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Abstract

This review provides an overview of the interrelationships among the diet, gut microbiota and 

health status, and then focuses specifically on published research assessing the relationship of 

low/no-calorie sweeteners (LNCS) to selected aspects of the gut microbiota. Microbiome research 

is expanding as new data on its role in health and disease vulnerability emerge. The gut 

microbiome affects health, digestion, and susceptibility to disease. In the last 10 years, 

investigations of LNCS effects on the gut microbiota have proliferated, though results are 

conflicting and are often confounded by differences in study design such as study diet, the form of 

the test article, dosage, and study population. Staying current on microbiome research and the role 

of dietary inputs, like LNCS, will allow healthcare and nutrition practitioners to provide 

evidenced-based guidance to the individuals they serve.

What is the microbiome?

The human body is more than its human components. Trillions of mircroorganisms, termed 

the microbiome, reside on and within the human body including in the gut, oral and nasal 

cavities, vagina, and on the skin (Box 1)1, 2. The microbiota is comprised of bacteria, 

archaea, fungi, and viruses and represent a diverse array of species and functional genes1, 3.

The diversity of the microbiota is represented both within and between individuals, with 

each person harboring a unique microbial community, the majority of which reside in the 

colon and are termed the “gut microbiota”1. However, these microbes are not passive 

passengers. The gut microbiome can provide beneficial functions, such as metabolism of 

undigested food components, vitamin production, and supporting immunity. However, while 

certain diseases have been associated with abnormal microbiota (i.e. dysbiosis), it is unclear 

what constitutes a “healthy” gut microbiome1. Indeed, the composition of the gut microbiota 

is variable throughout the gastrointestinal tract (i.e., stomach, ileum, descending colon; 

Corresponding Author: Hannah D. Holscher, hholsche@illinois.edu, Tel: (217) 300-2512, Address: 1201 West Gregory Drive 
Urbana, IL 61801. 

HHS Public Access
Author manuscript
Nutr Today. Author manuscript; available in PMC 2022 May 01.

Published in final edited form as:
Nutr Today. 2021 ; 56(3): 105–113. doi:10.1097/nt.0000000000000481.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mucosa to lumen), across geography, with age, and in relation to a host of other lifestyle 

factors among healthy individuals, demonstrating that the gut microbiota is a dynamic 

component of human physiology4, 5.

A variety of approaches are used to determine differences in which microbes are present 

(composition), their genetic potential (functional potential), and what the microbes are doing 

(function)2, 6. To generate taxonomic classifications of microorganisms (e.g., 

Bifidobacterium, Lactobacilli), DNA is isolated from the study samples, typically fecal 

samples in human studies, and then a specific region of the DNA known as the 16S rRNA 

gene is amplified so that it can be used to classify the taxa present and characterize the 

relative abundances of the taxa with the samples. Similarly, metagenomic sequencing creates 

a sequence database of the full microbial genome so that the genetic potential of the 

microbiome can be characterized (e.g., the presence of the enzyme used to metabolize a β2–

1 linkage, which is found in inulin). A limitation of 16S amplicon and metagenomic 

sequencing is that it is not possible to determine if the microorganisms are alive or dead at 

the time of sequencing. To determine what the microbes are actually doing at the time of 

measurement, RNA gene expression, proteins, and metabolites are measured using 

metatranscriptomics, metaproteomics, or metabolomics, respectively. Thus, these methods 

assess outputs or the functions of the microbial community that may affect the host. 

Therefore, an integrated approach may allow for a more comprehensive view of host-

microbe interactions and identification of dietary components that may be used to 

manipulate the gut microbiota to benefit health and reduce the risk of developing certain 

diseases.

What is the evidence that diet can influence the microbiome?

