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Abstract
Chronic arsenic exposure causes skin cancer, although the underlying molecular mechanisms are not well defined. Altered 
microRNA and mRNA expression likely play a pivotal role in carcinogenesis. Changes in genome-wide differential expres-
sion of miRNA and mRNA at 3 strategic time points upon chronic sodium arsenite (As3+) exposure were investigated in 
a well-validated HaCaT cell line model of arsenic-induced cutaneous squamous cell carcinoma (cSCC). Quadruplicate 
independent HaCaT cell cultures were exposed to 0 or 100 nM As3+ for up to 28-weeks (wk). Cell growth was monitored 
throughout the course of exposure and epithelial-mesenchymal transition (EMT) was examined employing immunoblot. Dif-
ferentially expressed miRNA and mRNA profiles were generated at 7, 19, and 28-wk by RNA-seq, followed by identification 
of differentially expressed mRNA targets of differentially expressed miRNAs through expression pairing at each time point. 
Pathway analyses were performed for total differentially expressed mRNAs and for the miRNA targeted mRNAs at each 
time point. RNA-seq predictions were validated by immunoblot of selected target proteins. While the As3+-exposed cells 
grew slower initially, growth was equal to that of unexposed cells by 19-wk (transformation initiation), and exposed cells 
subsequently grew faster than passage-matched unexposed cells. As3+-exposed cells had undergone EMT at 28-wk. Pathway 
analyses demonstrate dysregulation of carcinogenesis-related pathways and networks in a complex coordinated manner at 
each time point. Immunoblot data largely corroborate RNA-seq predictions in the endoplasmic reticulum stress (ER stress) 
pathway. This study provides a detailed molecular picture of changes occurring during the arsenic-induced transformation 
of human keratinocytes.
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Introduction

Chronic exposure to arsenic, a naturally occurring met-
alloid, adversely affects over 225 million people world-
wide (Naujokas et al. 2013; Podgorski and Berg 2020). 
Arsenic is a Class I multi-organ carcinogen in humans 
(IARC. 2012), skin being the most common target organ 
(Karagas et  al. 2015). Arsenic exposure is the second 
leading cause of skin cancer after UV in sunlight (Surdu 
2014). Arsenic-induced cutaneous squamous cell carci-
noma (cSCC) is common in exposed human populations 
(Banerjee 2011) and is extremely invasive with a high rate 
of recurrence and fatality (Waldman and Schmults 2019). 
Although studied extensively, molecular mechanisms of 
arsenic-induced skin carcinogenesis are still controversial 
[reviewed in (Hunt et al. 2014)].

Lack of animal model systems has hindered under-
standing the events leading up to chronic arsenic exposure 
induced skin cancers. It has never been possible to induce 
skin cancer in rodents with arsenic exposure alone, even at 
exposures of 50 ppm (Tokar 2016), which far exceeds the 
environmental exposure levels human populations encoun-
ter (Ghosh et al. 2007; Gonsebatt et al. 1994; Nigra et al. 
2020).

Epidemiological studies demonstrate that mean blood 
arsenic levels of human populations chronically exposed 
to 100–300 ppb arsenic in drinking water is about 100 nM 
(Gonsebatt et  al. 1994, 1997; Pi et  al. 2000). Primary 
human skin keratinocyte lines transformed through chronic 
exposure to in vivo levels induced by environmentally rel-
evant levels of arsenite (As3+) would be ideal to study 
the molecular mechanisms involved in arsenic-induced 
cSCC. Unfortunately, primary cell lines undergo only 
16–20 passages before they become senescent, too short 
for chronic exposure regimes. The other option is to study 
skin tissues from exposed human populations. A handful 
of studies, including from our group, have employed this 
approach to dissect the underlying mechanisms of arsenic-
induced skin cancers (Al-Eryani et al. 2018a; Guo et al. 
2016). However, one inherent issue with such studies is, 
they look at the endpoint after the transformation has 
occurred, leaving a substantial knowledge gap in under-
standing the molecular events leading up to a transformed 
phenotype. In absence of this knowledge, it is difficult to 
understand if the changes observed are causes or effects 
of transformation.

