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Umberto Dianzani1, Roberta Cavalli2, and Chiara Dianzani2

1Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases, UPO, Novara, Italy, 2Department of Drug Science and

Technology, University of Torino, Torino, Italy, 3Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy,
4Department of Clinical and Biological Sciences, University of Torino, Torino, Italy, 5Department of Chemistry, University of Torino, Torino, Italy, and
6Department of Medical Sciences, University of Torino, Torino, Italy

Abstract

Anaplastic carcinoma of the thyroid (ATC) is a lethal human malignant cancer with median
survival of 6 months. To date, no treatment has substantially changed its course, which makes
urgent need for the development of novel drugs or novel formulations for drug delivery.
Nanomedicine has enormous potential to improve the accuracy of cancer therapy by
enhancing availability and stability, decreasing effective doses and reducing side effects of
drugs.
Camptothecin (CPT) is an inhibitor of DNA topoisomerase-I with several anticancer properties
but has poor solubility and a high degradation rate. Previously, we reported that CPT
encapsulated in b-cyclodextrin-nanosponges (CN-CPT) increased solubility, was protected from
degradation and inhibited the growth of prostate tumor cells both in vitro and in vivo. The aim
of this study was to extend that work by assessing the CN-CPT effectiveness on ATC both in
vitro and in vivo.
Results showed that CN-CPT significantly inhibited viability, clonogenic capacity and cell-cycle
progression of ATC cell lines showing a faster and enhanced effect compared to free CPT.
Moreover, CN-CPT inhibited tumor cell adhesion to vascular endothelial cells, migration,
secretion of pro-angiogenic factors (IL-8 and VEGF-a), expression of b-PIX, belonging to the Rho
family activators, and phosphorylation of the Erk1/2 MAPK.
Finally, CN-CPT significantly inhibited the growth, the metastatization and the vascularization of
orthotopic ATC xenografts in SCID/beige mice without apparent toxic effects in vivo. This work
extends the previous insight showing that b-cyclodextrin-nanosponges are a promising tool for
the treatment of ATC.
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Introduction

Thyroid cancers are the most common tumors of endocrine

origin and their incidence has increased globally over the past

10 years (Jemal et al., 2011). They derive from follicular and

para-follicular cells and most of them are differentiated

papillary and follicular carcinomas, while 1% of cases are

partly differentiated or undifferentiated and classified as

anaplastic thyroid carcinoma (ATC). Most differentiated

carcinomas display slow progression and are effectively

treated with thyroidectomy and radioiodine ablation

(Broecker-Preuss et al., 2015). By contrast, ATC progression

is extremely rapid and no effective systemic therapy has been

established so that the overall survival level is only 13%

(Gilliland et al., 1997). At the time of diagnosis, ATC often

display an advanced stage of development, local invasion of

the trachea, esophagus, blood vessels and muscles and

development of distant metastases to the mediastinum, lung,

liver, bone and brain (Phay & Ringel, 2013; Chen et al., 2014;

Mirrielees et al., 2014; Varinot et al., 2014). Risk factors for

thyroid cancers include environmental and genetic factors,

exposure to ionizing radiation and preexisting thyroid

neoplasia (Campanella et al., 2014). Genetic alterations

that contribute to thyroid carcinoma include point mutations
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of BRAF and RAS (Fukushima & Takenoshita, 2005;

Marotta et al., 2011); translocations involving RET/PTC1,

RET/PTC3 and PAX8/PPAR-g (Romei & Elisei, 2012;

Raman & Koenig, 2014) and alterations of the DNA

methylation pattern (Ragazzi et al., 2014; Faam et al., 2015).

To date, no effective therapies are available for ATC,

which are currently treated with trivalent therapies including

surgery, chemotherapy and radiotherapy resulting in an

increased median survival of only 5 months (Wein &

Weber, 2011; Parenti et al., 2014).

Camptothecin (CPT) is a pentacyclic alkaloid isolated from

the bark of Camptotheca acuminata, (Wall et al., 1996). It

quickly enters into cells and exerts antitumor activity by

blocking topoisomerase-1 (TOP-1) in a specific and reversible

manner. Unfortunately, it is weakly soluble in water and

undergoes spontaneous and rapid inactivation at neutral pH by

the opening of its six-member lactone E ring. Therefore, it

requires a prolonged infusion, so that the complex TOP-1 is kept

in place long enough to allow the induction of DNA damage

(Fassberg & Stella, 1992; Chourpa et al., 1998). Moreover, its

dosage and antitumor efficacy are limited by severe side effects,

such as severe myelosuppression accompanied by prolonged

diarrhea, fever, nausea and vomiting (Basili & Moro, 2009).

The main water-soluble derivatives of CPT are the irinotecan

(Compostar�) and topotecan (Hycamtin�).