Given the role of the gut microbiome in metabolism of dietary components, there is robust 

evidence that intake of specific food components7–11 as well as broad dietary patterns12 

influence the gut microbiome over both short13, 14 and long12 time scales. Additionally, 

recent research suggests that food choices may be more important than nutrient profiles in 

influencing microbiota composition14. Indeed, specific foods have been shown to induce 

transient changes in the gut microbiota composition7–11 that may then be used to predict 

intake of those foods15. Diet has been shown to outweigh the effect of genetics on the gut 

microbiome16, suggesting that the gut microbiota is affected by modifiable lifestyle factors.

However, there is increasing recognition that functional changes in gene expression and 

metabolite production may be more important than the often transient changes in the 

taxonomic profile of the microbiota17. The gut microbiota metabolizes substrates to produce 

new bioactive compounds that then may impact host metabolism and immunity18–20. For 

example, some dietary fibers are metabolized by the gut microbiota to produce short-chain 

fatty acids (SCFAs), including acetate, butyrate, and propionate18, 19. In infants, human milk 

oligosaccharides (HMOs) not only enrich specific bacteria, primarily Bifidobacteria, but also 

result in the production of metabolites such as SCFAs21. These metabolites elicit 

concentration-dependent physiological effects, which are postulated to underly the 

associated health benefits of dietary fibers including, improved glycemic control, satiety, 
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weight loss, increased mineral absorption, decreased inflammation, and overall improvement 

of digestive and intestinal health18.

Specific dietary components used to target the gut microbiota include prebiotics, probiotics, 

and synbiotics (Box 2)22–24. The benefits of certain probiotics22 have been systematically 

reviewed under the auspices of different evidence-based organizations, including American 

Gastroenterological Association (AGA)25, Journal of Family Practice26, World 

Gastroenterology Organisation27, European Society for Pediatric Gastroenterology, 

Hepatology and Nutrition (ESPGHAN)28–31, Cochrane32, and European Food Safety 

Authority33. Notably, the health benefits of probiotic consumption are dependent on the 

strain(s), dose (>1×109 colony forming units (CFU)/serving), and duration of 

consumption22. Similarly, consumption of certain prebiotics is associated with a range of 

health benefits, including bone, gut, heart, and mood, though the associated benefits are 

dependent on the type of prebiotic23, 34, 35. Currently established prebiotics include certain 

dietary fibers that impact the abundance and functionality of gut microorganisms, namely 

Bifidobacterium and Lactobacilli23. A synbiotic may be a combination of a probiotic and a 

prebiotic (complementary synbiotic), though the individual components do not necessarily 

need to meet the criteria for pro- and pre-biotics as long as they act synergistically when co-

administered (synergistic synbiotic)24. As with pro- and pre-biotics, the potential health 

benefits of synbiotics depend on the duration of use, the strain of microorganism, and the 

type and amount of nondigestible substrate, as well as factors such as the individual’s 

baseline microbiota, diet, medication, and potentially genetics24.

How might the microbiome influence health and the response to dietary 

components?

Increasing evidence suggests that the gut microbiome influences the response to diet and 

may be a mediating or moderating factor in certain health outcomes36–39. The gut 

microbiome is associated with hallmarks of metabolic syndrome including obesity and type 

2 diabetes in humans and these associations are further supported by mechanistic trials using 

microbiome transplants in animal models40. However, it remains challenging to extrapolate 

the findings from animal models to human health, thus more research is needed before 

evidence-based recommendations can be made. The gut microbiota may partially mediate 

the relationship between diet and the development of obesity and type 2 diabetes by 

metabolite production that affects host energetics or signaling pathways that influence 

metabolic or inflammatory processes41. For instance, SCFAs, namely butyrate, are used as 

an energy source for colonocytes; SCFAs also interact with G-protein coupled receptors 41 

and 43 (GPR41 and GPR43), which induce peptide YY (PYY) and glucagon-like peptide-1 

(GLP-1) secretion thereby improving insulin signaling18. Increases in lipopolysaccharide 