Most of the current knowledge about arsenic carcino-
genesis is gained from studies on cell line models treated 
with arsenic. Unfortunately, many of the studies have 
used high arsenic concentrations (micromolar to millimo-
lar) and short exposure duration (hours to days). Arsenic 
is well known to have hormetic effects upon a variety of 

molecules and cellular pathways (Calabrese and Baldwin 
2003; Hashmi et al. 2014) making it difficult to extrapolate 
the results meaningfully to chronically exposed popula-
tions. Moreover, most of these studies look at one or few 
endpoints at the end of the exposure regime. Thus, they 
offer only a limited view of the molecules and pathways 
that represent a small fraction of complex interactions and 
dysregulation of multiple networks occurring simultane-
ously upon As3+ exposure.

Fortunately, immortalized human keratinocytes (HaCaT) 
are an in vitro model for normal human keratinocytes (Bouk-
amp et al. 1988) that can be used to study arsenic-induced 
skin cancer (Pi et al. 2008). Pi et al. showed that continuous 
exposure of HaCaT cells for 28-wk to a low level (100 nM) 
of sodium arsenite transformed these cells and resulted in an 
aggressive squamous cell carcinoma phenotype upon inocu-
lation of nude mice (Pi et al. 2008). Previous studies in our 
laboratory showed that chronic As3+ exposure for 7-wk led 
to differential small RNA and mRNA expression (Al-Eryani 
et al. 2017). HaCaT cells chronically exposed to 100 nM 
NaAsO2 were observed to grow slower until 19–20-wk 
when transformation starts (Pi et al. 2008; Sun et al. 2009). 
A third important time point to study in the transforma-
tion path is 28-wk by which time cells are transformed (Pi 
et al. 2008). Importantly, the As3+ exposure used reflects 
the actual mean blood arsenic levels of chronically exposed 
populations (Gonsebatt et al. 1994, 1997; Pi et al. 2000), and 
is thus toxicologically and environmentally relevant. This 
well-established model thus provides an excellent oppor-
tunity to explore the molecular events happening as a func-
tion of time starting from the initiation of exposure through 
to the cells acquiring cSCC phenotype. The current study 
aimed to provide an understanding of the complex interac-
tions of miRNA, mRNA and the pathways and networks they 
regulate at these three critical times during chronic As3+ 
exposure-induced cSCC.

Thus, a longitudinal study was performed to determine 
miRNA and mRNA differential expression in HaCaT cells 
chronically exposed to 100 nM NaAsO2 at 3 time points: 
7-wk (early transformation related changes), 19-wk (start 
of actual transformation) and 28-wk (fully transformed 
cells). Employing a state-of-the-art RNA-seq platform, 
we show that at each time point, a considerable number of 
miRNAs and mRNAs are being differentially regulated in 
As3+-exposed HaCaT cells compared to passage-matched 
unexposed cells. Through expression pairing analysis, we 
show that the differentially expressed mRNAs at each time 
point are targeted by the differentially expressed miRNAs 
at that time point. Furthermore, we demonstrate that at each 
time point pathways known to be involved in carcinogenesis 
are being dysregulated and that these dysregulated pathways 
interact extensively as complex networks. Furthermore, we 
validate the RNA-seq predictions at the protein level through 
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immunoblot for several molecules involved in the endoplas-
mic reticulum (ER) stress pathway. Our study reflects the 
dynamic and temporally labile mechanisms by which major 
biochemical pathways are regulated by chronic As3+ expo-
sure ultimately leading to cSCC.