To overcome problems in administering the drug, we

previously investigated the antineoplastic effects of CPT

loaded into nanosponges of b-cyclodextrin (CN-CPT)

(Gigliotti et al., 2016a). Results showed that CN-CPT

increased solubility was protected from degradation and

inhibited the growth of prostate tumor cells both in vitro and

in vivo to a higher extent than free CPT. Cyclodextrin

nanosponges are novel biocompatible polymer nanoparticles

obtained by cross linking of cyclodextrins (Subramanian

et al., 2012), which are cyclic oligosaccharides consisting of

multiple a-D-glucopyranose units linked together by an a-1.4

bond and include a-, b- and g-cyclodextrins carrying six,

seven or eight glucopyranose units, respectively.

b-Cyclodextrin is the most widely used for nanosponge

production because of its high capability to encapsulate drugs

(Torne et al., 2013; Trotta et al., 2014).

The aim of this study was to extend that work by assessing

the CN-CPT effectiveness on ATC both in vitro and in vivo.

Results showed that CN-CPT inhibited the growth of ATC

cell lines both in vitro and in vivo to a higher extent than free

CPT. Moreover, it inhibited tumor cell adhesion to endothelial

cells and migration which suggest that it may be effective also

to inhibit tumor metastatic dissemination.

Methods

Materials

CPT was purchased from Sigma-Aldrich (Sigma-Aldrich,

St Louis, MO). b-Cyclodextrins (b-CDs) were a gift from

Roquette (France). CD nanosponges (CNs) cross linked at 1:4

molar ratio with carbonyldiimidazole were prepared

as described previously (Swaminathan et al., 2010). All

reagents were of analytical grade. Laboratory reagents were

from Sigma-Aldrich unless otherwise specified. Cell culture

reagents were purchased from Gibco/Invitrogen (Life

Technologies, Paisley, UK) except where otherwise indicated.

Preparation of CPT in solution and camptothecin-
loaded nanosponges (CN-CPT)

To prepare the CPT solution, about 1 mg of CPT was

dissolved in 1 mL of dimethylsulfoxide (DMSO):water mix-

ture (1:1, w/w) at pH¼ 5.5. A further dilution was carried out

using 0.9% NaCl solution at pH¼ 5.5 containing 30% of

DMSO.

To load CPT in CNs, 4 mg of CPT were added to an

aqueous suspension of CNs in a ratio of 1:4 (drug to CN by

weight) at pH 5.5 and stirred for 24 h in the dark. The aqueous

suspension was then centrifuged at 8000 rpm for 10 min to

separate the free drug, not incorporated, as a solid residue

below the colloidal supernatant. The colloidal supernatant

was freeze-dried to obtain drug-loaded nanosponges as a

powder. This powder can be stored at 4 �C until use.

A weighed amount of freeze-dried CN-CPT was dispersed

in a sterile aqueous solution at pH 6.0 containing 0.9% NaCl

and 3% polyethylene glycol (PEG)-400 w/v under stirring to

obtain an isotonic aqueous nanosuspension containing

100 mgmL�1 of CPT for the in vivo administration. For

the free CPT formulation, a weighed amount of CPT was

dissolved in a DMSO:water mixture (1:1, w/w) at pH¼ 5.5

and then diluted with a sterile aqueous solution at pH 6.0

containing 0.9% NaCl and 3% PEG-400 w/v to obtain a

100 mgmL�1 concentration. The quantitative determination of

CPT concentration in the formulations was evaluated by

HPLC (Swaminathan et al., 2010).

CN-CPT sizes and polydispersity indices were measured by

dynamic light scattering using a 90 Plus particle sizer

(Brookhaven Instruments Corporation, Holtsville, NY)

equipped with MAS OPTION (Brookhaven Instruments

Corporation, Holtsville, NY) particle sizing software. The

measurements were made at a fixed angle of 90� for all samples.

The samples were suitably diluted with filtered distilled water

for every measurement. Zeta potential measurement was then

carried out using an additional electrode in the same instrument.

For zeta potential determination, samples were diluted with

0.1 mM KCl and placed in the electrophoretic cell, where an

electric field of about 15 V/cm was applied.

The in vitro release was carried out using multicompart-

ment rotating cells with a dialysis membrane (Sartorius,

cutoff 12 000 Da). The donor phase consisted of CPT–

nanosponge formulation in phosphate buffer at pH 7.4 (1 mL).

The receiving phase consisted of phosphate buffer, pH 7.4.

The receiving phase was completely withdrawn and replaced

with fresh medium after fixed time intervals, suitably diluted

and analyzed using the HPLC method described before.

CN-CPT showed an average diameter of about 350 nm, a

polydispersity index of 0.11 and a negative surface charge

with a zeta potential value of �27.4 mV. The in vitro release

kinetics of CPT from nanosponge formulation was slow and

prolonged over time, reaching 15.5% after 24 h.

