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Abstract
In December 2019, a new outbreak in Wuhan, China has attracted world-wide attention, the
virus then spread rapidly in most countries of the world, the objective of this paper is to inves-
tigate the mathematical modelling and dynamics of a novel coronavirus (COVID-19) with
Caputo-Fabrizio fractional derivative in the presence of quarantine and isolation strategies.
The existence and uniqueness of the solutions for the fractional model is proved using fixed
point iterations, the fractional model are shown to have disease-free and an endemic equilib-
rium point.We construct a fractional version of the four-steps Adams-Bashforth method as
well as the error estimate of this method. We have used this method to determine the numer-
ical scheme of this model and Matlab program to illustrate the evolution of the virus in some
countries (Morocco, Qatar, Brazil and Mexico) as well as to support theoretical results. The
Least squares fitting is a way to find the best fit curve or line for a set of points, so we apply
this method in this paper to construct an algorithm to estimate the parameters of fractional
model as well as the fractional order, this model gives an estimate better than that of classical
model.

Keywords Caputo-Fabrizio derivative · COVID-19 · SEIR epidemic model · Fractional
differential equations · Fractional Adams–Bashforth method

Mathematics Subject Classification 65D05 · 65R20 · 26A33 · 93E24

Introduction

In December 2019, an unidentified virus was found in Wuhan, Hubei province, China. The
responsible virus was later confirmed as a new coronavirus [23]. The World Health Orga-
nization (WHO) temporarily named the virus as the novel coronavirus 2019 (2019-nCoV),
and the disease as coronavirus disease 2019 (COVID-19) on 11 February 2020. The first
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confirmed case of the virus was discovered on 17 November 2019 in Hubei. As of 5 July
2020, more than 11.1 million cases have been reported in 188 countries in the world, which
resulted in more than 528,000 deaths. Over 6.03 million people recovered [57].

The progress of fractional calculus in the last few years has been very rapid due to its appli-
cability in many fields, such as physical problems [15,23,51,58], engineering mechanics [9],
epidemiologicalmodels [6,14,17,18,26,29,44,45,47], image processing [28,59], chaos theory
[10,52] andothers. There are in the literature several definitions of the fractional derivative, the
most famous of these is the definition ofCaputo, Riemann-Liouville,Grünwald–Letnikov and
Hadamard derivative, the new operators with non-singular kernels appear in this domain of
mathematics, namely the Caputo-Fabrizio derivative [19] and the Atangana-Baleanu-Caputo
derivative [8].

A number of epidemiological models with fractional derivative have been developed to
understand the transmission dynamics of COVID-19 and other infectious diseases outbreak
from various aspects. We mention them, Kumar et al. [33] have been studied fractional
SIRS-SI model describing the transmission of malaria disease by using the Caputo–Fabrizio
fractional operator. Tuan et al. [53] studied amathematicalmodel for COVID-19 transmission
by using the Caputo fractional derivative. Singh et al. [49] studied the numerical solution
of SEIAR model with Grünwald-Leitnikov derivative. Abdo et al. [1] have investigated
the mathematical model of novel coronavirus (COVID-19) depending of fourteen nonlin-
ear FDEs with Atangana-Baleanu-Caputo fractional derivative. Peter et al. [42] investigated
a fractional order mathematical model of COVID-19 in Nigeria using Atangana-Aaleanu
derivative. Ahmad et al. [2] Studied the fractional model and dynamics of COVID-19 in
Pakistan using Atangana Baleanau operators. Nisar et al. [41] Proposed a SIRD model of
COVID-19with Caputo fractional derivative. Rezapour et al. [44] presented a newmathemat-
ical model for the transmission of Zika virus between humans as well as between humans and
mosquitoes using Caputo derivative. Baleanu et al. [16] proposed a new fractional model for
human liver involvingCaputo– Fabrizio derivative. Rezapour et al. [43] studied the fractional-
ordermodel for the anthrax disease between animals based on theCaputo–Fabrizio derivative.
Dokuyucu and Dutta [26] examined the Ebola virus model using the fractional derivative and
the integral operator proposed by Caputo and Fabrizio. Area et al. [6] have been studied the
classical and Caputo fractional order SEIR (susceptible, exposed, infections, removed) Ebola
epidemic model and its comparison with real data. Tulu et al. [54] developed the Caputo frac-
tional mathematical model of the Ebola virus with a quarantine strategy and the presence
of the vaccine, using both the Euler method and one of the top ten most influential algo-
rithms known as Markov Chain Monte Carlo (MCMC) method. Singh et al. [48] have been
studied the fractional epidemiological model for computer viruses using Caputo-Fabrizio
fractional derivative. Singh et al. [47] studied the diabetes model and its complications with
the CF-fractional derivative. Mohammadi et al. [38] used Caputo–Fabrizio fractional deriva-
tive to model hearing loss in children caused by the mumps virus. Higazy [30] suggested a
SIDARTHE model for COVID-19 pandemic by using Caputo fractional derivative. Zhang
et al. [63] applied the fractional SEIRD Model to the real data of the COVID-19 for China
using Caputo fractional derivative. Some other outstanding studies of COVID-19 by frac-
tional derivative have been made in [4,5,7,24,31,34,37,46,60,62].

Always when a new virus appears, researchers look for effective ways to control the virus,
including vaccination, isolation, and quarantine. In the absence of the vaccine, the isolation
and quarantine strategies remain effective tomitigate and eliminate the impact of the virus (see
[12,20–22,27,64]). In this current study, we modify the general SEIR epidemiological model
for the effects of isolation and quarantine strategies on COVID-19 transmission, to become
a fractional order model of type Caputo-Fabrezio fractional derivative. The main objective
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in this work is to provide a new discussion and new tools for developing epidemiological
models with Caputo-Fabrizio derivative, this work is motivated by all these results that prove
the efficiency of fractional derivative, to our best knowledge, such problem has never been
studied previously for the fractional case. We will start this article in the theoretical part by
proving the existence and uniqueness of the solutions, then wewill determine the equilibrium
and the basic reproduction number of the model. We construct a fractional version of the
four-steps Adams-Bashforth method as well as the error estimate of this method.

In machine learning, the Least squares fitting is a way to find the best fit curve or line for a
set of points, so we apply this method in this paper to construct an algorithm to estimate the
parameters of fractional model as well as the fractional order, this model gives an estimate
better than that of classical model. The paper is organized as follows. In Section 2, we
present the basic theory of the Caputo-Fabrizio derivative. The clasical and fractional model
are formulated in Section 3. The basic roprodoction number and the disease-free equilibrium
are given in Section 4. The fixed point iterations is applied to prove existence and uniqueness
results in Section 5. Using fractional m-step Adams-Bashforth scheme with CF derivative,
the numerical solution of the proposed model is obtained in Section 6. Simulation results are
presented in Section 7. Finally, the present work is concluded in Section 8.