Materials and methods

Chemicals

Sodium arsenite (NaAsO2; CAS 7784–0698) was obtained 
from Thermo Fisher Scientific Inc. (Waltham, MA, USA). 
Single-thaw aliquots of sodium arsenite were prepared in 
UltraPure™ DNase/RNase-Free Distilled Water (Thermo 
Fisher Scientific Inc.) and were thawed immediately before 
use. MEM alpha modification media, trypsin, ethylene 
diamine tetraacetic acid and penicillin/ streptomycin were 
obtained from Thermo Fisher Scientific Inc. Fetal Bovine 
Serum (characterized) was obtained from Hyclone (Logan, 
UT, USA). All other chemicals were obtained from Thermo 
Fisher Scientific Inc., unless specifically mentioned.

Cell Culture

The HaCaT model of Pi et al. (2008) was adopted for the 
present study. HaCaT cells were the kind gift of Dr. TaiHao 
Quan, University of Michigan. HaCaT cell cultures were 
maintained as independent quadruplicates (4 with and 4 
without 100 nM NaAsO2) for 28-wk. The cells were cul-
tured in MEM alpha modification media supplemented with 
10% fetal bovine serum, 100 units/mL penicillin/100 µg/mL 
streptomycin and 2 mM glutamine. Cultures were main-
tained at 37 °C in a humidified 5% CO2 atmosphere. Cells 
were passaged twice a week and 106 cells were plated per 
100 mm dish every time. At each passage, the total cells 
were counted for calculation of population doubling. Identity 
of cultures as HaCaT cells was confirmed by STR mapping 
(Genetica, Burlington, NC).

Total RNA isolation

In order to isolate total RNA (including mRNA and small 
RNA) from cells harvested at 7, 19 and 28-wk time points, 
mirVana™ RNA isolation kit was employed as described 
previously (Al-Eryani et al. 2018b) following the manu-
facturer’s recommendations. The quality of the isolated 
RNA was determined using the Agilent RNA 6000 Pico 
Kit, Eukaryote, version 2.6 and the Agilent 2100 Bioana-
lyzer instrument (Agilent Technologies, Inc., Santa Clara, 
CA, USA). All samples used had RIN (RNA integrity 
number) > 9.

miRNA library preparation, cluster generation 
and sequencing

Library preparation, cluster generation and sequencing of 
all 24 samples were performed in the Center for Genetics 
and Molecular Medicine (CGeMM) DNA Facility Core at 
the University of Louisville. The Truseq Small RNA kit 
was used to prepare miRNA libraries from 1 μg total RNA. 
Each Library was individually gel purified on a Novex TBE 
6% gel and resuspended in 10 μL 10 mM Tris–HCl, pH 
8.5. Libraries were subsequently validated and quantitated 
by running 1 μL sample on the Agilent Technologies 2100 
Bioanalyzer DNA High Sensitivity Chip. Thirty-six-cycle 
single sequencing reads were generated on the Illumina 
NextSeq500 instrument utilizing the 500 High output v2 
(75 cycle) sequencing kit.

mRNA library preparation, cluster generation 
and sequencing

The Truseq Stranded mRNA kit was used to prepare mRNA 
libraries from 1 μg total RNA. Libraries were validated on 
the Agilent 2100 Bioanalyzer and quantitated using the Illu-
mina Library Quantification Kit, ABI Prism qPCR Mix from 
Kapa Biosystems and the ABI7900HT real-time PCR instru-
ment. All samples were pooled and run simultaneously on 4 
flow cells, using 2 × 150 paired end sequencing with the 500 
High-output v2 (300 cycles) sequencing kit on the Illumina 
NextSeq500 instrument.