Cells

Human umbilical vein endothelial cells (HUVEC) were

isolated from human umbilical veins by collagenase treatment
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(1%) and cultured in M199 medium with the addition of 20%

fetal calf serum (FCS) 100 UImL�1 penicillin, 100 mgmL�1

streptomycin, 5 UImL�1 heparin, 12 mgmL�1 bovine brain

extract and 200 mM glutamine. HUVEC were grown to con-

fluence in flasks and used from the second to the fifth passage.

Use of HUVEC was approved by the Ethics Committee of the

‘‘Presidio Ospedaliero Martini’’ of Turin and conducted in

accordance to the Declaration of Helsinki. Written informed

consent was obtained from all donors.

The study was performed on two ATC cell lines, BHT-101

and CAL-62. Cells were purchased from Deutsche Sammlung

von Mikroorganismen and Zellculturen (Braunschweig,

Germany), which certifies the origin and identity of the

cells. The cell lines were grown in culture dishes as a

monolayer in RPMI 1640 medium plus 10% FCS, 100 UmL�1

penicillin, and 100 mgmL�1 streptomycin at 37 �C in a 5%

CO2 humidified atmosphere (Schweppe et al., 2008).

Cell viability assay

CAL-62 and BHT-101 cells (1� 103/well) were seeded in 96-

well plates and incubated at 37 �C, 5% CO2, for 24 h. Then,

cells were treated with different concentrations of CN-CPT or

CPT (2� 10�10–2� 10�8 M). After 24–48 h of incubation,

viable cells were evaluated by 2,3-bis[2-methoxy-4-nitro-

5sulfophenyl]-2 H-tetrazolium-5carboxanilide (MTT) inner

salt reagent at 570 nm, as described by the manufacturer’s

protocol. The controls (i.e. cells that had received no drug)

were normalized to 100%, and the readings from treated cells

were expressed as % of viability inhibition. Eight replicates

were used to determine each data point and five different

experiments were performed.

Colony-forming assay

CAL-62 and BHT-101 cells (800/well) were seeded into six-

well plates and treated with the compounds (10�10–10�8 M).

The medium was changed after 72 h and cells were cultured

for additional 10 days. Subsequently, cells were fixed and

stained with a solution of 80% crystal violet and 20%

methanol. Colonies were then photographed and counted with

a Gel Doc equipment (Bio-Rad Laboratories, Hercules, CA).

Then, cells were washed and 30% acetic acid were added to

induce a complete dissolution of the crystal violet.

Absorbance was recorded at 595 nm by a 96-well-plate

ELISA reader. Five different experiments were performed.

Cell adhesion assay

HUVEC were grown to confluence in 24-well plates. Then,

they were pretreated with increasing concentrations of CPT or

CN-CPT (10�11–10�8 M) for 24 h and washed twice with

fresh medium. The tumor cells (1� 105 cells/well) were

seeded and left to adhere with HUVEC for 1 h, as previously

reported (Minelli et al., 2012a, 2012b). Unattached tumor

cells were washed away and the number of adherent cells was

evaluated by the Image Pro Plus Software for micro-imaging

(Media Cybernetics, version 5.0, Bethesda, MD). Viability of

the unattached cells was evaluated by the Trypan Blue test.

Data are shown as percentage of the inhibition of treated cells

versus the control adhesion measured on untreated cells; the

control adhesion was 48 ± 4 cells per microscope field (n¼ 6)

for BHT-101 cells and in a similar range (44 ± 5 cells) for

CAL-62 (mean ± SEM) (Dianzani et al., 2010).

Cell motility assay

In the wound-healing assay, after starvation for 18–24 h in

serum-free medium, cells were plated onto six-well plates

(106 cell/well) and grown to confluence. Cell monolayers

were wounded by scratching with a pipette tip along the

diameter of the well, and they were washed twice with serum-

free medium before their incubation with culture medium in

the absence or presence of CPT or CN-CPT (10�8 M) and

mitomycin C (50 mgmL�1, Sigma-Aldrich, St Louis, MO). In

order to monitor cell movement into the wounded area, five

fields of each wound were photographed immediately after

the scratch (0 h) and after 24 h (Dianzani et al., 2014; Gigliotti

et al., 2016a).

In the Boyden chamber (BD Biosciences, San Jose, CA)

invasion assay, cells (8000) were plated onto the apical side of

50 mgmL�1 Matrigel-coated filters (8.2 mm diameter and

0.5 mm pore size; Neuro Probe, Inc.; BIOMAP snc, Milan,

Italy) in serum-free medium with or without increasing

concentration of the drugs (2� 10�9–2� 10�8 M). Medium

containing 20% FCS was placed in the basolateral chamber as

a chemo attractant. After 24 h, cells on the apical side were

wiped off with Q-tips. Cells on the bottom of the filter were

stained with crystal violet and counted (five fields of each

triplicate filter) with an inverted microscope. Data are shown

as percentages of the inhibition of treated cells versus the

control migration measured on untreated cells. Control

migration was 52 ± 4 cells per microscope field (n¼ 5) for

BHT-101 cells and 66 ± 5 for CAL-62 (Occhipinti et al.,

2013).