Preliminaries

Recalled here some background material for the Caputo-Fabrizio fractional derivatives, see
[3,19,32] for details.

Definition 1 ([19])Letu ∈ H1(a, b), b > a, 0 < α < 1, the time fractionalCaputo-Fabrizio
fractional differential operator is defined by

C F Dα
t u(t) = M(α)

(1 − α)

∫ t

a
exp

[
−α(t − x)

1 − α

]
u′(x)dx, t ≥ 0.

where M is a normalization function which depends on α and gives M(0) = M(1) = 1,
where C F Dα

t u(t) = 0, if u is a constant function. The definition is also written if the function
does not belong to H1(a, b)

C F Dα
t (u(t)) = αM(α)

1 − α

∫ t

a
(u(t) − u(x)) exp

[
−α(t − x)

1 − α

]
dx .

The corresponding integral was described by Jorge and Juan [32].

Definition 2 ([32]) Let 0 < α < 1, then the CF fractional integral operator of order α given
by

C F I α
t u(t) = 2(1 − α)

(2 − α)M(α)
u(t) + 2α

(2 − α)M(α)

∫ t

0
u(s)ds, t ≥ 0.

Model Formulation

In more detail, we have studied a fractional SEIR epidemiological model with quarantine and
isolation strategies. The total population is divided into seven groups, namely susceptible (S),
exposed (E), infectious but not yet symptomatic, infectiouswith symptoms (I ) and recovered
(R) compartments, as well as quarantined susceptible (Sq), quarantined exposed (Eq) and
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Fig. 1 Schematic diagram of the model compartments and parameters

isolated infected (Iq) compartments. Where susceptible individuals can be quarantined at a
rate of δs and then returned to the pool of susceptible individuals once it is determined they
are uninfected at a rate of δq . The unquarantined susceptible individuals, if infected, move to
the compartment E at a rate of β(I +q E)where β is the transmission incidence rate and q is
the fraction of transmission rate for exposed, also the exposed individuals develop symptoms
at a rate σ0 and are assumed to be quarantined at a rate σ1, not only-but also the exposed
quarantined individuals can be isolated at rate qe they also recover after isolation at rate qi .
Likewise the infected symptomatically individuals develop symptoms and can be isolated at
rate γ1, in addition they recover from the disease at rates γ0, finally Λ is the recruitment rate,
μ represent natural death rate and μI show the death rate of infected human individuals with
the coronavirus disease 2019.

The transfer diagram for this model is described by Fig. 1 and the classical version of this
model formulated by the following system of ODEs:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = Λ − βS(I + q E) + δq Sq − (δs + μ)S,

dE
dt = βS(I + q E) − (σ0 + σ1 + μ)E,

dI
dt = σ0E − (γ0 + γ1 + μ + μI )I ,

dR
dt = γ0 I + qi Iq − μR,

dSq
dt = δs S − (δq + μ)Sq ,

dEq
dt = σ1E − (qe + μ)Eq ,

dIq
dt = qe Eq + γ1 I − (qi + μ + μI )Iq ,

(1)

Fractional Model

Now replacing the classical derivative in (1) by Caputo-Fabrizio derivative we obtain by
moment closure, the following system of fractional ODEs :
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dα
t S = Λ − βS(I + q E) + δq Sq − (δs + μ)S,

Dα
t E = βS(I + q E) − (σ0 + σ1 + μ)E,

Dα
t I = σ0E − (γ0 + γ1 + μ + μI )I ,

Dα
t R = γ0 I + qi Iq − μR,

Dα
t Sq = δs S − (δq + μ)Sq ,

Dα
t Eq = σ1E − (qe + μ)Eq ,

Dα
t Iq = qe Eq + γ1 I − (qi + μ + μI )Iq ,

(2)

with the initial conditions S(0) = S0 ≥ 0, E(0) = E0 ≥ 0, I (0) = I0 ≥ 0; R(0) = R0 ≥ 0,
Sq(0) = Sq0 ≥ 0, Eq(0) = Eq0 ≥ 0, Iq(0) = Iq0 ≥ 0 and Dα

t is the Caputo-Fabrizio
fractional operator of order α.

The total population S(t) + E(t) + I (t) + R(t) + Sq(t) + Eq(t) + Iq(t) = N (t). Then

Dα
t N (t) = Dt S(t) + Dt E(t) + Dt I (t) + Dt R(t) + Dt Sq(t) + Dt Eq(t) + Dt Iq(t),

⇒ Dα
t N (t) = Λ − μN (t) − μI

(
I + Iq

)
.

In the absence of the disease, Dα
t N (t) = Λ − μN (t), this shows that the population size N

tends to carrying capacity

Λ

μ
as t → ∞.

Quarantine Reproductive Number and Existence of Equilibrium

The epidemic model (2) has a family of disease-free equilibrium, obtained by setting the
right hand side of the equations in (2) to zero, given by

DF E =
(

S0, E0, I 0, R0, S0
q , E0

q , I 0q
)

,

where E0 = I 0 = R0 = E0
q = I 0q = 0 and

S0 = Λ(δq + μ)

μ(μ + δq + δs)
, S0

q = Λδs

μ(μ + δq + δs)
. (3)

Now using the notation in [56], the non-negative matrix, F , for the new infection terms
and the non-singular M -matrix, V , for the remaining transfer terms are given by

F =

⎛
⎜⎜⎝

qβS βS 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ . (4)

V =

⎛
⎜⎜⎝

σ0 + σ1 + μ 0 0 0
−σ0 γ0 + γ1 + μ + μI 0 0
−σ1 0 qe + μ 0
0 −γ1 −qe qi + μ + μI

⎞
⎟⎟⎠ . (5)

Thus

FV −1 =

⎛
⎜⎜⎝

A B 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ . (6)
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where

A = qβS0

σ0 + σ1 + μ
+ βS0σ0

(σ0 + σ1 + μ)(γ0 + γ1 + μ + μI )
and B = βS0

γ0 + γ1 + μ + μI
.

