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Abstract

Hypertrophic cardiomyopathy (HCM) is a common, serious, genetic heart disorder. Rare 

pathogenic variants in sarcomere genes cause HCM, but with unexplained phenotypic 
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heterogeneity. Moreover, most patients do not carry such variants. We report a genome-wide 

association study of 2,780 cases and 47,486 controls that identified 12 genome-wide-significant 

susceptibility loci for HCM. Single-nucleotide polymorphism heritability indicated a strong 

polygenic influence, especially for sarcomere-negative HCM (64% of cases; h2
g = 0.34 ± 0.02). A 

genetic risk score showed substantial influence on the odds of HCM in a validation study, halving 

the odds in the lowest quintile and doubling them in the highest quintile, and also influenced 

phenotypic severity in sarcomere variant carriers. Mendelian randomization identified diastolic 

blood pressure (DBP) as a key modifiable risk factor for sarcomere-negative HCM, with a one 

standard deviation increase in DBP increasing the HCM risk fourfold. Common variants and 

modifiable risk factors have important roles in HCM that we suggest will be clinically actionable.

Hypertrophic cardiomyopathy (HCM) is common, affecting at least one in 500 individuals, 

and presents substantial unmet medical need1. It is a leading cause of sudden death, embolic 

stroke and heart failure in early and mid-adult life. Sarcomeric HCM, caused by mutations in 

myofilament genes, is inherited as an autosomal dominant disorder. However, as is 

commonly seen in adult-onset heterozygous disorders, HCM is characterized by reduced 

penetrance and variable expressivity, providing challenges for diagnosis and prognosis2,3. In 

the more common sarcomere-negative setting, cases are often isolated, but clustering in 

nuclear families is still frequent, requiring clinical surveillance in families4,5. To investigate 

the contribution of common genetic variants to HCM risk, we performed two independent 

multi-ancestry case–control genome-wide association studies (GWASs) of unrelated patients 

with HCM recruited to the Hypertrophic Cardiomyopathy Registry (HCMR; 2,541 

unselected cases versus 40,283 UK Biobank (UKBB) controls) and the BioResource for 

Rare Diseases (BRRD; 239 sarcomere-negative cases versus 7,203 controls) (Fig. 1, 

Supplementary Table 1 and Supplementary Note). Single-nucleotide polymorphism (SNP) 

heritability (h2
g) estimates calculated using GREML-LDMS indicated that a substantial 

proportion of HCM risk was attributable to the additive effects of common (minor allele 

frequency (MAF) > 0.01) SNPs (HCMR h2
g = 0.35 ± 0.01; BRRD h2

g = 0.68 ± 0.16).

We performed fixed-effects inverse-variance meta-analysis of the HCMR and BRRD GWAS 

datasets for 8,590,397 SNPs across a total of 2,780 HCM cases and 47,486 age- and sex-

matched controls. All-comer analysis (that is, inclusive of sarcomere-positive and 

sarcomere-negative HCM cases) identified 13 independent genome-wide-significant variants 

in 12 loci (P < 5 × 10−8), using a stepwise model selection procedure with genome-wide 

complex trait analysis (GCTA) and confirmed with conditional analysis (Table 1, 

Supplementary Table 2 and Methods). We identified an additional 16 independent variants at 

a 5% false discovery rate (FDR) significance threshold (P < 1.82 × 10−6) (Supplementary 

Table 3). We replicated 11 of the 13 genome-wide-significant variants and four of the 16 

FDR variants in a smaller, independent HCM meta-analysis (n = 1,643 cases and 6,628 

controls; Table 1, Supplementary Table 3 and Methods). Additionally, we obtained similar 

discovery findings with a European-only analysis (Supplementary Table 2 and 

Supplementary Note).

The FHOD3 locus was found to harbor two independent genome-wide-significant variants, 

rs4799426 and rs118060942, in linkage equilibrium (r2 = 0.01). Sentinel SNPs in the HCM 
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susceptibility loci conferred relatively large susceptibility effect sizes (median odds ratio 

(OR) = 1.25; range = 1.18–2.16) across a range of effect allele frequencies (range = 0.012–

0.83) (Supplementary Table 4). Tissue enrichment tests, performed in FUMA using gene-

level data (Supplementary Table 5) and tissue expression data from GTEx (version 8.0) 

showed enrichment in the left ventricular myocardium (β = 0.04 ± 0.01; P = 7.46 × 10−6), 

skeletal muscle (β = 0.03 ± 0.01; P = 1.13 × 10−5) and atrial appendage (β = 0.04 ± 0.01; P 
= 1.18 × 10−5) (Supplementary Table 6 and Supplementary Note)6,7. Functional GWAS 

supported these findings and revealed cell types where sentinel SNPs were most enriched 

(Supplementary Tables 7 and 8).

We dichotomized HCM cases in HCMR into sarcomere-positive (34.3%) and sarcomere-

negative (64.3%) groups using a published framework (Supplementary Tables 9 and 10)8. 