ELISA assay

CAL-62 or BHT-101 cells (1� 105/well) were plated in 24-

well plates and treated with CPT or CN-CPT (10�11–10�8 M)

for 48 h. CPT and CN-CPT were replenished every 24 h (48 h

culture: 24 + 24 h) without changing the culture medium.

Cell-free supernatants were collected and concentrations of

Interleukin-8 (IL-8), vascular endothelial growth factor a
(VEGF-a) and angiopoietin 2 were measured by ELISA

according to the instructions of the manufacturers (IL-8,

eBioscience, SanDiego, CA; VEGF-a and angiopoietin 2,

R&D Systems, Minneapolis, MN). Absorbance was detected

with a microplate reader (Bio-Rad Laboratories, Hercules,

CA), and the Excel program was used to calculate the

standard curve.

Protein extraction and western blot analysis

Cells were seeded into six-well plates and treated for 48 h with

CPT or CN-CPT (10�8–10�9 M). CPT and CN-CPT were

replenished every 24 h (48 h culture: 24 + 24 h) without

changing the culture medium. Cells were then lysed in a

buffer composed of 50 mM Tris-HCl pH 7.4, 150 mM NaCl,

5 mM EDTA, 1% sodium deoxycholate, 1% Nonidet P-40,

0.1% SDS, phosphatase and protease inhibitor cocktail. Cell

lysates were cleared from insoluble fractions by high-speed
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centrifugation, and protein concentration was determined with

a commercially available kit (Bio Rad Laboratories, Hercules,

CA) and measured with a spectrophotometer (Jasco Analytical

Instruments, Easton, MD). Proteins (40 mg) were loaded on

10% SDS-PAGE gels and transferred onto nitrocellulose

membranes after electrophoresis. These were blocked by

incubation for 1 h at room temperature with 5% nonfat milk

dissolved in TBS-Tween 20. The membranes were then probed

overnight with antibodies to b-PIX (AdipoGen International,

San Diego, CA), pospho-Erk1,2 (Santa Cruz Biotechnology,

Dallas, TX), or b-actin (Sigma-Aldrich, St Louis, MO) and,

after three washes, incubated for 1 h with the HRP-conjugated

secondary antibody antibody antibody (Sigma-Aldrich, St

Louis, MO). Bands were detected by chemiluminescence, and

densitometric analysis was performed with the Multi-Analyst

software (version 1.1, Bio-Rad Laboratories, Hercules, CA).

Cell-cycle analysis

Cells (1.5� 105) were treated with CPT or CN-CPT as

reported earlier. After 48 h, adherent and nonadherent cells

were collected, washed in PBS and fixed in 75% ice-cold

ethanol and subsequently resuspended in a buffer containing

0.02 mgmL�1 RNase A (Worthington Biochemical

Corporation, Lakewood, NJ), 0.05 mgmL�1 propidium

iodide (BD Biosciences, San Jose, CA), 0.2% v/v Nonidet

P-40, 0.1% w/v sodium citrate. Samples were analyzed with a

FACSCalibur cytometer (BD Biosciences, San Jose, CA).

Annexin V staining and caspase-3 activity

Cells (1.5� 105) were treated with CPT or CN-CPT as

reported earlier. After 48 h, they were stained with annexin V

using the Annexin V Fluos kit (BD Biosciences, San Jose,

CA) and analyzed by flow cytometry. Live cells were those

not displaying shrunken/hypergranular morphology and

unstained by AnnexinV. Caspase-3 activity was assessed in

cell lysates using a fluorimetric assay (MBL, Watertown,

MA) following the manufacturer instructions.

In vivo animal models and tumor growth

Animal studies were performed in accordance with EU and

institutional guidelines approved by the Bioethics Committee

for Animal Experimentation of the University of Turin, Italy

(Prot. No. 4.2/2012) using NOD-SCID IL2Rgnull (NSG; 10/

11-week-old female) mice, bred under sterile conditions in

our animal facilities. Animals were anesthetized with intra-

muscular injection of Zoletil� (Zolaxepan and Tiletamina)

and Rompun� (Xylazina). CAL-62 cells were harvested from

subconfluent cultures by trypsinization and washed in PBS.

Then, cells (106 cells in 10 mL) were injected into the right

thyroid lobe under surgical sterile conditions and tumors were

allowed to grow during the following 10 days. Mice were then

randomized into three groups receiving twice weekly intra-

venous injection of PBS (control group, n¼ 5) or 1 mgkg�1

CPT (n¼ 7) or 1 mgkg�1 CN-CPT (n¼ 7).

Mice were weighed twice weekly and sacrificed when the

animals appeared moribund. Tumor growth velocity (Tv) was

determined using the formula: Tv¼V/days from cells injec-

tion to excision.