The effective reproduction number (or quarantine-isolation reproduction number), denoted
by Re, is given by Re = ρ

(
FV −1

)
where ρ denotes the spectral radius. It follows that

Re = βS0[q(γ0 + γ1 + μ + μI ) + σ0]
(σ0 + σ1 + μ)(γ0 + γ1 + μ + μI )

. (7)

The system (2) has a unique endemic steady state

E SS =
(

S∗, E∗, I ∗, R∗, S∗
q , E∗

q , I ∗
q

)
,

where

S∗ = S0

Re
, Sq = δs

δq + μ
S∗, E∗ = Λ(δq + μ) − μ(μ + δs + δq)

(σ0 + σ1 + μ)(δq + δs + μ)

Λ

Re
,

Eq = σ1

qe + μ
E∗, I ∗ = σ

(γ0 + γ1 + μ + μI )
E∗;

I ∗
q = qeσ1(γ0 + γ1 + μ + μI ) + γ1σ0(qe + μ)

(qi + μ + μI )(qe + μ)(γ0 + γ1 + μ + μI )
E∗.

Existence and Uniqueness of a System of Solutions

In this section, we prove the existence of the system of solutions by applying the fixed-point
theorem.

Let H = (C(J ))7, and C(J ) be a Banach space of continuous J ⊂ R → R valued
functions on the interval J with the norm

‖(S, E, I , R, Sq , Eq , Iq)‖ = ‖S‖ + ‖E‖ + ‖I‖ + ‖R‖ + ‖Sq‖ + ‖Eq‖ + ‖Iq‖,
where ‖.‖ denote the supremum norm in C(J ).

Now using the integral operator of fractional order introduced by Losada and Nieto Jorge
and Juan [32] on the system (2), we get

sleectfont

S(t) − S(0) = 2(1 − α)

(2 − α)M(α)
{Λ − βS(t)(I (t) + q E(t)) + δq Sq (t) − (δs + μ)S(t)}

+ 2α

(2 − α)M(α)

∫ t

0
{Λ − βS(x)(I (x) + q E(x)) + δq Sq (x) − (δs + μ)S(x)}dx,

E(t) − E(0) = 2(1 − α)

(2 − α)M(α)
{βS(t)(I (t) + q E(t)) − (σ0 + σ1 + μ)E(t)}

+ 2α

(2 − α)M(α)

∫ t

0
{βS(x)(I (x) + q E(x)) − (σ0 + σ1 + μ)E(x)} dx,

I (t) − I (0) = 2(1 − α)

(2 − α)M(α)
{σ0E(t) − (γ0 + γ1 + μ + μI )I (t)}

+ 2α

(2 − α)M(α)

∫ t

0
{σ0E(x) − (γ0 + γ1 + μ + μI )I (x)} dx,

R(t) − R(0) = 2(1 − α)

(2 − α)M(α)

{
γ0 I (t) + qi Iq (t) − μR(t)

}
,
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+ 2α

(2 − α)M(α)

∫ t

0

{
γ0 I (x) + qi Iq (x) − μR(x)

}
dx,

Sq (t) − Sq (0) = 2(1 − α)

(2 − α)M(α)

{
δs S(t) − (δq + μ)Sq (t)

}

+ 2α

(2 − α)M(α)

∫ t

0

{
δs S(x) − (δq + μ)Sq (x)

}
dx,

Eq (t) − Eq (0) = 2(1 − α)

(2 − α)M(α)

{
σ1E(t) − (qe + μ)Eq (t)

}

+ 2α

(2 − α)M(α)

∫ t

0

{
σ1E(x) − (qe + μ)Eq (x)

}
dx,

Iq (t) − Iq (0) = 2(1 − α)

(2 − α)M(α)

{
qe Eq (t) + γ1 I (t) − (qi + μ + μI )Iq (t)

}

+ 2α

(2 − α)M(α)

∫ t

0

{
qe Eq (x) + γ1 I (x) − (qi + μ + μI )Iq (x)

}
dx .

For simplicity,

Φ1(t, S) = Λ − βS(t)(I (t) + q E(t)) + δq Sq(t) − (δs + μ)S(t),

Φ2(t, E) = βS(t)(I (t) + q E(t)) − (σ0 + σ1 + μ)E(t),

Φ3(t, I ) = σ0E(t) − (γ0 + γ1 + μ + μI )I (t),

Φ4(t, R) = γ0 I (t) + qi Iq(t) − μR(t),

Φ5(t, Sq) = δs S(t) − (δq + μ)Sq(t),

Φ6(t, Eq) = σ1E(t) − (qe + μ)Eq(t),

Φ7(t, Iq) = qe Eq(t) + γ1 I (t) − (qi + μ + μI )Iq(t).

To prove the following theorems, we will assume that ‖S(t)‖ ≤ c1, ‖E(t)‖ ≤ c2, ‖I (t)‖ ≤
c3, ‖R(t)‖ ≤ c4, ‖Sq(t)‖ ≤ c5, ‖Eq(t)‖ ≤ c6, and ‖Iq(t)‖ ≤ c7 where ci , i = 1, . . . , 7, are
some positive constants. Denote

L1 = βc3 + qβc2 + δs + μ, L2 = qβc1 + σ0 + σ1 + μ,

L3 = γ0 + γ1 + μ + μI , L4 = μ, L5 = δs + μ, L6 = qe + μ, L7 = qi + μ + μI .

Theorem 3 The kernels Φi (i = 1, . . . , 7), satisfy the Lipschitz condition and contraction if
the inequality given below holds

0 ≤ Li < 1, for i = 1, . . . 7. (8)

Proof Let S1 and S2 be two functions, then

‖Φ1 (t, S1) − Φ1 (t, S2)‖ = ‖(−β I (t) − qβE(t) − (δs + μ)) (S1 − S2)‖
≤ [β ‖I‖ + qβ ‖E‖ + (δs + μ)] ‖S1(t) − S2(t)‖
≤ (βc3 + qβc2 + δs + μ) ‖S1(t) − S2(t)‖ .

