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Apples and Oranges? Considerations for
EHR-Based Analyses Aggregating Data From
Interventional Clinical Trials and Point-of-Care
Encounters in Oncology
Jessica A. Lavery, MS1; Margaret K. Callahan, MD, PhD2; and Katherine S. Panageas, DrPH1

The use of real-world evidence—defined by the US
Food and Drug Administration (FDA) as “data relating
to patient health status and/or the delivery of health
care routinely collected from a variety of sources”—is
gaining momentum.1-5 Information systems that were
historically siloed, such as pathology, imaging, and
genomic records, are becoming increasingly inte-
grated into electronic health record (EHR) systems.
This integration facilitates queries of the EHR for pa-
tients who meet specified inclusion criteria and allows
for data to be aggregated into a form that is suitable for
analysis, providing an opportunity to generate real-
world evidence.

EHR-based cohorts may include patients who
ever enrolled on an interventional clinical trial in
conjunction with patients who never enrolled on an
interventional clinical trial, and this is not often ac-
knowledged or accounted for in analyses. Stipulations
in clinical trial agreements, which may restrict access
to data or portions of data (in arbitrary ways), can
impact the completeness of the real-world data in ways
that would be difficult to understand without specific
knowledge of trial participation. Despite the increased
integration of many clinical data elements, clinical trial
enrollment status is not available by default in many
EHR systems. A variable that indicates a patient’s
clinical trial enrollment status along with details on
restrictions for data access specified by the clinical trial
agreement would provide important utility in deter-
mining the appropriate analysis of these aggregated
data.

Oncology patients enrolled on interventional clinical
trials differ systematically from nontrial patients with
respect to a number of important factors, such as
demographic characteristics and health status.6-8 For
example, oncology trial inclusion criteria often specify
a minimum ECOG performance status score,9 which
measures how a disease impacts a patient’s ability to
carry out daily living activities. Alternatively, some trials
may enroll patients who are less healthy but have
exhausted other treatment options. With respect
to demographic characteristics, Black and Latino

patients and older patients are underrepresented in
oncology trials.10-16

There is also variation between clinical trial and point-
of-care encounters with respect to the reason, fre-
quency, and extent of medical assessments. Patients
enrolled on a clinical trial follow a prespecified visit
schedule, whereas point-of-care encounters typically
indicate a need for medical attention.17,18 Conversely,
in mobile health studies, constant monitoring by
mobile health devices may trigger a health care en-
counter. With respect to the frequency of assessments,
in studies estimating progression-free survival, pa-
tients following amore frequent scanning schedule will
have progression detected earlier compared with
patients on a less frequent scanning schedule. Ad-
ditionally, patients enrolled on a trial are more con-
nected with the healthcare system due to intensive
monitoring, with assessments beyond the standard of
care.

These differences in patient casemix and in the reason
for, frequency of, and extent of medical assessments
between patients enrolled versus not enrolled in a
clinical trial can lead to violation of modeling as-
sumptions, biased estimates, and inflated type I error
rates. Furthermore, because of these differences,
specific analytic methods for analyzing EHR data,
such as conditioning on the number of visits,19,20 joint
modeling,21 reweighting estimators,22 misclassification
adjustment,23 and pseudolikelihood estimation,24 may
not be appropriate when aggregating clinical trial
and point-of-care encounter data. For example, the
number of point-of-care encounters has been used as
a proxy for a patient’s health status in EHR-based
analyses19,20; patients with a higher number of visits
are likely to be sicker than patients with fewer visits.
However, given that clinical trial patients follow a
prespecified visit schedule, this relationship no longer
holds. If relatively few clinical trial patients are included
in an EHR-based cohort, using the number of visits as
a proxy for health status may have few implications for
statistical inference, but if the cohort includes a high
proportion of patients who were on a clinical trial,

Author affiliations
and support
information (if
applicable) appear at
the end of this
article.

Accepted on October
22, 2020 and
published at
ascopubs.org/journal/
cci on January 7,
2021: DOI https://doi.
org/10.1200/CCI.20.
00096

21

http://ascopubs.org/journal/cci
http://ascopubs.org/journal/cci
http://ascopubs.org/doi/full/10.1200/CCI.20.00096
http://ascopubs.org/doi/full/10.1200/CCI.20.00096
http://ascopubs.org/doi/full/10.1200/CCI.20.00096


inference will likely be inaccurate. It is not currently pos-
sible to easily assess the likelihood of such violations
without a structured data field for clinical trial enrollment
status in the EHR.

Capturing clinical trial enrollment status also has utility in
addressing FDA real-world evidence guidelines. Current
FDA draft guidance on submitting real-world evidence for
drugs and biologics indicates that the real-world data
sources that were used to derive real-world evidence
should be described.25 While clinical trial and point-of-care
encounter data are all derived from the EHR, the distinc-
tions between the two types of data outlined above highlight
the importance of distinguishing the specific source of data
(clinical trial v point-of-care encounter) within the EHR
system. Attention to this detail by informaticists and stat-
isticians is one component that can improve the trans-
parency and reproducibility of real-world data analyses.

Apart from evaluating the potential implications of an analysis
that aggregates two sources of EHR data, the secondary
analysis of clinical trial data requires careful consideration in
and of itself.26,27 Issues of bias and multiplicity arise, high-
lighting the importance of an analyst being aware of whether
an EHR-based cohort includes patients who were enrolled on
a clinical trial. For patients who were enrolled on a clinical trial,
the analyst may need further information, such as the ran-
domization schema, stratification factors, and the study
schedule, to properly conduct and interpret the analysis.28

Without the routine capture of clinical trial enrollment status,
formal evaluation of the appropriateness of the established

methods for analyzing EHR data, adherence to current FDA
draft guidance, and appropriate consideration of the impli-
cations of a secondary analysis of clinical trial data are not
possible. A deeper investigation into the implications of
aggregating clinical trial and point-of-care encounter data
with respect to their effect on statistical inference is beyond
the scope of this paper; it would depend on the specific
research question being addressed using the EHR-based
cohort, the proportion of patients in the real-world EHR
cohort who were ever enrolled on a clinical trial, the timing of
their clinical trial enrollment with respect to the time period of
interest, as well as specific characteristics of the clinical trial
itself (eg, randomization schema, stratification factors, and
visit schedule). Our intention is to highlight the importance of
capturing clinical trial enrollment status as a key first step in
being able to begin to fully quantify the implications of ag-
gregating clinical trial and point-of-care encounter data.

In conclusion, EHRs are a complex but rich source of real-
world data. With the development of EHR data standards
and data governance frameworks to generate reproducible
processes for data-intensive research, there is an oppor-
tunity to leverage custom EHR fields to ensure uniform
documentation of clinical trial enrollment status in the
EHR.29,30 Being able to easily access this information will
allow investigators to consider the analytic implications of
aggregating data from clinical trial and point-of-care en-
counters, ensure compliance with clinical trial agreements,
and sufficiently assess the quality and appropriateness of
real-world evidence generated from real-world data.
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