Data mapping

Paired end RNA-Seq data were generated for each experi-
mental condition. The data for each replicate were stored, 
trimmed, mapped, and quantified individually. For miRNA, 
the newly generated reads were trimmed using Trimgalore 
(Martin 2011) followed by pre-processing and subsequent 
analysis using miRDeep2 v:0.0.8 (Friedlander et al. 2012). 
The trimmed reads were mapped to the human reference 
genome hg19 (NCBI build 37.1 released 2009) using the 
RNA-Seq mapping software TopHat (Trapnell et al. 2012) 
and annotated transcripts were quantified in units of Frag-
ments Per Kilobase of transcript per Million mapped reads 
(FPKM) using Cufflinks (Trapnell et al. 2012). The gene 
annotation used for the quantification was downloaded from 
ENSEMBL (version 81). All the ribosomal RNA (rRNA) 
and mitochondrial tRNA were removed to ensure that they 
would not influence the derived FPKM values. Further 
details on the pipeline and algorithms used for data mapping 
and analysis are provided in the Supplementary Methods. 
Data have been deposited in the GEO database, accession 
number GSE153057. For analysis of differential expression 
of mRNA, the RNA seq data was first checked for quality 
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control using FastQC v0.11.8 (Wingett and Andrews 2018). 
Data trimming was done using Trimmomatic version 0.38 
(Bolger et al. 2014). Sequence alignment was performed 
by Star 2.6 (Dobin et al. 2013; Dobin and Gingeras 2015) 
against human genome reference from Ensembl (Release 95) 
(Schneider et al. 2017; Zerbino et al. 2018). Feature count 
was done using the R package “Rsubread” (Liao et al. 2013). 
Data have been deposited in the GEO database, accession 
number GSE107054.

RNA‑Seq data analysis

For miRNA, data analysis was performed by comparing 
the log values of the counts generated from the sample 
reads + 0.00001 of exposed cells to the passage matched 
unexposed cells at each time point tested. The fold changes 
of the compared values were calculated using the equation: 
FC = mean (Exposed counts + 0.00001)/mean (Unexposed 
counts + 0.00001). The p-values for these comparisons were 
calculated by two sample t-Test with equal variances (p_
Eq). Differentially expressed miRNA at each time point was 
defined as p_Eq < 0.05. All analyses were obtained using 
SAS System V9. Cary, NC: SAS Institute Inc, 2003. For 
differential expression of mRNA, first genes having 0 val-
ues in all the samples for a single time point were removed 
from the dataset. The remaining data were analyzed for dif-
ferential gene expression employing the R package "edgeR" 
(McCarthy et al. 2012; Robinson et al. 2010). Trimmed 
mean of M values (TMM) was used for normalization of 
the data for all the comparisons (Robinson and Oshlack 
2010), while exact test (exactTest function) was employed 
for testing the significance of the difference in gene expres-
sion (Robinson and Smyth 2008). Differentially expressed 
mRNA molecules were defined as p < 0.01 and FC >  ± 30% 
compared to passage-matched unexposed HaCaT cells.

Pathway analyses

Differentially expressed miRNA (p_Eq < 0.05) and mRNA 
molecules (p < 0.01 and FC >  ± 30%) were analyzed by 
Ingenuity® Pathway Analysis (IPA®) (Qiagen Inc.). IPA® 
core analysis was performed on the differentially expressed 
mRNA dataset to generate a prediction of dysregulated 
canonical pathways at each time point. Pathways with 
− log(p-value) > 1.3 and IZ-scoreI >  ± 1 was used to predict 
activation/inhibition status of the pathways. Z-score > 1 was 
activated, while Z-score < -1 was inhibited. Furthermore, 
differentially expressed mature miRNA molecules at each 
time point (as identified by IPA®) were expression paired 
with differentially expressed mRNA molecules at each time 
point to identify differentially expressed mRNA targets of 
differentially expressed miRNA molecules at each time 
point. IPA® core analysis was subsequently performed on 

the differentially expressed mRNA targets of differentially 
expressed miRNAs dataset to generate a prediction of dys-
regulated canonical pathways at each time point. Figures for 
pathway interactions based on our differentially expressed 
mRNA data were prepared using IPA®.

Immunoblotting

Immunoblotting was performed to examine EMT and the 
protein expression status of selected ER stress pathway 
molecules at all three-time points. Sample preparation, esti-
mation of protein content, and immunoblotting, and image 
acquisition was performed as described previously (Banerjee 
et al. 2020). Details regarding the antibodies used and their 
dilutions are presented in Supplementary Table 1. Raw data 
for densitometric analysis was generated from the images 
employing Image J software (Schneider et al. 2012).