(LPS), a component of gram-negative bacteria cell walls, induce low grade, chronic 

inflammation that may contribute to obesity and type 2 diabetes41. Ultimately, the gut 

microbiota may impact a whole suite of related metabolic conditions by modulation of 

metabolic and immunologic pathways.
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The gut microbiota could also modulate cardiovascular disease risk42. SCFAs and LPS 

modulate blood pressure and vascular function that may influence risk of cardiovascular 

disease42. Also, microbial metabolites trimethylamine (TMA), which is derived from dietary 

choline, phosphatidylcholine, and carnitine and converted to trimethylamine-N-oxide 

(TMAO) in the liver by flavin-containing monooxygenase 3 (FMO3), and 

phenylacetylglutamine (PAG), derived from phenylalanine, have been associated with 

cardiovascular disease risk42. However, associations between TMAO and disease do not 

indicate causation but rather may be confounded by other factors including kidney function, 

the gut microbiome, and FMO3 genotype43. Furthermore, there is uncertainty about the 

connections between dietary intake and TMAO concentration. Microbial modulation of the 

bile acid pool may also influence cardiovascular disease risk42. Fat intake (quantity and 

type), protein source and amino acid composition, as well as fiber and polyphenol intake 

have an impact upon microbial production of secondary bile acids7, 44, thereby providing a 

potential link between diet and microbiota-mediated health outcomes.

Therefore, research suggests that the gut microbiota could mediate diet-induced effects on 

health outcomes, though more clinical work is needed to substantiate these effects. However, 

recent research has demonstrated that consumption of the same foods differentially affects 

the gut microbiome in different people14 and this variability contributes to interindividual 

differences in the acute metabolic response to dietary intake36. This is the basis for funding 

for Nutrition for Precision Health, powered by the All of Us Research Program by the 

National Institutes of Health Common Fund45. This initiative provides the opportunity to 

expand upon the current research to better understand how diet affects individuals differently 

and how to optimize diet for individual health across the lifespan. From growth and 

development, particularly of the immune system, during infancy and childhood to mitigation 

of increases in inflammation and decline of muscle, bone, and brain integrity with age, the 

diverse and dynamic gut microbiome may contribute a variety of health outcomes in 

humans46.

Considerations for future diet-microbiome studies

Increased interest in diet-microbiome interactions and advances in the molecular and 

computational approaches used to study the microbiome has resulted in an explosion of 

research in this area47. However, a lack of standardization or recommendations for 

microbiome and dietary data collection has led to potential risk of confounding with other 

factors, as well as a high degree of heterogeneity between study designs, data collection, and 

analysis limiting the ability to compare results and conclusions between studies6, 17, 47.

Potential for confounding by both inter- and intra-individual variability may be minimized 

by stratifying participants by potential confounders such as baseline microbiota, age, gender, 

diet, lifestyle factors, and medications; collecting multiple microbiome samples per 

assessment timepoint coupled with multiple days of dietary history prior to each sample; 

standardizing collection times; and increasing sample size17, 47, 48. The potential 

confounding factors may change based on the intervention, the research question(s), and/or 

the population, so participant demographics, metabolic features, longitudinal and cyclical 
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considerations, supplement and medication use, bowel habits, and environment should be 

considered47.

Dietary intervention descriptions and methods used to assess habitual dietary intake must be 

well documented to ensure replication and comparisons among studies49. When complete 

feeding studies are not feasible or appropriate for the hypothesis being tested, stabilizing diet 

(i.e. having participants maintain their habitual dietary intake)47 should be considered. 

Dietary intake aspects beyond nutrient composition, such as intake of specific foods, 

cooking, and food matrix must also be considered as these factors affect the type and amount 

of nutrients, particularly fibers, available to the gut microbiota due to changes in digestibility 

and absorption8, 14, 15, 50, 51.

What are low- or no-calorie sweeteners and why is there interest in the gut 

microbiota?