Tumors and lungs were fixed in 10% formalin and paraffin

embedded. Four serial sections/tumor were obtained and

processed for immunohistochemistry using an automated

slide processing platform (Ventana BenchMark XT

AutoStainer, Roche) and a mouse monoclonal anti-human

Ki-67 (Clone MIB-1) or a rabbit polyclonal anti-mouse CD31

(Abcam, Cambridge, UK) antibodies. Sections of lungs were

stained with hematoxylin and eosin (H&E).

Ki-67-positive cells were heterogeneously distributed

throughout the tumor. The Ki67-labeled nuclei were

evaluated in the tumor areas where these markers were

predominant (hot spots) using a digital camera (Olympus

Q-colour 3, Tokyo, Japan) with area-based image analysis

software (Dot-Slide 1.2 version, Tokyo, Japan). Ki-67

expression was calculated as the ratio between the labeled

and the total nuclear areas. Only nuclei with a strongly

positive label were counted. The 10 fields with the highest

density of positive nuclei were captured. A mean of 3000

tumor cells per case (range 2000–3800) was counted.

Tumor microvessel density (TMD) was measured by

evaluating the CD31-positive area and total tumor area

per field upon slide after scan (Panoramic midi II, 3 D

Histech, Budapest, Hungary) of the immunostaining, as

previously described (Gigliotti et al., 2016a; Passaro et al.,

2016).

Data analysis

Data are shown as mean ± standard error of the mean (SEM).

Statistical analyses were performed with GraphPad Prism 5.0

software (San Diego, CA). For the in vivo experiments,

the results are expressed as the median with interquartile

range. One-way ANOVA was performed, followed by

Tukey’s multiple comparison post-test when needed.

Kaplan–Meier survival curves were evaluated with the log

rank Mantel-Cox test. Only p values 50.05 were considered

to be significant.

Results

CN-CPT inhibits cell proliferation in vitro

We compared the ability of CN-CPT and free CPT to inhibit

the growth of BHT-101 and CAL-62 in vitro. Cells were

cultured in the presence and absence of titrated amounts

(2� 10�10–2� 10�8 M) of each compound for 24–48 h and

the amount of viable cells was then assessed by the MTT

assay. Figure 1 shows that CN-CPT inhibited the growth of

both cell lines to a higher extent than CPT. The effect was

concentration- and time-dependent with small differences

between the two cell lines. The different effect of the two

compounds was detectable in terms of timing, maximal

inhibition, and effective doses.

To validate these findings, we performed clonogenic

survival assays. Cells were seeded onto six-well plates and

treated with titrated doses (10�10–10�8) of each compound.

The culture medium was changed after 72 h, and cells were

cultured for 10 additional days in the absence of the

compounds. Results showed that treatment with CN-CPT

inhibited the ability to form colonies of both cell lines to a

higher extent than CPT (supporting information, Figure S1).
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The effect was concentration dependent with small differ-

ences between the two cell lines. The different effect of the

two compounds was detectable in terms of effective doses

but not in terms of maximal inhibition that was similar at the

highest dose.

To assess whether inhibition of cell proliferation induced

by CN-CPT-affected cell-cycle progression, we analyzed the

cell cycle in CAL-62 and BHT-101 cells cultured in the

presence and absence of titrated amounts of CN-CPT or CPT

(10�9 and 10�8 M) for 48 h. Results showed that both doses of

CN-CPT induced a substantial accumulation of cells in S

phase compared to the untreated control in both cell lines.

This effect was exerted also by CPT but only at the highest

dose (Figure 2).

To assess whether inhibition of cell proliferation induced

by CN-CPT involved cell death, we analyzed Annexin V

staining, detecting both apoptotic and necrotic cells, and

caspase 3 activation, detecting apoptosis, in CAL-62 and

BHT-101 cells cultured in the presence and absence of titrated

amounts (10�9 and 10�8 M) of CN-CPT or CPT for 48 h.

Results showed that CN-CPT induced higher Annexin V

staining and caspase 3 activation than CPT in both cells lines

(Figure 3).

CN-CPT inhibits cell adhesion and migration in vitro

Adhesion of tumor cells to the vascular endothelium and their

release into the bloodstream is a key step for metastasis

formation (Ma & Waxman, 2008). Therefore, we performed

in vitro experiments comparing the effect of CN-CPT and

CPT on adhesion to HUVEC and motility of tumor cells.

In the adhesion experiments, HUVEC were pretreated for

24 h with titrated doses (10�11 and 10�8 M) of CN-CPT and

CPT, washed, and used for adhesion assays with CAL-62 and

BHT-101 cells. Results showed that CN-CPT inhibited

adhesion of both cell lines at higher levels than CPT. The

effect was concentration dependent with small differences

between the two cell lines. The different effect of the two

compounds was detectable in terms of both effective doses

and maximal inhibition (Figure 4A–B). The difference was

not due to an effect on cell viability since cells were still alive

after the 24-h incubation with the drug.