Thus
‖Φ1 (t, S1) − Φ1 (t, S2)‖ ≤ L1 ‖S1(t) − S2(t)‖ . (9)

Hence, for Φ1 the Lipschitz condition is obtained. Similarly for Φ2, Φ3, Φ4, Φ5, Φ6, and
Φ7 the Lipschiz condition can be easily verified and given below:

‖Φ2(t, E1) − Φ2(t, E2)‖ ≤ L2 ‖E1(t) − E2(t)‖ ,
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‖Φ3(t, I1) − Φ3(t, I2)‖ ≤ L3 ‖I1(t) − I2(t)‖ ,

‖Φ4(t, R1) − Φ4(t, R2)‖ ≤ L4 ‖R1(t) − R2(t)‖ ,∥∥Φ5(t, Sq1) − Φ5(t, Sq2)
∥∥ ≤ L5

∥∥Sq1(t) − Sq2(t)
∥∥ ,∥∥Φ6(t, Eq1) − Φ6(t, Eq2)

∥∥ ≤ L6
∥∥Eq1(t) − Eq2(t)

∥∥ ,∥∥Φ7(t, Iq1) − Φ7(t, Iq2)
∥∥ ≤ L7

∥∥Iq1(t) − Iq2(t)
∥∥ ,

�

Now we write the system (2) in the following recursive form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Sn(t) = 2(1−α)
(2−α)M(α)

Φ1 (t, Sn−1) + 2α
(2−α)M(α)

∫ t
0 Φ1 (x, Sn−1) dx,

En(t) = 2(1−α)
(2−α)M(α)

Φ2 (t, En−1) + 2α
(2−α)M(α)

∫ t
0 Φ2 (x, En−1) dx,

In(t) = 2(1−α)
(2−α)M(α)

Φ3 (t, In−1) + 2α
(2−α)M(α)

∫ t
0 Φ3 (x, In−1) dx,

Rn(t) = 2(1−α)
(2−α)M(α)

Φ4 (t, Rn−1) + 2α
(2−α)M(α)

∫ t
0 Φ4 (x, Rn−1) dx,

Sq,n(t) = 2(1−α)
(2−α)M(α)

Φ5
(
t, Sq,n−1

)+ 2α
(2−α)M(α)

∫ t
0 Φ5

(
x, Sq,n−1

)
dx,

Eq,n(t) = 2(1−α)
(2−α)M(α)

Φ6
(
t, Eq,n−1

)+ 2α
(2−α)M(α)

∫ t
0 Φ6

(
x, Eq,n−1

)
dx,

Iq,n(t) = 2(1−α)
(2−α)M(α)

Φ7
(
t, Iq,n−1

)+ 2α
(2−α)M(α)

∫ t
0 Φ7

(
x, Iq,n−1

)
dx .

(10)

The initial conditions are
S0(t) = S(0), E0(t) = E(0), I0(t) = (0), R0(t) = R(0), Sq,0(t) = Sq(0), Eq,0(t) = Eq(0)
and Iq,0 = Iq(0).

Then we get the following expressions for the difference between the successive terms:

W 1
n (t) = Sn(t) − Sn−1(t) = 2(1 − α)

(2 − α)M(α)
(Φ1 (t, Sn−1) − Φ1 (t, Sn−2))

+ 2α

(2 − α)M(α)

∫ t

0
(Φ1 (x, Sn−1) − Φ1 (x, Sn−2)) dx, (11)

W 2
n (t) = En(t) − En−1(t) = 2(1 − α)

(2 − α)M(α)
(Φ2 (t, En−1) − Φ2 (t, En−2))

+ 2α

(2 − α)M(α)

∫ t

0
(Φ2 (x, En−1) − Φ2 (x, En−2)) dx, (12)

W 3
n (t) = In(t) − In−1(t) = 2(1 − α)

(2 − α)M(α)
(Φ3 (t, In−1) − Φ3 (t, In−2))

+ 2α

(2 − α)M(α)

∫ t

0
(Φ3 (x, In−1) − Φ3 (x, In−2)) dx, (13)

W 4
n (t) = Rn(t) − Rn−1(t) = 2(1 − α)

(2 − α)M(α)
(Φ4 (t, Rn−1) − Φ4 (t, Rn−2))

+ 2α

(2 − α)M(α)

∫ t

0
(Φ4 (x, Rn−1) − Φ4(x, Rn−2)) dx, (14)

W 5
n (t) = Sq,n(t) − Sn−1(t) = 2(1 − α)

(2 − α)M(α)

(
Φ5
(
t, Sq,n−1

)− Φ5
(
t, Sq,n−2

))

+ 2α

(2 − α)M(α)

∫ t

0

(
Φ5
(
x, Sq,n−1

)− Φ5(x, Sq,n−2)
)

dx, (15)

123



Int. J. Appl. Comput. Math (2021) 7 :142 Page 9 of 30 142

W 6
n (t) = Eq,n(t) − Eq,n−1(t) = 2(1 − α)

(2 − α)M(α)

(
Φ6
(
t, Eq,n−1

)− Φ6(t, Eq,n−2)
)

+ 2α

(2 − α)M(α)

∫ t

0

(
Φ6
(
x, Eq,n−1

)− Φ6
(
x, Eq,n−2

))
dx, (16)

W 7
n (t) = Iq,n(t) − Iq,n−1(t) = 2(1 − α)

(2 − α)M(α)

(
Φ7
(
t, Iq,n−1

)− Φ7
(
t, Iq,n−2

))

+ 2α

(2 − α)M(α)

∫ t

0

(
Φ7
(
x, Iq,n−1

)− Φ7
(
x, Iq,n−2

))
dx . (17)

Taking the norm on both side of the Eq. (11), applying triangular inequality and using the
Lipschitz condition proved in (9) we obtained

∥∥W 1
n (t)

∥∥ = ‖Sn(t) − Sn−1(t)‖
≤ 2(1 − α)

(2 − α)M(α)
L1 ‖Sn−1 − Sn−2‖ + 2α

(2 − α)M(α)
L1

∫ t

0
‖Sn−1 − Sn−2‖ dx .

Then, we have

∥∥W 1
n (t)

∥∥ ≤ 2(1 − α)

(2 − α)M(α)
L1
∥∥W 1

n−1(t)
∥∥+ 2α

(2 − α)M(α)
L1

∫ t

0

∥∥W 1
n−1(x)

∥∥ dx . (18)

Similarly, for the remaining equations of the system, we obtain the following results:

∥∥W 2
n (t)

∥∥ ≤ 2(1 − α)

(2 − α)M(α)
L2
∥∥W 2

n−1(t)
∥∥+ 2α

(2 − α)M(α)
L2

∫ t

0

∥∥W 2
n−1(x)

∥∥ dx, (19)

∥∥W 3
n (t)

∥∥ ≤ 2(1 − α)

(2 − α)M(α)
L3
∥∥W 3

n−1(t)
∥∥+ 2α

(2 − α)M(α)
L3

∫ t

0

∥∥W 3
n−1(x)

∥∥ dx, (20)

∥∥W 4
n (t)

∥∥ ≤ 2(1 − α)

(2 − α)M(α)
L4
∥∥W 4

n−1(t)
∥∥+ 2α

(2 − α)M(α)
L4

∫ t

0

∥∥W 4
n−1(x)

∥∥ dx, (21)

∥∥∥W 5
n (t)

∥∥∥ ≤ 2(1 − α)

(2 − α)M(α)
L5

∥∥∥W 5
n−1(t)

∥∥∥+ 2α

(2 − α)M(α)
L5

∫ t

0

∥∥∥W 5
n−1(x)

∥∥∥ dx, (22)

∥∥W 6
n (t)

∥∥ ≤ 2(1 − α)

(2 − α)M(α)
L6
∥∥W 6

n−1(t)
∥∥+ 2α

(2 − α)M(α)
L6

∫ t

0

∥∥W 6
n−1(x)

∥∥ dx, (23)

∥∥W 7
n (t)

∥∥ ≤ 2(1 − α)

(2 − α)M(α)
L7
∥∥W 7

n−1(t)
∥∥+ 2α

(2 − α)M(α)
L7

∫ t

0

∥∥W 7
n−1(x)

∥∥ dx, (24)

Immediately, in view of the above results, we state the following theorem.