Low/no-calorie sweeteners (LNCS) are compounds that provide sweet taste without the 

calories or carbohydrates associated with table sugar (i.e. sucrose) or other caloric 

sweeteners. Common LNCS include acesulfame potassium (acesulfame K), advantame, 

aspartame, monk fruit extract, neotame, saccharin, sucralose, and steviol glycosides (e.g. 

rebaudioside A)52. LNCS have risen in popularity as the food and beverage industry has 

shifted to reducing added sugars in their products53. Prior to reaching the market, all 

permitted LNCS have undergone extensive safety evaluations by scientific and regulatory 

agencies such as the Joint FAO/WHO Expert Committee on Food Additives (JECFA), the 

European Food Safety Authority (EFSA), and/or the U.S. Food and Drug Administration 

(FDA), resulting in the establishment of Acceptable Daily Intakes (ADI) for each 

sweetener52, 54, 55 (Table 1).

LNCS types vary in their digestion, absorption, metabolism, and excretion56–58, meaning 

that the effects of one isolated LNCS on the gut microbiome cannot be extrapolated to all 

LNCS. For instance, while both saccharin and sucralose are not metabolized, saccharin is 

rapidly absorbed and excreted in the urine while sucralose is poorly absorbed and is excreted 

in the feces56, 58. Conversely, rebaudioside A is hydrolyzed by the gut microbiota to the 

parent compound steviol that is subsequently absorbed and excreted in the urine56, 58. 

Therefore, differences in absorption and chemical conversion of these sweeteners or their 

components may lead to differences in their ability to interact with the gut microbiota 

throughout the intestinal tract. A 2014 study59 reported a link between LNCS exposure, the 

gut microbiota, and glucose intolerance that spurred intense interest in this field. 

Additionally, in vitro evidence suggests that LNCS may also promote the transfer of 

antibiotic-resistance genes between microbes60. However, despite continued research, there 

remains a great deal of uncertainty regarding the effects of LNCS on the gut microbiome and 

any resulting impacts on human health55–57, 61, 62.

Considerations for LNCS-microbiome studies

Several study design elements should be considered when evaluating the results and 

conclusions of LNCS-microbiome studies. These include the study diet, the form of the test 
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article, the dose and exposure, and the study population55. Both short- and long-term dietary 

patterns affect the gut microbiota. Therefore, studies must control for or record dietary 

intake to ensure that any dietary impact on the gut microbiota is accounted for. Also, 

commercial LNCS formulations typically contain small amounts of the sweetener molecule 

itself and primarily consist of carbohydrate bulking agents, such as maltodextrin55. 

Therefore, studies should be conducted with the pure, unadulterated sweetener as well as 

with the bulking agent to ensure that effects are not solely due to the bulking agent. 

Sweeteners should also be investigated individually, as differences in their chemical 

structures lead to differences in their metabolism and potential to affect the gut 

microbiota55–58. Importantly, to ensure relevance to human health, LNCS doses should not 

exceed the sweetener’s ADI.

The study population is another consideration to ensure relevance to human health. Rodents 

colonized or transplanted with defined microbes (gnotobiotic) that are hypothesized to play a 

role in the metabolism of certain nutrients or from human donors with a specific phenotype 

(e.g., disease) are useful in illuminating potential modes of action of the connections 

between diet, the gut microbiota, and health63. However, differences in gastrointestinal 

physiology, microbiota compositions, effects of genetic background in mice, coprophagy, 

housing conditions and feeding all limit the translation of rodent research64. Most studies 

have been conducted in animals and in vitro models, limiting biological relevance due to 

differences in the rodent gut microbiome6, 65, 66 and limitations in extrapolating tested 

concentrations in vitro to human exposure levels from the diet.

Using a combination of in vitro, animal, and human models will enable the determination of 

both clinical effects on health and the gut microbiome as well as mechanisms by which the 

gut microbiome may mediate the effects on health. For instance, while taste receptors are 

expressed throughout the gut and may be activated by LNCS, it is unknown whether 

activation of these receptors may also modulate microbial composition or function61, 67. It is 

postulated that activation of these receptors may be an important mechanism by which 

LNCS could modulate the gut microbiota since the extremely small doses used (e.g. 

milligram amounts) are lower than the 3 g/day dose required for most compounds to elicit a 

direct effect on the gut microbiome23, 61. Mechanistic studies will therefore complement the 

findings of clinical trials on the effects of LNCS on human health and the gut microbiome. 