Cell motility was initially assessed using a wound healing

assay evaluating cell random migration. A linear scratch was

done in confluent monolayers of CAL-62 and BHT-101 cells,

which were then cultured in FCS-free medium to minimize

cell proliferation in the presence or absence of CN-CPT and

CPT (10�8 M). Analysis of the cell ability to migrate into the

Figure 1. Inhibition of cell viability following CPT or CN-CPT treatments. CAL-62 (A, B) or BHT-101 (C,D) cells (1� 103/well) were treated with the
indicated concentrations of drug for 24–48 h. Results are expressed as % of viability inhibition of control and shown as mean ± SEM (n¼ 5). *p50.05,
**p50.01 significantly different from the same concentration of CPT.
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scratch after 24 h showed that CN-CPT inhibited adhesion of

both cell lines at higher levels than CPT (supporting

information, Figure S2). Then, cell motility was assessed

using a Boyden chamber assay assessing directional migration

of cells. CAL-62 and BHT-101 cells were seeded in the upper

chamber of a Boyden chamber in serum-free medium in the

presence or absence of titrated doses (2� 10�9 and

2� 10�8 M) of CN-CPT and CPT and allowed to migrate

for 24 h toward the lower chamber containing medium with

and without 20% FCS, used as a chemoattractant. Results

showed that CN-CPT inhibited cell migration at higher levels

than CPT in both cell lines (Figure 4C–D). The CN-CPT

effect was concentration dependent with small differences

between the two cell lines, whereas CPT displayed some

effect on CAL-62 cells but it was almost ineffective on BHT-

101 cells.

In both migration assays, doses and timing of treatments

minimized the possible confounding effects due to the drug

effect on cell growth.

CN-CPT inhibits VEGF-a and IL-8 secretion in vitro

Since ATC cells express high levels of pro-angiogenic

molecules (Jayasooriya et al., 2011; Passaro et al., 2016),

we evaluated the effect of the drugs on secretion of VEGF-a,

IL-8 and angiopoietin 2. CAL-62 and BHT-101 cells were

incubated with titrated doses (10�11–10�8 M) of CN-CPT or

CPT for 48 h. Then, secretion of VEGF-a, IL-8 and

angiopoietin 2 was evaluated by ELISA in the culture

supernatants. Results showed that the ATC cells produced a

substantial amount of these factors and CN-CPT inhibited the

secretion of VEGF-a and IL-8 compared to the free drug at

the same concentrations (supporting information, Figure S3).

No differences were found for angiopoietin 2 secretion (data

not shown).

CN-CPT inhibits b-PIX expression and ERK1,2

phosphorylation in vitro

In order to investigate the mechanisms underlying CN-CPT-

mediated inhibition of cell proliferation, adhesion and

migration, we evaluated the effect of the drug on expression

of b-PIX, involved in rearrangement of the cytoskeleton and

cell migration and on Erk1,2 phosphorylation involved in

signaling of multiple surface receptors (Kim et al., 2013;

Occhipinti et al., 2013; Dianzani et al., 2014; Stevens et al.,

2014; Gigliotti et al., 2016b). CAL-62 and BHT-101 cells

were incubated with titrated doses (10�9 and 10�8 M) of CN-

Figure 2. Induction of cell-cycle arrest by CPT or CN-CPT treatment. CAL-62 (A, B) and BHT-101 (C, D) cells (1.5� 105) were treated or not with
CPT or CN-CPT (10�8 and 10�9 M) for 48 h and cell cycle was then assessed by flow cytometry. CPT and CN-CPT were replenished every 24 h (48 h
culture: 24 + 24 h) without changing the culture medium. Graphs show: (A, C) the % of cells in each cycle phase detected in one representative
experiment, (B, D) the % of cells in S phase cycle expressed as means ± SEM (n¼ 3). Each experiment was performed in triplicate. xxp50.01,
significantly different from untreated cells; *p50.05, **p50.01, significantly different from treated cells at the same drug concentration.
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CPT or CPT for 48 h, lysed and analyzed for b-PIX expression

and Erk1,2 phosphorylation by Western blot. Results showed

that CN-CPT inhibited b-PIX expression and Erk1,2 phos-

phorylation at higher levels than CPT in both cell lines

(Figure 5).

In vivo studies

We compared the effect of CN-CPT and CPT tumor growth

and metastatic dissemination in NSG mice injected orthoto-

pically in the thyroid lobe with CAL-62 cells and treated

10 days later with twice weekly injections of PBS, CPT or

CN-CPT in the tail vein. Results showed that the overall

survival of mice treated with CN-CPT was higher than that

displayed by mice injected with either PBS or CPT (Figure

6A). In particular, median survivals of mice treated with PBS,

CPT and CN-CPT were 28, 25 and 38 days, respectively. The

difference of survival between the CN-CPT group and the

control group was significant (p¼ 0.0422, log-rank test).