The GREML heritability estimate for sarcomere-negative HCM exceeded that of sarcomere-

positive HCM (h2
g = 0.34 ± 0.02 versus 0.16 ± 0.04) (Supplementary Table 11). This 

supports the hypothesis that where there is familial aggregation that is not explained by co-

segregation with a rare variant, as in sarcomere-negative HCM, a greater role for common 

variants may be expected. This applies in particular to the BRRD samples, which were 

enriched for positive family history despite negative gene-panel testing, where heritability 

was indeed greatest. A meta-analysis of sarcomere-negative HCM (1,874 HCM cases versus 

27,344 controls) identified ten independent genome-wide-significant variants in nine loci 

and a further 15 independent variants in 13 loci below a 5% FDR threshold (P < 1.56 × 

10−6) (Supplementary Table 12). Three loci (FHOD3, TBX3 and PLN) harbored a 

secondary independent variant following conditional association analysis (Supplementary 

Table 2).

Sarcomere-positive HCM GWAS analysis (871 HCMR cases versus 20,142 UKBB controls) 

yielded seven independent genome-wide-significant variants and a further 11 independent 

variants below a 5% FDR threshold (P < 1.50 × 10−6) from 12 loci. This included seven 

variants in the peri-centromeric region of chromosome 11 neighboring MYBPC3, a 

prominent cause of monogenic HCM (Supplementary Tables 2 and 13). Haplotype analysis 

of individual-level sequence data demonstrated long-range linkage disequilibrium and 

potential spurious associations between frequently observed rare pathogenic variants in 

MYBPC3 (NM_000256.3), specifically p.Arg502Trp and p.Trp792ValfsTer41, and common 

imputed variants in the chromosome 11 (44,976,681–57,917,265) genomic interval9–11. 

Modeling the impact of both rare and common variants with multiple logistic regression 

confirmed that HCM risk could be entirely attributed to the rare variants (Supplementary 

Note). Common variants in chromosome 11 (44,000,000–58,000,000) were masked from 

subsequent analyses, leaving two independent variants of genome-wide significance and 

nine below the 5% FDR threshold. Excluding chromosome 11 (44,976,681–57,917,265) had 

a trivial effect on the heritability estimate.

Bivariate GREML analysis revealed a strong positive genetic correlation between 

sarcomere-positive and sarcomere-negative HCM (rg = 1.00 ± 0.12). Pairwise GWAS 

comparison revealed overlapping signals between sarcomere-negative and sarcomere-

positive loci for 59% of regions (n = 22/37) (Supplementary Table 14). Most of the 

sarcomere-negative GWAS loci were not reproduced at the genome-wide-significance level 
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in the sarcomere-positive GWAS, which could potentially be explained by a relative lack of 

power (Supplementary Table 15). Four SNPs (rs2312403, rs35469308, rs12299450 and 

rs2758215) showed association only in the sarcomere-positive GWAS, and may represent 

modifier loci.

All loci were novel, apart from FHOD3, which has been previously reported in a HCM 

GWAS12. Previous candidate gene studies have reported rare variant associations in different 

forms of cardiomyopathy for BAG3 and FHOD3, and common-variant associations with 

dilated cardiomyopathy (DCM) have been reported for BAG3 and HSPB7 loci13–17. At these 

loci shared by HCM and DCM, the direction of effect is opposite, with the HCM risk allele 

being previously shown to decrease the risk of DCM. The involvement of BAG3, HSPB7 
and FHOD3 points to the importance of homeostatic pathways for sarcomeric structural 

integrity during mechanical stress (Supplementary Note). While some of the other loci also 

encode known cardiomyopathy genes (PLN and TTN), the major HCM and DCM 

myofilament loci are not represented, consistent with the cardiomyopathy-causing changes 

in these genes altering protein structure rather than expression level. In the remaining loci, 

some early clues implicate specific genes and mechanisms: a deleterious missense variant 

implicates ADPRHL1, which is important for Z-disc and actin dynamics, and a cis-

expression quantitative trait locus (cis-eQTL) implicates SLC6A6, which encodes a taurine 

transporter known to be responsible for cardiomyopathy in dogs (Supplementary Note).

After excluding rs28768976 for extreme pleiotropy (Supplementary Note) and rs78310129 

due to long-range linkage disequilibrium with pathogenic MYBPC3 variants 

(Supplementary Note), 27 SNPs showing independent associations with HCM at the 5% 

FDR threshold in the all-comer HCM meta-analysis were aggregated into a scaled (that is, 

per-standard deviation effects), weighted genetic risk score (GRS) (Table 2 and 

Supplementary Tables 16 and 17). The GRS predicts the odds of HCM in a validation meta-

analysis of three independent HCM cohorts comprising 1,769 cases and 39,828 controls (OR 

= 1.73 per s.d. (95% confidence interval (CI) = 1.63–1.83)) (Fig. 2). Using the largest 

replication cohort, we conducted a sensitivity analysis and confirmed a 5% FDR threshold as 

representative of alternate SNP significance thresholds (Supplementary Table 16).