Human studies, preferably randomized controlled trials, are necessary to be able to make 

evidence-based recommendations.

What does the literature report on the effects of LNCS on the gut 

microbiota?

Briefly, a literature search identified relevant articles on LNCS and gut microbiota using the 

following inclusion criteria: 1) in vivo studies conducted in animals and/or humans (in vitro 

studies excluded); 2) testing one or more orally administered LNCS; and 3) evaluation of the 

gut microbiota55.The summarized results of the literature search are presented in Table 

259, 68–89.
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The majority of studies were conducted in animal models, with sucralose being the most 

commonly investigated LNCS. The effects of LNCS on the gut microbiota reported in the 

scientific literature are unclear in humans and experimental data are needed that control for 

confounding factors. Of the identified nonclinical and clinical studies, only four remained 

after removing those with confounding factors, such as dose in excess of human ADI or dose 

not reported, diet not equivalent between groups or controlled, small sample size of one 

subject per group, or use of non-equivalent control group or no control group. However, it 

should be noted that even doses at or below the ADI in animal models may not be relevant to 

humans due to differences in gastrointestinal physiology and digestion as described above. 

All human clinical trials contained at least one confounding factor that disqualified them 

from the final analysis. For instance, habitual diet was not controlled in any of the four 

clinical studies. One study was cross-sectional and therefore could not report the dose or 

amount of LNCS consumed71. Additionally, two of the studies did not have a control 

group59, 73.

The results of investigations of several LNCS were inconclusive after removal of 

confounded studies, including results for aspartame, cyclamate, neotame, and saccharin. Of 

the remaining studies, Uebanso et al. investigated the effect of both acesulfame K (15 

mg/kg/d, 8 weeks) and sucralose (low dose: 1.5 mg/kg/d, high dose: 15 mg/kg/d, 8 weeks)68. 

Studies by Li et al. (low dose: 5.5 mg/kg/d, high dose: 139 mg/kg/d, 4 weeks) and Nettleton 

et al. (2–3 mg/kg/d, 9 weeks) investigated the effects of rebaudioside A88, 89. The high dose 

of rebaudioside A in the study by Li et al. is in excess of the ADI (~10x) and therefore was 

excluded from the analysis. Both acesulfame K and rebaudioside A show no effects on the 

gut microbiota in mice68, 88, though rebaudioside A did alter the composition of the gut 

microbiota in rats89. These changes in the gut microbiota composition were accompanied by 

an increase in the cecal concentrations of acetate and valerate, which were positively 

correlated with fat mass and total weight89. The one study of sucralose found a dose-

dependent decrease in fecal Clostridium IVXa in mice68. Thus, the literature shows marginal 

effects of LNCS on the rodent gut microbiota at doses relevant to human consumption. The 

implications of LNCS consumption on the human gut microbiome and effects on health 

outcomes are therefore unclear. The ability to draw conclusions from the literature is 

hampered by the limited number of studies without confounding factors.

Conclusions

Microbiome research is an emerging area of science, with many new research opportunities 

arising as novel links between the gut microbiota and different dietary components or 

aspects of health are investigated. Continued research is critical as the gut microbiome is an 

integral part of human physiology that is impacted by diet as well as other factors such as 

age, physical activity, genetics, health status, medication, and environmental exposures. A 

crucial component of this relationship is dietary intake. The two-way relationship between 

diet and the gut microbiome has implications for human health and disease. Future research 

should focus on establishing links between specific changes in the gut microbiome and 

human host health effects, as well as dietary components that may contribute to or reduce 

the risk of such effects via microbial modulation while controlling for potential confounders 

in study design.
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There is no clear evidence that LNCS adversely impact the gut microbiota when consumed 