Analysis of tumor growth velocity showed that CN-CPT

significantly inhibited the growth velocity of orthotopic

anaplastic thyroid carcinoma xenografts compared to the

control group, whereas CPT had no effect (Figure 6B).

Analysis of lung metastases showed that CN-CPT signifi-

cantly inhibited development metastases compared to the

control group, whereas CPT had no effect (Figure 6C).

Histologic analysis of the primary tumor showed that, in

control mice, the tumors displayed diffuse necrosis whereas,

in CN-CPT-treated mice, tumors displayed decreased necro-

sis, and in CPT-treated mice an intermediate picture.

Immunohistochemical staining, performed 34 days after

tumor challenge showed that Ki-67+ cells were homoge-

neously distributed in the tumor mass in PBS- and CPT-

treated mice, whereas, they were concentrated at the invasive

edge in the peripheral area of the tumor, but rare in the center

of the tumor, in CN-CPT-treated mice (Figure 6D). This

enrichment of Ki67+ cells was detected also at 51 days after

tumor challenge (Figure 6E). To assess the effects on tumor

angiogenesis, we stained the tumor sections for CD31 and

evaluated the TMD. Results showed that treatment with

CN-CPT substantially decreased the TMD compared with

untreated mice and CPT-treated mice, whereas CPT had no

effect (Figure 6F).

All treatments were well tolerated by the animals without

significant weight loss in any group.

Figure 3. Proportions of Annexin-V-positive cells and levels of caspase-3 activity after CPT or CN-CPT treatment. Annexin-V-positive cells (A, B) and
caspase-3 activity (C, D) was evaluated in CAL-62 (A, C) and BHT-101 (B, D) cells cultured for 48 h in the presence or absence of CPT or CN-CPT.
CPT and CN-CPT were replenished every 24 h (48 h culture: 24 + 24 h) without changing the culture medium. Results are expressed as % of Annexin-V-
positive cells and relative caspase activity %, calculated as result displayed by each treatment/the results displayed by untreated cells (n¼ 5). xp50.05;
xxp50.01, significantly different from untreated cells; *p50.05; **p50.01, significantly different from treated cells at the same drug concentration.
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Discussion

ATC is a highly aggressive tumor with a poor prognosis and

the long-term survival is extremely rare. To date, available

therapies do not significantly improve the survival of patients

and have only a palliative effect (Patel & Shaha, 2006;

Cornett et al., 2007).

CPT belongs to the drug category of inhibitors of DNA

TOP-1 by specifically blocking TOP-1 during the cleavage

reaction of DNA and preventing repair of the single-strand

breaks. This effect produces blocking of cells in the S phase

of the cell cycle, conversion of DNA breaks from single to

double helix and death of cells by apoptosis (Huang et al.,

2000; Desai et al., 2001; Minelli et al., 2012a). Several studies

demonstrated CPT activity in tumors of various origins, but

CPT did not reach clinical use because of its numerous side

effects. Moreover, its use is restricted by poor solubility and

stability at physiological pH, at which CPT undergoes

spontaneous inactivation due to opening of the E ring,

decreased bioavailability and enhanced side effects. Several

strategies have been described to improve the CPT activity

and to decrease the side effects in several type of cancers

(Acevedo-Morantes et al., 2013; Xie et al., 2016; Yang et al.,

2016).

Previously, we have reported that CN-CPT displays

increased solubility, is protected from degradation and

displays an enhanced inhibitory effect on prostate tumor

cells both in vitro and in vivo (Fassberg & Stella, 1992;

Chourpa et al., 1998; Minelli et al., 2012a, 2012b; Gigliotti

et al., 2016a).

This work extends those observations to ATC showing that

CN-CPT displays increased inhibitory effects in vitro on cell

proliferation, as assessed by the MTT and clonogenic assay

and increased ability to block the cell cycle into the S phase

and to induce apoptosis. These effects may be ascribable to

the inhibitory activity of CPT on TOP-1. Moreover, a role

may be played also by inhibition of Erk 1,2 phosphorylation

since constitutive activation of MAPK signaling is involved in

cell survival and proliferation in several cancers, including

thyroid cancer (Lim & Cha, 2011; Perri et al., 2015). It is

noteworthy that inhibitors of the MAPK pathway may

increase the efficacy of radioiodine therapy in cancer with

BRAF mutations (Knauf et al., 2009).