Stratification of the HCMR cases by their average genetic ancestry, as determined by 

principal components analysis, demonstrated similar effect sizes across all ancestry groups 

(Supplementary Table 18). Using the central 60% of the population as the reference group, 

there was a protective effect for individuals in the lowest quintile (OR = 0.53 (95% CI = 

0.45–0.63)) and a greater than a twofold increased odds of HCM for individuals in the 

highest quintile (OR = 2.30 (95% CI = 2.02–2.62)). In alignment with h2
g estimates, the 

GRS demonstrated larger effects in the sarcomere-negative subgroup (Fig. 2 and 

Supplementary Note). Nevertheless, in young individuals carrying a pathogenic sarcomere 

mutation, who might typically have a probability of developing overt cardiomyopathy in 

adulthood of ~50%, a halving or doubling of the average risk of developing the 

cardiomyopathy is likely to be clinically meaningful.

To determine whether the common susceptibility variants also influence disease severity in 

sarcomere-positive HCM (that is, through a modifier effect), we assessed the impact of the 
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GRS on left ventricular hypertrophy in groups of cases with similar mutational mechanisms. 

A 1 s.d. unit increase in GRS conferred a 0.71 ± 0.35 mm increase in maximum left 

ventricular wall thickness (P = 0.048) in carriers of MYBPC3 truncating variants (n = 232) 

and a 0.73 ± 0.36 mm increase (P = 0.037) in carriers of MYH7 missense variants (n = 186) 

(Fig. 3). Allelic heterogeneity currently limits single-variant expressivity estimates; the most 

frequently observed pathogenic variant in HCM, MYBPC3R502W, is associated with a larger 

GRS effect size (1.61 ± 0.80 mm increase per 1 s.d. unit increase in GRS) but is currently 

modestly powered (n = 48).

Observational studies have shown that hypertension, obesity and type 2 diabetes are more 

prevalent in individuals with HCM, but these could be secondary to reduced exercise8,18,19. 

We performed two-sample Mendelian randomization to leverage large-scale GWASs for 

these heritable traits20–23. We inferred causal relationships with HCM for hypertension and 

obesity, but not diabetes (Fig. 4 and Supplementary Table 19). Most notably, diastolic blood 

pressure (DBP) appeared to be a substantial risk factor for the development of sarcomere-

negative HCM (Fig. 4 and Supplementary Table 19). A 1 s.d. unit increase in DBP (11.3 

mmHg) conferred a fourfold increased risk of HCM (OR = 3.93 (95% CI = 2.86–5.41); P = 

3.74 × 10−16)—more than double the risk typically observed for other diseases associated 

with DBP (Fig. 4 and Supplementary Table 20)24–28. The strong association with 

hypertension raises the possibility that sarcomere-negative HCM may represent, in part, an 

exaggerated response to hypertension in genetically susceptible individuals. The association 

specifically with DBP probably reflects that this is the dominant form of hypertension in 

young and mid-adult life29,30.

The individual loci identified in this study hold great potential for driving new insights into 

cardiomyopathy pathogenesis. Many of the association signals have already been replicated; 

others will need further study to guard against false positive findings. Collectively, our 

findings highlight the important influence of common variants on the risk of developing 

HCM. The polygenic contribution is weaker in individuals with pathogenic sarcomeric 

variants, but a common-variant GRS may still be particularly useful here because the high 

prior risk means that the modest (for example, fourfold) changes in individual-specific 

penetrance, which will apply to 40% of individuals, will have a large absolute effect on 

outcome. Additionally, it appears that common variants explain part of the variable 

expressivity of pathogenic sarcomeric variants. The clinical utility of a GRS now needs 

study in adequately powered longitudinal surveys of HCM disease progression, especially in 

sarcomere-positive individuals who were limited in number in the current study. In 

individuals lacking cardinal pathogenic mutations in sarcomeric genes, we suggest that 

extremes of the polygenic risk distribution (for example, the top 1% of the population), 

combined with causal risk factors, drive individual susceptibility. Managing sarcomere-

negative patients with HCM and their relatives may be greatly facilitated by awareness of the 

strong influence of polygenic risk and of DBP as a major modifiable risk factor.
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Methods

GWAS in multi-ancestry HCMR cases versus UKBB controls.