Theorem 4 The solution of the C F—fractional model given in (2) will exist and be unique
if we can find some t0 such that

2(1 − α)

(2 − α)M(α)
Li + 2αt0

(2 − α)M(α)
Li < 1, for i = 1, 2, . . . , 7. (25)

Proof As the functions S(t), E(t), I (t), R(t), Sq (t), Iq(t) and Eq(t) are bounded and fulfill
Lipschitz condition. So, by considering Eqs. (18)–(24), we obtain the following relations:
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∥∥W 1
n (t)

∥∥ ≤ ‖Sn(0)‖
[

2(1 − α)

(2 − α)M(α)
L1 + 2αt0

(2 − α)M(α)
L1

]n

,

∥∥W 2
n (t)

∥∥ ≤ ‖En(0)‖
[

2(1 − α)

(2 − α)M(α)
L2 + 2αt0

(2 − α)M(α)
L2

]n

,

∥∥W 3
n (t)

∥∥ ≤ ‖In(0)‖
[

2(1 − α)

(2 − α)M(α)
L3 + 2αt0

(2 − α)M(α)
L3

]n

,

∥∥W 4
n (t)

∥∥ ≤ ‖Rn(0)‖
[

2(1 − α)

(2 − α)M(α)
L4 + 2αt0

(2 − α)M(α)
L4

]n

,

∥∥∥W 5
n (t)

∥∥∥ ≤ ∥∥Sq,n(0)
∥∥
[

2(1 − α)

(2 − α)M(α)
L5 + 2αt0

(2 − α)M(α)
L5

]n

,

∥∥W 6
n (t)

∥∥ ≤ ∥∥Eq,n(0)
∥∥
[

2(1 − α)

(2 − α)M(α)
L6 + 2αt0

(2 − α)M(α)
L6

]n

,

∥∥W 7
n (t)

∥∥ ≤ ∥∥Iq,n(0)
∥∥
[

2(1 − α)

(2 − α)M(α)
L7 + 2αt0

(2 − α)M(α)
L7

]n

.

Thus, the proof the existence and continuity of the solutions is completed. To show that
the above functions are solutions of system (2), we set as follows:

S(t) − S(0) = Sn(t) − B1
n (t),

E(t) − E(0) = En(t) − B2
n (t),

I (t) − I (0) = In(t) − B3
n (t),

R(t) − R(0) = Rn(t) − B4
n (t),

Sq(t) − Sq(0) = Sq,n(t) − B5
n (t),

Eq(t) − Eq(0) = Eq,n(t) − B6
n (t),

Iq(t) − Iq(0) = Sq,n(t) − B7
n (t).

Therefore, we have

∥∥B1
n (t)

∥∥ ≤ 2(1 − α)

(2 − α)M(α)
‖(Φ1(t, S) − Φ1 (t, Sn−1))‖

+ 2α

(2 − α)M(α)

∫ t

0
‖(Φ1(y, S) − Φ1 (y, Sn−1))‖ dy,

≤ 2(1 − α)

(2 − α)M(α)
L1 ‖S − Sn−1‖ + 2αt

(2 − α)M(α)
L1 ‖S − Sn−1‖ . (26)

On using this process recursively, it yields

∥∥B1
n (t)

∥∥ ≤
(

2(1 − α)

(2 − α)M(α)
+ 2α

(2 − α)M(α)
t

)n+1

Ln+1
1 c1.

where c1 is a positive constant. Then at t0, we have

∥∥B1
n (t)

∥∥ ≤
(

2(1 − α)

(2 − α)M(α)
+ 2αt0

(2 − α)M(α)

)n+1

Ln+1
1 c1.

Now taking the limit as n tends to infinity, we get∥∥B1
n (t)

∥∥→ 0.
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Repeating the same procedure we obtain∥∥∥Bi
n(t)
∥∥∥→ 0, for i = 2, . . . , 7.

Hence, proof of existence is verified.
Next to show the uniqueness of the solution of the model (2), suppose on the contrary that

there exists another set of solutions S1(t), E1(t), I1(t), R1(t), Sq,1(t), Eq,1(t) and Iq,1(t)
then

S(t) − S1(t) = 2(1 − α)

(2 − α)M(α)
(Φ1(t, S) − Φ1 (t, S1))

+ 2α

(2 − α)M(α)

∫ t

0
(Φ1(y, S) − Φ1 (y, S1)) dy.

Applying norm in the above equation, we get

‖S(t) − S1(t)‖ ≤ 2(1 − α)

(2 − α)M(α)
‖Φ1(t, S) − Φ1 (t, S1)‖

+ 2α

(2 − α)M(α)

∫ t

0
‖(Φ1(y, S) − Φ1 (y, S1))‖ dy.

By employing the Lipschitz condition of kernel, we have

‖S(t) − S1(t)‖ ≤ 2(1 − α)

(2 − α)M(α)
L1 ‖S(t) − S1(t)‖

+ 2α

(2 − α)M(α)
L1t ‖S(t) − S1(t)‖ .

It gives

‖S(t) − S1(t)‖
(
1 − 2(1 − α)

(2 − α)M(α)
L1 − 2α

(2 − α)M(α)
L1t

)
≤ 0.