by humans at approved levels 55. However, gut microbiota changes as a result of LNCS 

consumption have been demonstrated in some animal studies56, 57, warranting further 

investigation into the potential effects of long-term exposure in humans. Unfortunately, due 

to the popularity of LNCS, media headlines often overstate the study implications and 

should be interpreted with caution. Confounding and study design limitations make it 

difficult for researchers and clinicians to interpret study results. Future studies should reduce 

confounding factors by controlling the diet, using pure forms of LNCS and investigating the 

effects of bulking agents, administering doses below the ADI, and selecting a relevant study 

population. Further research will help elucidate the effects of LNCS on the gut microbiota 

and human health.
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Box 1. Definitions of the microbiome

Microbiome: the collection of microbial genomes1.

Microbiota: the collection of microbial organisms1.

Gut microbiome: the collection of microbial genomes inhabiting the gastrointestinal 

tract1.

Metagenome: the collection of all of the genetic material in a sample2.

Metagenomics: the study of collected genomes from an ecosystem to understand the 

taxonomic and functional properties of microbial communities2.

Metatranscriptomics: the study of RNA gene expression from microbial communities2.

Metaproteomics: the study of proteins from microbial communities2.

Metabolomics: the study of small molecules (i.e., metabolites) within a sample2.
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Box 2. Definitions of pre-, pro-, and syn-biotics

Probiotic: live microorganisms that, when administered in adequate amounts, confer a 

health benefit on the host22.

Prebiotic: a substrate that is selectively utilized by host microorganisms conferring a 

health benefit23.

Synbiotic: a mixture comprising live microorganisms and substrate(s) selectively utilized 

by host microorganisms that confers a health benefit on the host24. May be a combination 

of a probiotic and prebiotic (complementary) or individual components that act 

synergistically when co-administered (synergistic)24.
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Table 1.

Currently permitted low/no-calorie sweeteners in the U.S.52

Low/no-calorie sweetener ADI (mg/kg bw/d) Sucrose sweetness equivalence Max daily mg intake based on 60kg person

Acesulfame K 15 200 x 900

Advantame 32.8 20000 x 1968

Aspartame 50 200 x 3000

Monk fruit extract NS* 100–250 x --

Neotame 0.3 7000–13000 x 18

Saccharin 15 200–700 x 900

Sucralose 5 600 x 300

Steviol glycosides 4 200–400 x 240

*
Not specified

Abbreviations: ADI, Acceptable Dietary Intake; mg, milligrams; kg bw, kilograms bodyweight; d, day
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Table 2.

Results of literature search on the effects of LNCS on the gut microbiota

Low/no-calorie 
sweetener

Nonclinical studies* Clinical studies* Studies without any confounding factors*

Number Gut microbiota findings (compared to control)

Acesulfame K • 3 studies in mice68–70 • 171 168 • No change reported in mice68

Aspartame •1 study in mice59

• 1 study in rats72
• 271,73 0 • Inconclusive

Cyclamate • 1 study in monkeys74 • None 0 • Inconclusive

Neotame • 1 study in mice75 • None 0 • Inconclusive

Saccharin • 3 studies in mice59,79

• 1 study in rats76

• 2 studies in piglets77,78

• 159 0 • Inconclusive

Sucralose • 9 studies in mice59,68,70,80–85

• 1 study in rats86
• 273,87 168 • Dose-dependent ↓in fecal Clostridium IVXa in 

mice68

Rebaudioside A • 2 studies in mice85,88

• 1 study in rats89
• None 288,89 • No change reported in mice88

• ↓ Clostridiales family XIII,
Ruminococcaceae UCG 005; ↑
Akkermansia muciniphila, Bacteroides 
goldsteinii, Bacteroides thetaiotaomicron in rats89

*
Confounding factors may include: dose in excess of human ADI or not reported, diet not equivalent between groups or controlled, small sample 

size of one subject per group, or use of non-equivalent control group or no control group. Table adapted from ILSI webinar slides.
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