As described in Neubauer et al.8, 2,755 incident HCM cases were recruited from 44 sites 

across six countries in North America and Europe. The cases were 18–65 years of age with 

evidence of unexplained left ventricular hypertrophy (wall thickness > 15 mm)31. All 

participants provided written informed consent (South Central – Oxford A Research Ethics 

Committee approval: 14/SC/0190; clinicaltrials.gov identifier: NCT01915615). Genotyping 

was performed using the Axiom Precision Medicine Research Array (Affymetrix/Thermo 

Fisher Scientific). Following quality control, 2,541 individuals who were not closely related 

(that is, those with more than three degrees of relatedness) were available for analysis. Gene 

panel sequence data, generated using a custom-designed TruSeq kit (Illumina), were 

available on 2,636 HCMR cases, as reported previously8,32. Variant classification was 

performed for the eight core sarcomere genes (MYBPC3, MYH7, TNNI3, TNNT2, MYL2, 

MYL3, ACTC1 and TPM1) using the American College of Medical Genetics and Genomics 

guidelines33. Cases were systematically dichotomized into sarcomere-positive (n = 871) or 

sarcomere-negative (n = 1,635) groups using a published, evidence-based framework 

(Supplementary Tables 9 and 10)8,34. Details of the rare variants used to partition cases are 

reported (Supplementary Tables 21 and 22). Access to the UKBB genotypes was provided 

through application 11223 (UK Research Ethics Committee approval: 11/NW/0382). 

Genotyping was performed using the UKBB Axiom array (Affymetrix). Individuals who 

underwent genotyping using the UK BiLEVE array, or who had asked to be withdrawn from 

the UKBB, as of 16 October 2018, were excluded. Individuals with an International 

Classification of Diseases 10th Revision code indicating HCM (I420 or I421), or other 

phenotypes that may confound HCM analyses (Supplementary Table 23) in Hospital 

Episode Statistics data or self-reported questionnaire fields, were excluded (n = 15,901). 

Individuals in the UKBB exome sequencing subset (n = 49,959) who harbored variants of 

uncertain significance (VUSs), likely pathogenic or pathogenic variants in the core 

sarcomere genes were excluded. Closely related individuals (within three degrees of 

relatedness) and gender mismatches were excluded. Of the remaining 270,260 individuals, 

40,283 were randomly selected for subsequent analysis, sampled using a 20:1 allocation 

against HCMR cases (n = 2,541), with approximate age (per decade) and genotype-assigned 

sex matching.

The HCMR (Precision Medicine Research Array (Affymetrix)) and UKBB (Axiom array 

(Affymetrix)) cohorts were genotyped on partially overlapping arrays. In total, 174,974 

SNPs (MAF > 0.01; genotype missing rate: 1%, Hardy–Weinberg equilibrium with mid-P 
correction of 1 × 10−9) present in both the HCMR and UKBB cohorts were extracted for 

subsequent analysis. The UKBB and HCMR SNPs were aligned to the Haplotype Reference 

Consortium (HRC) reference panel (using HRC-1000G-check-bim.pl from https://

www.well.ox.ac.uk/~wrayner/tools/) before being merged.

Principal component analysis was then performed using FlashPCA2 on a subset of SNPs in 

approximate linkage equilibrium (r2 < 0.05), determined using the --indep-pairwise function 

in PLINK (version 1.90b3). Ancestry was inferred by projecting principal components, 
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derived from the 1000 Genomes Project (Phase 3), onto HCMR/UKBB genotypes. A 

multinomial logistic regression model, performed using the nnet CRAN package in R 

(https://CRAN.R-project.org/package=nnet), classified ancestral groups as specified by the 

International Genome Sample Resource (http://www.internationalgenome.org/category/

population/) (Supplementary Table 1). The Michigan Imputation Server35 (https://

imputationserver.sph.umich.edu/) performed haplotype phasing with Eagle36, as well as 

imputation against the HRC (version r1.1.2016 reference panel)37, generating genotypes for 

38,954,302 imputed variants. Imputed variants with an INFO score > 0.3 and MAF > 0.01 

were retained for subsequent analysis.

An all-comer analysis (2,541 HCM cases versus 40,283 controls) and separate sarcomere-

positive (871 versus 20,142) and sarcomere-negative HCM analyses (1,635 versus 20,141) 

were performed. The UKBB controls were randomly allocated to either the sarcomere-

positive or sarcomere-negative GWAS.

Analyses were performed with logistic regression to fit an additive case–control association 

model, using the SNPTEST version 2.5.4-beta3 newml function, adjusting for the first ten 

ancestry-informative principal components. As HCM is a disease of relatively low 

prevalence (~1 in 500), statistical power was maximized by not adjusting for age or sex38. 

There was no evidence of extreme population stratification in genomic control analyses (all-

comers: original λ = 1.191; sarcomere positive: λ = 1.089; sarcomere negative: pre-λGC = 

1.142). A genomic control adjustment was performed when λ exceeded 1.1.

Multi-ancestry BRRD case–control GWAS.

Details regarding the BRRD cohort—a pilot study of the Genomics England 100,000 

Genomes Project (GeL)—have been described elsewhere39. All participants provided 

written informed consent (East of England – Cambridge South REC approval: 13/EE/0325). 