Clearly S(t) = S1(t) if

1 − 2(1 − α)

(2 − α)M(α)
L1 − 2α

(2 − α)M(α)
L1t > 0. (27)

Employing the same procedure, we get
E(t) = E1(t), I (t) = I1(t), R(t) = R1(t), Sq(t) = Sq,1(t), Eq(t) = Eq,1(t) and

Iq(t) = Iq,1(t).
Hence the solution is unique if condition (25) is satisfied. �


Numerical Scheme

In this Section, we present a numerical solution of the fractional order model (2). Then
The numerical simulations are obtained using the proposed scheme for Adams-Bashforth.
For this purpose we use the fractional m-step Adams Bashforth method to approximate the
CF-fractional integral operator and to obtain an iterative scheme,

Consider the Caputo-Fabrizio fractional differential equation{
C F Dα

t (x(t)) = f (t, x(t)), 0 < α < 1,

x(0) = x0.
(28)
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Now applying the fractional integral to system (28) we get:

x(t) − x(0) = 1 − α

M(α)
f (t, x(t)) + α

M(α)

∫ t

0
f (τ, x(τ ))dτ.

At t = tn+1, and t = tn for n = 1, 2, 3, ..., we have

x (tn+1) − x(0) = 1 − α

M(α)
f (tn, x (tn)) + α

M(α)

∫ tn+1

0
f (τ, x(τ ))dτ, (29)

and

x (tn) − x(0) = 1 − α

M(α)
f (tn−1, x (tn−1)) + α

M(α)

∫ tn

0
f (τ, x(τ ))dτ. (30)

Subtracting (30) from (29), the following equation obtained

x (tn+1) − x (tn) = 1 − α

M(α)
{ f (tn, x (tn)) − f (tn−1, xn−1)} + α

M(α)

∫ tn+1

tn
f (t, x(t))dt .

The function f (t, x(t)) can be approximated over
[
tn, tn+1

]
, for n = 0, 1, 2, ..., and

h = tn+1 − tn using the interpolation polynomial of Lagrange of degree m, we have

f (t, x(t)) ≈ P(t, x(t)) =
n∑

j=n−m

L j (t) f
(
t j , x j

)
,

where L j are the Lagrange functions on the (m +1) points {tn−m, ...., tn−1, tn} and given by

L j (t) =
n∏

k=n−m
k �= j

t − tk
t j − tk

,

Therefore, the integral becomes

∫ tn+1

tn
f (t, x(t))dt ≈

∫ tn+s

tn+s−1

P(t, x(t))dt

=
∫ tn+1

tn

n∑
j=n−m

L j (t) f
(
t j , x j

)
dt

=
n∑

j=n−m

f
(
t j , x j

) ∫ tn+1

tn
L j (t)dt .

Thus

x (tn+1) − x (tn) = 1 − α

M(α)
{ f (tn, x (tn)) − f (tn−1, xn−1)}

+ α

M(α)

n∑
j=n−m

f
(
t j , x j

) ∫ tn+1

tn
L j (t)dt .

This method is known as m-step Adams–Bashforth method, for m = 1 we obtain the
CF-fractional second-order Adams-Bashforth method (see also [11])
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Fig. 2 Graphical representation of numerical solution for susceptible S(t) and Exposed E(t) at various frac-
tional order of the considered model. Parameter values used are as given in Table 1

xn+1 = xn + 2 − 2α + 3αh

2M(α)
f (tn, xn) + 2 − 2α + αh

2M(α)
f (tn−1, xn−1) .

For m = 2 we obtain the CF-fractional three-order Adams-Bashforth method (see also
Moore et al. [39])
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Fig. 3 Graphical representation of numerical solution for Infected I (t) andRecovered R(t) at various fractional
order of the considered model. Parameter values used are as given in Table 1

xn+1 = xn +
(
1 − α

M(α)
+ 23αh

12M(α)

)
f (tn, xn) −

(
1 − α

M(α)
+ 16αh

12M(α)

)
f (tn−1, xn−1)

+ 5αh

12M(α)
f (tn−2, xn−2) .
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Fig. 4 Graphical representation of numerical solution for Susceptible quarantined Sq (t) and Exposed quaran-
tined Eq (t) at various fractional order of the considered model. Parameter values used are as given in Table 1.
The initial conditions are the same of the Section 7.2

For m = 3 we obtain the CF-fractional four-order Adams-Bashforth method

xn+1 = xn +
(
1 − α

M(α)
+ 55αh

24M(α)

)
f (tn, xn) −

(
1 − α

M(α)
+ 59αh

24M(α)

)
f (tn−1, xn−1)

+ 37αh

24M(α)
f (tn−2, xn−2) − 9αh

24M(α)
f (tn−3, xn−3) .
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Fig. 5 Graphical representation of numerical solution for Infected isolated Iq (t) at various fractional order of
the considered model. Parameter values used are as given in Table 1. The initial conditions are the same of
the Section 7.2

It should be noted that when α = 1 this method reduces to the classical Adams–Bashforth
m-step method.

The truncation error for the m-step formula can be estimated by using the error estimate
for the Lagrange interpolating polynomial, namely,

f (t, x(t)) = Pm(t) + Em(t) where

Em(t) =
n∏

j=n−m

(
t − t j

) f (m+1)(ξn, x(ξn))

(m + 1)! ; ξn ∈ [tn−m, tn].

Then we have

∫ tn+1

tn
Em(t)dt = f (m+1)(ξn, x(ξn))

(m + 1)!
∫ tn+1

tn

n∏
j=n−m

(
t − t j

)
dt

a simple calculation shows that the last quantity is bounded by

Cm = chm+2

(m + 1)! .

where c is a constant only depends on f and m.
Now using 4-step fractional Adams–Bashforth scheme to obtain numerical solutions of

the fractional model (2) we get for the first equation in (2) the following scheme:

Sn+1 = Sn + h̃1(α)Φ1 (tn, Sn) + h̃2(α)Φ1 (tn−1, Sn−1) + h̃3(α)Φ1 (tn−2, Sn−2)

+ h̃4(α)Φ1 (tn−3, Sn−3) .

123



Int. J. Appl. Comput. Math (2021) 7 :142 Page 17 of 30 142

Ta
bl
e
1

Pa
ra
m
et
er

of
th
e
m
od
el
us
ed

in
th
e
si
m
ul
at
io
n

Pa
ra
m
et
er
s

D
es
cr
ip
tio

n
V
al
ue

C
on

fid
en
ce

in
te
rv
al

So
ur
ce

Λ
R
ec
ru
itm

en
tr
at
e

0.
00

8
N

−
A
ss
um

ed

β
T
ra
ns
m
is
si
on

in
ci
de
nc
e
ra
te

0.
74

[0.
2,

2]
A
ss
um

ed

δ s
Q
ua
ra
nt
in
e
ra
te
of

su
sc
ep
tib

le
0.
28

[0,
1]

[6
1]

δ q
R
at
e
w
hi
ch

qu
ar
an
tin

ed
su
sc
ep
tib

le
re
tu
rn

to
S

0.
07

1
[0,

1]
[4
0]

q
T
he

fr
ac
tio

n
of

tr
an
sm

is
si
on

ra
te
fo
r
ex
po
se
d

0.
63

[0
,1
]

