliferating cell nuclear antigen; PI: Propidium iodide; PND: postnatal day; SC: subcutaneous; TBT: Tributyltin; TGB-
β: Transforming growth factor beta; Tsc2: Tuberous Sclerosis Complex 2 gene; VEH: Vehicle.
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