Skip to main content
. 2021 Jun 30;135:104606. doi: 10.1016/j.compbiomed.2021.104606

Table 5.

Regression models comparison by evaluation metrics (MSE, RMSE, MAE, and R2) before and after reduction.

Linear Regression
AdaBoost
Ridge Regression
Simple linear
Regularization
Elastic Net Regression
Before feature reduce. After feature reduce. Before feature reduce After feature reduce Before feature reduce After feature reduce Before feature reduction After feature reduce
Linear Regression Ridge Regression MSE 0.147 0.020 0.931 0.918 0.758 0.502
RMSE 0.135 0.020 0.960 0.942 0.890 0.853
MAE 0.110 0.013 0.986 0.974 0.998 0.994
R2 0.956 0.854 0.045 0.089 0.110 0.162
Simple Linear Regularization MSE 0.853 0.980 0.930 0.918 0.758 0.502
RMSE 0.865 0.980 0.960 0.942 0.890 0.853
MAE 0.890 0.987 0.986 0.974 0.998 0.994
R2 0.044 0.146 0.045 0.089 0.110 0.162
Elastic Net Regression MSE 0.069 0.082 0.070 0.082 0.071 0.291
RMSE 0.040 0.058 0.040 0.058 0.313 0.724
MAE 0.014 0.026 0.014 0.026 0.949 0.980
R2 0.955 0.911 0.955 0.911 0.228 0.213
AdaBoost MSE 0.242 0.498 0.242 0.498 0.929 0.709
RMSE 0.110 0.147 0.110 0.147 0.687 0.276
MAE 0.002 0.006 0.002 0.006 0.051 0.020
R2 0.890 0.838 0.890 0.838 0.772 0.787