Figure 4. Effect of CPT and CN-CPT on cells adhesion and cell migration of CAL-62 and BHT-101 cell lines. (A,B) HUVEC were treated or not
treated with CPT or CN-CPT for 24 h, washed and used in the adhesion assay with untreated CAL-62 (A) and BHT-101 (B) cells (1� 105/well). The
data are presented as percentage of inhibition of the adhesion of treated cells compared to control (untreated cells). Each experiment was performed in
triplicate. Data shown are means ± SEM (n¼ 5). *p50.05; **p50.01 significantly different from the same concentration of CPT. (C,D) In the Boyden
chamber assay, CAL-62 (C) and BHT-101 (D) cells were plated onto the apical side of Matrigel-coated filters in the presence and absence of either CPT
or CN-CPT, and FCS 20% was loaded in the basolateral chamber as a chemotactic stimulus. Data are expressed as mean ± SEM (n¼ 5) of the
percentage of inhibition versus control migration **p50.01 significantly different from the same concentrations of CPT.

DOI: 10.1080/10717544.2017.1303856 Enhanced cytotoxic effect of camptothecin nanosponges in ATC cells 677



The in vitro experiments demonstrated that CN-CPT also

shows increased ability to inhibit endothelial cells adhesive-

ness to ATC cells and migration of ATC cells, similarly to

what we previously showed for prostate cancer cells. This

activity might be related to the ability of CN-CPT to

downmodulate expression of b-Pix involved in negative

regulation of formation of focal adhesions, which may

enhance formation of lamellipodia and cell motility (Kim

et al., 2013; Occhipinti et al., 2013; Dianzani et al., 2014;

Stevens et al., 2014).

The in vivo experiments using the SCID xenograft

orthotopic model implanted with CAL-62 cells substantially

supported these findings since treatment with CN-CPT

was more effective than the free drug in improving mice

survival and decreasing tumor growth and metastatization at a

dose (1 mgkg�1) that did not display any substantial side

effects.

Beside the effect on cell proliferation, apoptosis, adhesion

and migration, the antitumor CN-CPT activity may also

involve inhibition of tumor neoangiogenesis as suggested by

the CN-CTP ability to inhibit VEGF-a and IL-8 secretion in

ATC cells lines in vitro and tumor vascularization in vivo. We

previously showed that CN-CPT, but not free CPT, inhibits

proliferation and migration of endothelial cells, proteolytic

degradation of the extracellular matrix, and in several in vitro

models of angiogenesis, inhibited tumor neoangiogenesis in

mouse models of prostate cancer (Gigliotti et al., 2016a).

Solid tumors cannot grow beyond a certain size, generally

1–2 mm3, without being supported by tumor neoangiogenesis

(Li et al., 2012), that plays a key role also for metastatic

dissemination of cancer cells. Another point is that the higher

in vivo activity of CN-CPT compared to free CPT may be

partly due to its ability, displayed by most nanoparticles, to

accumulate in tumors because of the enhanced permeation

and retention effect across the atypical highly fenestrated

blood vessels of the tumor (Wang & Thanou, 2010).

The greater size of the necrotic core detected in the tumors

of the control group compared to those of the CN-CPT-treated

group may be ascribed to the faster growth of the former that

may prevent adequate nutrition of the tumor core. The finding

that the tumors of CN-CPT-treated mice contained a high

density of Ki67+ cells at the invasive edge suggests that the

antiproliferative activity of the drug has limited effects in this

area of the tumor. However, the CN-CPT effect might be

potentiated by combination of CN-CPT with surgery and

radiation, since the multimodality approach represents the

standard treatment of choice in ATC (Denaro et al., 2013) and

the striking CN-CPT effect on tumor metastatization may be

crucial to implement the effect of those therapies. The safety

(Gigliotti et al., 2016a) and the cheap cost of CN-CPT are also

to be considered.

Conclusions

In conclusion, the antineoplastic activity of CN-CPT may

result from the combination of the antiproliferative effect

Figure 5. Effect of CPT and CN-CPT on b-PIX expression and Erk1,2 phosphorylation in CAL -62 (A), and BHT-101 (C). Cells were treated with CPT
or CN-CPT (10�8 and 10�9 M) for 48 h. CPT and CN-CPT were replenished every 24 h (48 h culture: 24 + 24 h) without changing the culture medium.
The same blots were probed with anti b-actin antibody as a control. (A, C): Western blot analysis from a representative experiment. (B, D):
Densitometric analysis of b-PIX expression and Erk1,2 phosphorylation expressed in arbitrary units; data are expressed as means ± SEM (n¼ 3) and
shown as % of the controls. xp50.05 significantly different from untreated cells; *p50.05 significantly different from treated cells at the same
concentration.
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associated with the increase in apoptosis in the tumor cells,

the inhibition of migration, invasion and metastatization, and

the inhibition of the neoplastic neovascularization. Therefore,

the anticancer activity of CN-CPT, without evident toxicity,

opens up therapeutic perspectives for the ATC, which does

not respond to conventional therapy. Translational and

clinical studies will ultimately determine the clinical utility

and safety of CN-CPT, used alone or in combination with

other chemotherapics, as an option for the treatment of this

kind of tumor.
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