Briefly, 13,037 individuals from 20 rare disease areas underwent genome sequencing, 

including 243 individuals diagnosed with sarcomere-negative HCM4. Individuals clinically 

diagnosed with HCM, with diagnostic criteria as for HCMR, were recruited via inherited 

cardiac condition clinics within the United Kingdom (Oxford University Hospitals NHS 

Foundation Trust, Royal Brompton and Harefield NHS Foundation Trust, Guy’s and St 

Thomas’ NHS Foundation Trust and the Newcastle Upon Tyne Hospitals NHS Foundation 

Trust). Recruited individuals were aged 18–70 years, or >70 years when there was a positive 

family history, with an absence of likely pathogenic or pathogenic variants across 13 well-

established HCM genes (sarcomeric genes (MYBPC3, MYH7, TNNI3, TNNT2, MYL2, 

MYL3, ACTC1 and TPM1), other, non-sarcomeric, but robustly associated HCM genes 

(CSRP3 and PLN) and phenocopy genes (PRKAG2, GLA and FHL1))4.

Reference controls were recruited from the other BRRD rare disease participants or their 

family members. Individuals recruited via the GeL pilot study for the purposes of 

investigating an inherited cardiac condition were excluded. Overall, 239 cases and 7,203 

controls were available for analysis and high-quality variants were extracted from the 

respective genome sequencing variant call format files. High-quality variants were defined 

as those that had: PASS filter status; MAF > 1%; a depth of at least ten informative reads per 

site; a genotype quality score of at least 20; and a genotype missingness of no more than 
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10%. Multiallelic sites were split. Ancestrally informative principal components were 

derived using FastPCA2 and 1000 Genomes Phase 3 data (Supplementary Table 1). 

Association analysis was performed using SAIGE (version 0.29.4.2) with the first three 

principal components included as covariates40. SAIGE step 1 was performed using 123,903 

genotypes following a linkage disequilibrium pruning procedure in PLINK (version 1.9), 

with a 500-kilobase (kb) window, a step size of 50 markers and a pairwise r2 threshold of 0.2 

(refs. 41,42). SAIGE step 2 analysis was performed using genotypes with a minor allele count 

of >5 and a MAF of >0.01. Summary genetic association statistics for 9,341,129 autosomal 

variants were then computed using a mixed logistic regression model; a genomic control 

analysis showed little evidence of over-dispersion (λ = 1.049). The BRRD GWAS was 

included in the all-comer and sarcomere-negative meta-analyses.

HCM sarcomere carrier stratification.

Up to two-thirds of VUSs in confirmed sarcomere genes are considered causal of HCM34. 

To contrast the common-variant genetic architecture of patients with HCM carrying 

pathogenic variants in sarcomeric genes with non-carriers, individuals were assigned 

sarcomere-positive status if they harbored a variant classified as VUS-indeterminate, VUS-

favors pathogenic, likely pathogenic or pathogenic in ACTC1, MYH7, MYL2, MYL3, 

TNNT2, TNNI3 and TPM1, or VUS-favors pathogenic, likely pathogenic or pathogenic in 

MYBPC3 (Supplementary Tables 9 and 10)8.

Heritability estimates.

SNP heritability (h2
g) was estimated using GREML43 for SNPs demonstrating an INFO 

score of >0.3 and a MAF of >0.01. Linkage disequilibrium scores were assigned to SNPs 

from 200-kb blocks across the genome, before SNPs were stratified into quartiles based on 

SNP linkage disequilibrium scores to generate genomic relatedness matrices. The genomic 

relatedness matrices were subjected to restricted maximum likelihood analysis of case–

control status with the first ten ancestry-informative principal components as covariates. h2
g 

estimates were approximated on a liability scale representing binary traits (that is, cases 

versus controls) on a continuous scale; above a liability threshold, an individual will be 

affected. Representation of a binary trait on this classic multifactorial liability scale is 

dependent on both the population prevalence of disease (0.2% based on population-based 

epidemiological estimates) and the sample prevalence of disease. The prevalences of 

sarcomere-negative and sarcomere-positive HCM were set as 0.0012 and 0.0008, 

respectively (ref. 34).

Quality control.

EasyQC (version 9.2)44 was used for genotype quality control. The HRC reference panel 

was used for mapping and allele frequencies. Variants were removed if they were 

monomorphic, demonstrated a minor allele count of <6 or were absent from the HRC 

reference panel or duplicated. They were also removed when the observed allele frequency 

deviated by >0.2 from the HRC allele frequency.

Genomic inflation was assessed across all cohorts through calculation of the genomic 

control, λ, and by evaluating the overall P value distribution. Genomic control correction 
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was performed when λ > 1.1, by adjusting the standard error (s.e.gc = s.e. × √λ) and re-

calculating adjusted χ2 statistics χgc2 = β
s . e.gc

2
 and associated P values (under one degree 

of freedom).

The overall P value distributions, generated from each component study and meta-analysis, 

were plotted and assessed. Local FDRs were computed using the qvalue R package (https://

github.com/StoreyLab/qvalue)45. The FDR provides a frequentist equivalent to the empirical 

Bayesian posterior probability that the null hypothesis is true, based on the distribution of 

generated P values. For genome-wide significance, an a priori α threshold of 5 × 10−8 was 

set, and an FDR threshold of 5% was calculated for each study46.