[6
1]

γ
0

R
ec
ov
er
y
ra
te
of

in
fe
ct
ed

0.
33

[0,
1]

[5
0]

q i
R
ec
ov
er
y
ra
te
of

is
ol
at
ed

in
fe
ct
ed

0.
12

[0,
1]

[5
0]

μ
I

C
O
V
ID

-1
9
D
ea
th

ra
te

0.
00
1

-
A
ss
um

ed

μ
N
at
ur
al
de
at
h
ra
te

0.
00

7
-

[5
5]

γ
1

is
ol
at
io
n
ra
te
of

in
fe
ct
ed

0.
13

[0
,1
]

[5
0]

σ
1

Q
ua
ra
nt
in
e
ra
te
of

ex
po
se
d

0.
16

[0,
1]

A
ss
um

ed

σ
0

R
at
e
of

ex
po

se
d
in
di
vi
du

al
s
to

th
e
in
fe
ct
ed

0.
18

3
[1/

14
,
1/
2]

[1
3,
35

,6
4,
65

]

q e
R
at
e
ex
po
se
d
in
di
vi
du
al
s
to

th
e
is
ol
at
ed

cl
as
s

0.
18

3
[1/

14
,
1/
2]

[1
3,
35

,6
4,
65

]

123



142 Page 18 of 30 Int. J. Appl. Comput. Math (2021) 7 :142

β  Vs δ
s

0 0.5 1 1.5 2

β

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ
s

0

1

2

3

4

5

6

R
0

(a) β versus δs
β  Vs σ

1

0 0.5 1 1.5 2

β

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ
1

0

1

2

3

4

5

6

7

8
R

0

(b) β versus σ1

β  Vs γ
1

0 0.5 1 1.5 2

β

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

γ
1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

R
0

(c) β versus γ1

Fig. 6 Contour shows the variation of Re for different parameter values: a shows the variation of R0 for
different values for β and δs , b shows the variation of R0 for different values for β and σ1 and the lower heat
map c shows the variation of R0 for different values for β and γ1

where

h̃1(α) = 1 − α

M(α)
+ 55αh

24M(α)
; h̃2(α) = −1 − α

M(α)
− 59αh

24M(α)
;

h̃3(α) = 37αh

24M(α)
and h̃4(α) = − 9αh

24M(α)
. (31)

similarly for the other equations, thus, desired numerical approach is obtained for CF-
fractional model.

Numerical Simulation and Calibration of theModel

In this Section, we illustrate the numerical results for the fractionalmodel (2) for different val-
ues of fractional order α to analyze the influence of fractional order on the disease dynamics.
Some numerical simulations with the Caputo–Fabrizio operator for the fractional COVID-19
virus model are presented using the fractional version of Adams-Bashforth four-step method.
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Fig. 7 Illustration of the impact of quarantine rate δs on the dynamics of the infected (I ) for two values of α.
All other parameters are given in the Table 1. The initial conditions are the same of the Section 7.2

Estimation of Model Parameters and Best Fit of Fractional Orders

Themodel calibration problem seeks to estimate themodel parameters which, to some extent,
make the model response as close as possible to the observed values (real data), for that using
the Least Squares method to predict the model parameters.
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Fig. 8 Illustration of the impact of quarantine rate δs on the dynamics of the infected quarantined (Iq ) for two
values of α. All other parameters are given in the Table 1. The initial conditions are the same of the Section
7.2

We consider the model solution u(t) = (S(t), E(t), I (t), R(t), Sq (t), Eq(t), Iq(t)),
depending on the vector of parameters θ = (δs, δq , β, q, σ0, γ0, σ1, γ1, qe, qi , μI ) excepting
μ,Λ and N , which are kept fixed, and the vector X of the observation data at given times
ti , i = 1, . . . n. Let Ψ (u, θ, α) be the function computing the numerical solution u of the
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Fig. 9 Illustration of the impact of quarantine rate σ1 on the dynamics of the infected (I ) for two values of α.
All other parameters are given in the Table 1. The initial conditions are the same of the Section 7.2

fractional differential system (2), the vector of parameters is restricted to be on the convex
set of admissible values Θ = {(θ, α) ∈ R

12/ lb ≤ θ ≤ ub and 0 < α ≤ 1}, such as lb and
ub are lower and upper vector bounds for the model parameter θ respectively.
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Fig. 10 Illustration of the impact of quarantine rate σ1 on the dynamics of the infected quarantined (Iq ) for
two values of α. All other parameters are given in the Table 1. The initial conditions are the same of the Section
7.2

The estimation of the parameter θ is obtained by solving the following non linear least
squares problem by finding a vector of parameter θ∗ such that:

(θ∗, α∗) = argmin
(θ,α)∈Θ

⎧⎨
⎩

n∑
j=1

∣∣X j − Ψ (u j , θ, α)
∣∣2
⎫⎬
⎭ .
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(b) Case α = 0.7

Fig. 11 Illustration of the impact of isolation rate γ1 on the dynamics of the infected (I ) for two values of α.
All other parameters are given in the Table 1. The initial conditions are the same of the Section 7.2

The aim is to minimize the objective function

J (θ, α) = ‖X − Ψ (u, θ, α)‖2 =
n∑

j=1

∣∣X j − Ψ (u j , θ, α)
∣∣2 .
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Fig. 12 Illustration of the impact of isolation rate γ1 on the dynamics of the infected quarantined (Iq ) for two
values of α. All other parameters are given in the Table 1. The initial conditions are the same of the Section
7.2

subject to (θ, α) ∈ Θ and Equation (2) to obtain the best estimate of parameters and the
fractional order α. For more details about least squares method, see for example [25,36].
Now using 4-steps Adams-Bashforth method we get the optimization problem
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(a) Morocco case from 2nd March to 18th June 2020
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(b) Qatar case from 29th Feburary to 2nd July 2020
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(c) Brazil case from 26th Feburary to 2nd July 2020
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(d) Mexico case from 28th Feburary to 2nd July 2020

Fig. 13 Fitting model to data in Morocco, Qatar, Brazil and Mexico (Real data source: WHO report of
COVID-19)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
(

J (θ, α) =∑n
j=1

∣∣X j − Ψ (u j , θ, α)
∣∣2) ,

subject to (θ, α) ∈ Θ,

Ψ (u0, θ, α) = (S0, E0, I0, R0, Sq,0, Eq,0, Iq,0),

Ψ (u1, θ, α) = Ψ (u0, θ, α) + (K1(α) + K2(α)) f (t0, Ψ (u0, θ, α)) ,

Ψ (u2, θ, α) = Ψ (u0, θ, α) + K1(α) f (t0, Ψ (u0, θ, α)) + K2(α) f (t1, Ψ (u1, θ, α)) ,

Ψ (u3, θ, α) = Ψ (u1, θ, α) + K1(α) f (t1, Ψ (u1, θ, α)) + K2(α) f (t2, Ψ (u2, θ, α)) ,

for j = 4 until n calculate

Ψ (u j , θ, α) = Ψ (u j−1, θ, α) + h̃1(α) f
(
t j−1, Ψ (u j−1, θ, α)

)
+h̃2(α) f

(
t j−2, Ψ (u j−2, θ, α)

)+ h̃3(α) f
(
t j−3, Ψ (u j−3, θ, α)

)
+h̃4(α) f

(
t j−4, Ψ (u j−4, θ, α)

)
.