Statistical analysis

Cell population doublings were calculated from total cell 
numbers for each independent culture at each passage. Mean 
cumulative doubling number (along with SD as a measure 
of error) for passage matched unexposed and As3+ exposed 
samples were plotted against time to generate the growth 
curve. The data were analyzed using R (R-Core-Team 2018) 
by two-way ANOVA followed by Tukey’s post-hoc test; 
p-value ≤ 0.05 was considered significant (Tukey 1949). 
Densitometric data for EMT and ER stress markers were 
analyzed using an unpaired two-tailed t-test; p-value ≤ 0.05 
was considered significant. For each molecule at each time 
point, the mean of the unexposed samples was set to 100% 
and data were expressed as % mean unexposed at that time 
point. Densitometric analysis, heat maps, and bar graphs 
were generated using GraphPad Prism 9.0.1 (GraphPad Soft-
ware, San Diego, CA, USA). Venn diagrams were generated 
employing the Venn Diagram Plotter program (https://​omics.​
pnl.​gov/​softw​are/​venn-​diagr​am-​plott​er).

Results

As3+ exposure alters the growth curve pattern 
and induces EMT

The growth curve data are represented in Fig. 1A. Com-
parison of mean cumulative cell doubling in As3+-exposed 
HaCaT cells to corresponding passage matched unexposed 
controls revealed that growth rates of As3+ exposed cells 
were slower at several times points prior to 19-wk. At 19-wk, 
the growth rates of As3+ exposed cells became similar to 
passage matched unexposed cells, while at later time points, 
As3+-exposed cells grew significantly faster. In conjunction 

https://omics.pnl.gov/software/venn-diagram-plotter
https://omics.pnl.gov/software/venn-diagram-plotter
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with changes in the growth pattern, As3+-exposed cells had 
undergone EMT upon 28-wk of exposure (Fig. 1B–E) as 
demonstrated by suppression of epithelial markers (ZO-1, 
β-Catenin and E-Cadherin) and concomitant induction of 
mesenchymal markers (Slug and N-Cadherin). Interestingly, 
even at 19-wk of exposure, ZO-1 was suppressed, and Slug 
induced (Fig. 1B, D). These data together with alteration 
in cell growth rate strengthen the notion that As3+-exposed 
cells begin transforming around 19-wk.

As3+ exposure induces differential miRNA and mRNA 
expression pattern with time

More than 50 miRNAs were differentially expressed 
between As3+-exposed and unexposed HaCaT cells at each 

time point, with the most (124) at 19-wk (Fig. 2A–C). Data 
on individual differentially expressed miRNAs at each time 
point are presented in Supplementary Table 2. Longitudinal 
comparison showed that most of the differentially expressed 
miRNAs were unique to one-time point (Fig. 2B–C) only, 
with relatively few miRNAs being differentially expressed 
at two-time points (irrespective of induction or suppression 
status). Only one miRNA (hsa-miR-6733) was represented 
at all three-time points and was consistently suppressed 
(Fig. 2B–C; Supplementary Table 2). These data indicate 
that the miRNA landscape is markedly different at each 
phase of transformation.

Examination of the mRNA data revealed that 2706, 972 
and 539 molecules were differentially expressed in As3+ 
exposed cells compared to passage matched unexposed cells 

Fig. 1   Chronic As3+ exposure leads to altered growth rate and EMT. 
A Impact of As3+ exposure on cumulative HaCaT cell population 
doubling. Quadruplicate independent HaCaT cell cultures were incu-
bated with 0 or 100 nM As3+

. Population doublings were calculated 
and the means ± SD of cumulative doubling at each passage were 
plotted. Statistical analysis was done by two-way ANOVA, *p ≤ 0.05. 
B Immunoblot for EMT markers at 7, 19 and 28-wk time points in 