Meta-analysis.

All-comer (2,780 HCM cases versus 47,486 controls) and sarcomere-negative (1,874 cases 

versus 27,344 controls) fixed-effects inverse-variance meta-analysis analyses, incorporating 

the HCMR versus UKBB and BRRD versus BRRD component GWAS, were conducted 

using GWAMA47. Effect sizes, standard errors, effect allele frequency estimates and 

heterogeneity statistics (specifically Cochran’s statistic (Q)) were reported alongside q 
values and FDR values.

Replication.

Replication of HCM loci was performed in a smaller, independent dataset composed of three 

HCM case–control studies from the Netherlands (975 cases and 2,117 controls), Royal 

Brompton Hospital (RBH; 359 cases and 1,211 controls) and Canada (313 cases and 3,300 

controls). No cases recruited to HCMR or BRRD were present in these replication cohorts. 

Meta-analysis of these three GWAS studies was performed using METAL (λ = 1.074). 

Detailed methods regarding these replication cohorts are available in Tadros et al.48.

Conditional association analysis.

To identify genetic variants that confer independent risk effects, conditional association 

analysis was performed using a stepwise model selection procedure (--cojo-slct) using 

GCTA49,50. Summary statistics were extracted from meta-analyses results or component 

GWAS studies, and linkage disequilibrium metrics were based on 62,018 unrelated 

European individuals randomly selected from the UKBB. For each analysis, the P value 

threshold was determined by a 5% FDR level.

Assessment of pleiotropy.

All independently associated variants, confirmed in a conditional analysis, were evaluated 

for association with other diseases or traits by cross-referencing publicly available databases 

via Open Targets51 (https://genetics.opentargets.org/), a web resource that synthesizes data 

from both the National Human Genome Research Institute–European Bioinformatics 

Institute GWAS catalog (https://www.ebi.ac.uk/gwas/) and previously published UKBB 

summary statistics (Supplementary Table 24)40. Associations between sentinel SNPs and 

their tagging SNPs (r2 > 0.8) and gene expression, proteins, metabolites or epigenetics were 

evaluated using PhenoScanner version 2.0 (Supplementary Table 25)52.
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Genetic correlation.

To measure the genetic correlation between sarcomere-positive and sarcomere-negative 

HCM, bivariate GREML analysis was performed. The prevalences of sarcomere-negative 

and sarcomere-positive HCM were set at 0.0012 and 0.0008, respectively. The first ten 

ancestry-informative principal components were included as covariates. To assess the shared 

genetic effects between sarcomere-positive and sarcomere-negative HCM at individual loci, 

pairwise GWAS calculated the probability that a variant located within a locus contributed to 

either one, both or neither traits, or whether two separate signals within the same region 

contributed to each trait independently. Pairwise GWASs were performed using genomic 

regions 500 kb upstream and downstream of independent loci from the all-comer, 

sarcomere-positive and sarcomere-negative GWASs53.

Long-range linkage disequilibrium and spurious association.

Independent, genome-wide-significant variants on chromosome 11 (44,976,681–57,917,265) 

were identified due to their close proximity to MYBPC3, a HCM gene known to contain 

pathogenic founder variants, raising the possibility of long-range linkage disequilibrium and 

spurious association. Haplotypes were constructed using genotyped and imputed common 

variants (MAF > 0.2) in combination with rare MYBPC3 variants (p.Arg502Trp, 

p.Trp792ValfsTer41 and c.1224–52G > A) derived from gene panel data (HCM cases) or 

exome data (UKBB controls), in PLINK (version 1.90b3). HCM cases were limited to those 

individuals in whom a pathogenic or likely pathogenic variant in a core sarcomere gene had 

previously been identified (n = 851). Controls were drawn from the UKBB (n = 19,851). 

Haplotype structure was evaluated using a maximum likelihood method in Haploview 

(version 4.2)54. Given the presence of numerous zero-value genotype counts, multiple 

logistic regression association analysis was performed using the R logistf function. This 

method was used to model the independent effects of a rare pathogenic variant and a 

common variant on HCM risk while allowing for linkage disequilibrium between the two 

variants.

GRS.

After removing SNPs showing extreme pleiotropy or extreme ancestral bias (see 

Supplementary Note), a GRS that combined independent (that is, in linkage equilibrium) 

SNPs identified through the conditional analysis of the multi-ancestry meta-analysis was 

first tested in a component GWAS (HCMR versus UKBB) then validated in three 

independent studies: GeL (REC: 14/EE/1112); the RBH’s HCM case–control series; and a 

Netherlands HCM case–control series (Supplementary Table 16). Individuals recruited to 

both a discovery cohort and a validation cohort were identified and excluded from the 

validation cohort (51 individuals from the RBH series and 24 individuals from the 

Netherlands series). The cumulative genetic effect of the SNPs was calculated for each 

individual using the allelic scoring function in PLINK. The relative weight assigned to each 

SNP was the β estimate from the multi-ancestry meta-analysis joint model COJO 

(conditional and joint) results. Raw GRSs were plotted and evaluated before standardizing 

the GRS distribution to a mean of 0 and a variance of 1. A logistic regression model was 

fitted with affection status as the outcome variable and standardized GRS score as an 
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explanatory variable, with covariates including the first ten principal components, age and 

gender. Cases from each validation dataset were dichotomized based on the presence of a 

rare causal variant in an established sarcomere gene into sarcomere-positive and sarcomere-

negative cases (see Supplementary Note).