(32)
to obtain the best estimate of parameters and the vector of fractional orders α, where

K1(α) = 2 − 2α + 3αh

2M(α)
, K2(α) = 2 − 2α + αh

2M(α)
,
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the values of h̃i (α), i = 1, 2, 3, 4 are given in (31) and the function f is the right-hand side
of the model (2).

Impact of Fractional Order Derivative

Based on numerical scheme derived in Section 6, we present the graphical results of the
proposed CF fractional model (2) in Figs. 2, 3, 4 and 5 to analyze the influence of fractional
order. We have considered the initial conditions N = 3500001, S(0) = 3500000, I (0) = 1
and E(0) = R(0) = Sq(0) = Eq(0) = Iq(0) = 0.

From the analysis of the obtained graphs, we notice that the population of the infected class
decreases significantly by decreasing the order of the fractional derivative and the endemic
state of the disease goes to the disease-free state in all the cases studied. In addition, the
graphical results of the CF-derivative model reveal that this operator is more significant in
exploring the dynamics of the model and providing more biologically feasible results.

Impact of Quarantined and Isolation Parameters

It is well known that the effective reproduction number (Re) of the fractional model is a very
important parameter in the infectious disease, which determines whether the could spread.
In our model, Re is determined by the parameters given in (3) and (7). In order to identify the
impacts of these parameters on COVID-19 transmission and prevalence, we will discuss the
change in the number of infected individuals with the COVID-19 virus when we change the
values of the controlled parameters, transmission rate (β), quarantine rate of susceptible (δs),
isolation rate of infected individuals (γ1) and quarantine rate of exposed (σ1). All parameter
values for the simulation in this section are given in Table 1.

Firstly, to determine the dependence of the attack rate on the controllable model param-
eters, fixing two of δs, σ1 and γ1 at the specific value (given in Table 1) and varying the
other two parameters (one of the previous four parameters with β), the contour plots of the
quarantine reproduction number are illustrated in Fig. 6.

Figure 6a and 6b show that higher quarantine rate δs and σ1 will reduce R0, then will
help bring R0 < 1, thus prevent the outbreak from happening. On the other hand Fig. 6c
shows that the isolation rate is effective when the transmission rate is high, this is natural
since infected people are those who carry the virus and transmit it to other people in the
population.

In order to compare the effectiveness of quarantine and isolation to reduce the spread of
a virus COVID-19, the model is simulated the impact of using quarantine only as well as
isolation interventions only for a range of values of quarantine and isolation parameters.

Figures 7, 8, 9 and 10 show the effectiveness of the quarantine strategy, similarly Figs. 11
and 12 show the effectiveness of the isolation of infected cases to control the evolution of
viruses.

Table 2 Different values of quarantine reproduction number according to quarantine rate of susceptible indi-
viduals

Values of δq 0.1 0.2 0.3 0.5 0.7 0.9

Values of Re (σ1 = 0.16) 2.1652 1.9290 1.7394 1.4535 1.2484 1.0940

Values of Re (σ1 = 0.36) 1.3778 1.2276 1.1069 0.9250 0.7944 0.6962
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Table 3 Different values of quarantine reproduction number according to quarantine rate of exposed individ-
uals

Vlues of σ1 0.1 0.2 0.3 0.5 0.7 0.9

Values of Re (δs = 0.28) 2.1413 1.5923 1.2673 0.9000 0.6977 0.5697

Table 4 Initial values using in Fig. 13

Country N (0) [57] S(0) E(0) I (0) R(0) Sq (0) Eq (0) Iq (0)

Morocco 36029093 3.3 × 107 9 1 0 3029079 3 1

Qatar 2881053 2 × 106 58 15 0 880978 1 1

Mexico 128929303 1.2 × 108 900 1 0 8928398 3 1

Brazil 212569392 1.6764 × 107 227 9 0 195805154 1 1

FittingModel to Real Data

In this present section we have estimated the important model parameters and the fractional
order α using the infection cases (that are found on the WHO web-page) in Morocco, Qatar,
Brazil and Mexico. The initial conditions used are given in the Table 4, we estimated the
value of the fractional order α for the four countries and we found 0.9533 for the Morocco
model, 0.9418 for Qatar, 0.9906 for Brazil and 0.822 for Mexico. These values show the
importance of the fractional order in the COVID-19 considered model and its influence to
decrease the error of the of least squares method. In addition to making the proposed model
more realistic and obtaining the average values of the acceptable parameters.

Now by analyzing the curves presented in Fig. 13, the importance role of quarantine and
isolation in Morocco and Qatar in reducing the impact of the COVID-19, whilst Mexico
and Brazil did not succeed in applying the quarantine well, which caused an increase in the
number of people infected with the virus. Finally these values are kept low compared to
potential values in the absence of a quarantine and isolation strategy (see Fig. 6, Tables 2 and
3 )

Conclusion

In this manuscript, a Caputo–Fabrizio fractional differential equation model for COVID-19
with quarantine (of susceptible and exposed cases) and isolation (of symptomatic cases) has
been investigate and the effect of each of them was studied. The existence and uniqueness
of the system of solutions of the Caputo-Fabrizio model are established using a fixed-point
theorem and an Picard iterative method. The m-step Adams-Bashforth approach is proposed
to numerically approximate the solutions of the fractional model. We have compared the
numerical simulations with respect to different values of the fractional order α. Finally,
The Method of Least Squares is used to determine the best fit to real data (real data for
Morocco, Qatar, Brazil and Mexico). The paper gives an example of the use of the Caputo–
Fabrizio fractional derivative as a model for real world problems (especially epidemiological
problems).
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