HaCaT cells exposed to 100  nM As3+ or passage matched unex-
posed controls. C Densitometric analysis of EMT marker expression 
at 7-wk. D Densitometric analysis of EMT marker expression at 19- 
wk. E Densitometric analysis of EMT marker expression at 28-wk. 
Protein expression data in panels C-E are plotted as means ± SD and 
expressed as % mean unexposed. Statistical analysis was done by 
unpaired two-tailed t-test; *p ≤ 0.05, **p ≤ 0.01; ***p ≤ 0.001
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Fig. 2   Chronic As3+ exposure changes the landscape of differen-
tially expressed miRNAs and mRNAs in a longitudinal manner. A 
Bar graph showing the number of miRNA molecules at 7, 19 and 
28-wk time points differentially expressed in HaCaT cells exposed 
to 100  nM As3+ compared with passage matched unexposed con-
trols (induced: closed bars; suppressed: open bars). Differential 
expression is defined as p_Eq < 0.05. B Venn diagram depicting the 
distribution of differentially expressed miRNAs (p_Eq < 0.05) at 
each time point along with the number of overlaps at different time 
points. C Heat Map of differentially expressed miRNA molecules 
at 7, 19 and 28-wk. The numerals on the y axis refers to the serial 
numbers assigned to the differentially expressed miRNA molecules 
in Supplementary Table  2. The color code bar on top refers to the 
log2 (Fold Change) expression values. Absence of a bar (represented 
by white) signifies either that miRNA molecule was not detected at 
that time point or was not differentially expressed at that time point. 
D Bar graph showing the number of mRNA molecules at 7, 19 and 
28-wk time points differentially expressed in HaCaT cells exposed 
to 100 nM As3+ compared with passage matched unexposed controls 
(induced: closed bars; suppressed: open bars). Differential expres-
sion is defined as p < 0.01 and FC ±  > 30%. E Venn diagram depict-
ing the distribution of differentially expressed mRNAs (p < 0.01 and 

FC ±  > 30%) at each time point along with the number of overlaps at 
different time points. F Heat Map of differentially expressed mRNA 
molecules at 7, 19 and 28-wk. The numerals on the y axis refers to 
the serial numbers assigned to the differentially expressed miRNA 
molecules in Supplementary Table  3. The color code bar on top 
refers to the log2 (Fold Change) expression values. Absence of a bar 
(represented by white) signifies either that mRNA molecule was not 
detected at that time point or was not differentially expressed at that 
time point. G Expression pairing between differentially expressed 
miRNA and differentially expressed mRNA at 7, 19 and 28-wk. 
For each time point, shown are the total number of differentially 
expressed miRNA molecules that are targeting one or more differ-
entially expressed mRNA molecules (light grey bars); the number of 
differentially mRNA molecules that are targeted by one or more or 
differentially expressed miRNA molecules (closed bars), total num-
ber of miRNA-mRNA pairings (open bars) and the number of dif-
ferentially expressed mRNA molecules that are not predicted to be 
targeted by any differentially expressed miRNA molecule (hatched 
bars). h Concordance–discordance relationship between differentially 
expressed miRNA and differentially expressed mRNA at 7, 19 and 
28-wk. The data is presented as % of total interactions predicted at 
that time point



2357Archives of Toxicology (2021) 95:2351–2365	

1 3

at 7, 19 and 28-wk time points respectively (Fig. 2D–F). 
Data on individual differentially expressed mRNAs at each 
time point is presented in Supplementary Table 3. The lon-
gitudinal comparison showed that most of the differentially 
expressed miRNAs were unique to 7 and 19-wk time points, 
while those differentially expressed at 28-wk time point had 
considerable overlap with those at 7-wk time point but not 
with 19-wk time point (Fig. 2E–F). As seen for miRNAs, the 
mRNA data indicate that the mRNA landscape is markedly 
different at each phase of transformation.