Expressivity analysis.

The two predominant classes of pathogenic HCM variants are MYBPC3 truncating variants 

and MYH7 missense variants, the mechanisms of which have been previously 

demonstrated55,56. The most frequently detected pathogenic variant, present in ~2% of HCM 

cases, is MYBPC3R502W. Variants classified using American College of Medical Genetics 

and Genomics guidelines as pathogenic or likely pathogenic in MYBPC3 and MYH7 were 

identified33,57. Ensembl’s Variant Effect Predictor was used to define variant consequences. 

Truncating variants included frameshift, stop gained and splice acceptor/donor variants.

For individuals in the HCMR cohort, maximum wall thickness measurements were derived 

from cardiac magnetic resonance (CMR) imaging (either 1.5 or 3.0 T) performed using a 

standardized protocol, multichannel phased-array chest coils and electrocardiographic 

gating, as previously reported8.

Variant carriers for MYBPC3R502W were identified in both the HCMR and UKBB cohorts. 

In the UKBB cohort, heterozygous MYBPC3R502W carriers, who had also undertaken 

UKBB-based CMR imaging, were identified using array-based genotypes (n = 12). Exome 

sequence data were available for six of these individuals; in all cases, the presence of 

MYBPC3R502W was confirmed, supporting previous analysis indicating that UKBB-based 

genotyping for MYBPC3R502W was satisfactory58,59. Demographic and phenotypic details 

were reviewed for MYBPC3R502W carriers, including International Classification of 

Diseases 10th Revision classifications and self-reported co-morbidities for HCM codes 

(I421 and I422). MYBPC3R502W carriers were age and sex matched 1:1 with a non-variant 

carrier from a sample of unrelated UKBB participants who had undertaken exome 

sequencing and CMR imaging and demonstrated no potentially disease-causing variant (that 

is, no HCM-associated variant of uncertain significance, likely pathogenic variant or 

pathogenic variant) or a previous diagnosis, reported via Hospital Episode Statistics data, 

that might confound CMR analyses (Supplementary Table 23). Long- and short-axis cine-

tagged CMR data, generated by the UKBB as previously reported, were reviewed by an 

investigator blinded to variant carrier status, to minimize bias, when reporting maximum left 

ventricular wall thickness60. A linear regression model was used to approximate the effect of 

a standardized GRS (mean of 0 and variance of 1) against maximum left ventricular wall 

thickness in mm.

Mendelian randomization.

Mendelian randomization uses the random meiotic segregation of alleles to assess whether 

an association between a risk factor and an outcome is consistent with a causal effect. Two-

sample Mendelian randomization leverages data from large-scale GWASs to infer causal 

relationships between two heritable traits. Observational data suggest several modifiable risk 

factors that may influence the phenotypic variability observed in HCM18,19,61,62. Genome-
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wide-significant loci for blood pressure (systolic blood pressure and DBP)21, body mass 

index/waist-to-hip ratio22 and type 2 diabetes20 were identified, and summary statistics were 

collated as instrumental variables. Effect alleles were harmonized between instrumental 

variables and the HCM summary statistics. Analyses were performed using MR-Base63. The 

corresponding SNPs were extracted from the sarcomere-positive and sarcomere-negative 

summary statistics and Mendelian randomization estimates generated using fixed and 

random-effects inverse-variance-weighted Mendelian randomization. Sensitivity analysis to 

test for horizontal pleiotropy was performed using MR-Egger, while analysis to test for 

robustness was performed by unweighted and weighted median regression. β values and 

standard errors were compared, for all risk factors, between sarcomere-positive and 

sarcomere-negative HCM. Additional two-sample Mendelian randomization was performed 

to further evaluate the relative effect of DBP on HCM, relative to other well-established risk 

factor–disease relationships (Supplementary Table 20).

Functional mapping and annotation.

Functional annotation of GWAS summary statistics was undertaken using FUMA (version 

1.3.5e) (https://fuma.ctglab.nl/snp2gene)6 to link genotypes, eQTLs and chromatin 

interactions. Tissue enrichment was performed using MAGMA (version 1.07)—a gene-level 

analysis tool provided by FUMA—with tissue expression data from GTEx (version 8.0) 

(https://www.gtexportal.org/home)7. eQTLs were evaluated in heart tissue (atrial appendage 

and left ventricle). Chromatin interaction data were evaluated in left and right ventricular 

tissue, derived from previously reported Hi-C data (GSE87112)64.

Functional GWAS.

Functional GWAS (fGWAS) is software that assesses the enrichment of functional sites 

(such as histone marks and methylation data) within GWAS summary statistics65. fGWAS 

then uses these enrichment parameters to fine-map and re-weight GWAS loci.

Using multi-ancestry HCM meta-analysis summary statistics, fGWAS was performed using 

chromatin marks (enhancers, flanking/active transcription start sites (TSSs), active TSSs, 

genetic enhancers, repressed Polycomb, bivalent enhancers, transcription at the 5′ and 3′ 
ends of the gene, flanking/bivalent TSSs/enhancers and bivalent/poised TSSs) from the 

ChromHMM dataset of the Roadmap Epigenomics Project, for cardiac tissues (left ventricle 

(E095), fetal heart (E083), right ventricle (E105) and right atrium (E104))66,67. Enrichment 

estimates were generated for each tissue type, together with a list of loci below a 5% FDR 

significance threshold.

Reporting Summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Data availability
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Fig. 1 |. Study design for the HCM genome-wide association analysis.
Two independent HCM GWASs were performed before fixed-effects inverse-variance meta-

analysis was conducted. Genetic risk scores (GRSs) were generated and stratified by 

sarcomere variant status. The findings were validated using three independent cohorts (GeL, 

RBH and the Netherlands cohort (Amsterdam, Rotterdam and Groningen)). Two-sample 

Mendelian randomization was performed, stratified by sarcomere variant status, to provide 

insight into heritable risk factors for HCM. SNP heritability (h2
g) estimates were compared 

between component GWASs using GReML-LDMS and stratified by sarcomere variant 

status. Standard errors for h2
g estimates are presented in parentheses.
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Fig. 2 |. Validation of an HCM GRS.
A GRS was generated from 27 SNPs with <5% FDR and weighted by the β estimate from 

the multi-ancestry meta-analysis joint model GCTA results. The GRS was evaluated in all-

comers, sarcomere-positive and sarcomere-negative HCM cases, in three validation cohorts. 

a, A quintile-based analysis demonstrates the protective effects of the GRS in the lowest 

20% of the population compared with the middle 60%. Similarly, the upper 20% show 

increased susceptibility towards a risk of developing HCM compared with the middle 60%. 

b, To facilitate comparison between other GRSs, a per-standard deviation estimate is 

reported. In a and b, ORs (x axis) are reported, with error bars denoting 95% CIs. The 

validation cohorts included GeL (n = 435 HCM cases versus n = 36,500 controls), RBH (n = 

359 HCM cases versus n = 1,211 controls) and the Netherlands cohort (n = 975 HCM cases 

versus n = 2,117 controls).
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Fig. 3 |. Relationship between standardized GRS and maximum left ventricular wall thickness.
Linear regression was performed to assess the most frequently observed HCM variant 

classes: truncating variants in MYBPC3; MYH7 missense variants; and the most frequently 

observed pathogenic variant (MYPBC3R502W). a, Carriers of pathogenic or likely 

pathogenic MYBPC3 truncating variants (n = 232; β = 0.71 ± 0.35; P = 0.048). b, Carriers 

of pathogenic or likely pathogenic MYH7 missense variants (n = 186; β = 0.73 ± 0.35; P = 

0.036). c, Carriers of the most frequently observed pathogenic variant in HCM, 

MYBPC3R502W (n = 48; β = 1.61 ± 0.80; P = 0.051) evaluated in HCMR cases (n = 36) and 

participants from the UKBB (n = 12). Linear regression lines are denoted in blue, with 95% 

Cls in gray. P values are uncorrected for multiple testing.
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Fig. 4 |. Two-sample inverse-variance-weighted Mendelian randomization identifies modifiable 
risk factors for HCM.
a, Effect of presumed risk phenotypes, based on previous observational evidence, on 

sarcomere-positive (n = 871) and sarcomere-negative (n = 1,635) HCM. ORs are represented 

per standard deviation for systolic blood pressure (SBP), DBP, body mass index (BMI) and 

waist-to-hip ratio adjusted for BMI (WHRadjBMI). The error bars represent 95% CIs. As 

type 2 diabetes is a binary phenotype, risk is represented as the per log-odds unit of type 2 

diabetes. b, Relative impact of DBP on sarcomere-positive and sarcomere-negative HCM 
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susceptibility in relation to other established hypertension-associated phenotypes. The OR 

was measured per standard deviation of DBP (11.3 mmHg). The error bars represent 95% 

CIs. Ischemic stroke reflects all TOAST subtypes. Numbers of cases and controls, 

respectively, were as follows: 47,309 and 930,014 for heart failure; 65,446 and 522,744 for 

atrial fibrillation; 9,006 and 454,450 for cardioembolic stroke; 60,341 and 454,450 for 

ischemic stroke; 74,124 and 824,006 for type 2 diabetes; 64,164 and 625,219 for chronic 

kidney disease; and 122,733 and 424,528 for coronary artery disease.
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