We were further interested in examining if the differen-
tially expressed miRNA molecules could explain the dif-
ferentially expressed mRNA molecules at each time point. 
Expression pairing analysis demonstrated that 42–49% of the 
differentially expressed mRNA molecules are being targeted 
by the differentially expressed miRNAs depending on the 
time point (Fig. 2G). Several differentially expressed mRNA 
molecules at each time point can be targeted by more than 
one differentially expressed miRNA, resulting in 2168, 1196, 
and 520 miRNA-mRNA pairings at 7, 19, and 28-wk time 
points respectively (Fig. 2G). Individual miRNA-mRNA 
pairing data at each time point is provided in Supplementary 
Table 4. As shown in Fig. 2H, at each time point ~ 50% of 
the pairings were found to be concordant (inverse expression 
relationship between differentially expressed miRNA and 
its differentially expressed target mRNA). It was also found 
that several differentially expressed mRNA molecules at 
each time point were being targeted by several differentially 
expressed miRNA molecules (Supplementary Table 4), 
which, in part could explain some of the discordance in the 
dataset.

As3+ exposure dysregulates multiple canonical 
pathways in a temporally dynamic manner

IPA® analysis of differentially expressed mRNAs revealed 
numerous biochemical pathways to be activated/inhibited 
upon chronic As3+ exposure at each time point (Fig. 3A). 
The activation/inhibition status of the predicted dysregu-
lated pathways based on the differentially expressed mRNA 
molecules at each time point are depicted in Fig. 3B and 
Supplementary Table 5. The longitudinal comparison dem-
onstrates that most of the predicted dysregulated pathways 
at 7 and 19-wk time points are not dysregulated at other time 
points. However, 2 of the 6 predicted dysregulated pathways 
at 28-wk are also dysregulated at 7-wk, while 1 more (oste-
oarthritis pathway) is dysregulated at all three timepoints 
(Fig. 3B–C) and is activated at 7 wk but inhibited at the two 
later time points. These data are consistent with the mRNA 
data indicating that the gene expression landscape is mark-
edly different at each time during transformation.

Next, we wanted to explore if differentially expressed 
mRNA targets of differentially expressed miRNA molecules 

would be consistent with these dysregulated pathways pre-
dictions of total differentially expressed mRNAs. Therefore, 
we performed a nested pathway analysis based only on the 
differentially expressed mRNA that were targeted by differ-
entially expressed miRNA at each time point (Supplementary 
Fig. 1A–B). Pathways predicted to be activated/inhibited based 
on the subset of differentially expressed mRNA targeted by 
differentially expressed miRNA (Supplementary Table 6) 
demonstrated 65–81% overlap with the pathways predicted 
based on entire differentially expressed mRNA data depending 
on the time point (Fig. 3D). More detailed comparison of the 
pathways predicted based on the two analyses is presented in 
Supplementary Fig. 1C.

Corroboration of RNA‑Seq and pathway analysis 
prediction of ER stress pathway inhibition 
at the protein level

ER stress pathway and its interaction with unfolded protein 
response are well characterized to play pivotal role in carcino-
genesis (Chen and Cubillos-Ruiz 2020). Therefore, the ER 
stress pathway was selected to validate the RNA-seq data and 
pathway analysis predictions at the protein level. This pathway 
is predicted to be inhibited at both 7 and 28-wk, but not at 
19-wk in both the total mRNA dataset analysis as well as the 
subset analysis (Fig. 3B, C; Supplementary Tables 5 and 6). 
Furthermore, while the pathway was predicted to be inhibited 
at two-time points, several molecules were differently modu-
lated between the two-time points (Supplementary Fig. 2). 
This provided an ideal opportunity to examine if the RNA-seq 
data and the IPA pathway predictions can be validated at the 
level of protein expression. To assess if the RNA-seq predic-
tions hold true at the protein level, we selected 8 molecules 
in the ER stress pathway as shown in Supplementary Fig. 2 
(ATF4, BCL2, BIP, CHOP, IRE1, HSP72, NRF2 and PERK).

Immunoblot data for ER stress markers at three time 
points presented in Fig. 4A. Several of the proteins analyzed 
show time-dependent expression patterns in addition to 
As3+-dependent expression highlighting the importance of 
passage-matched controls. Densitometric analysis (Fig. 4B-D) 
corroborates the RNA seq predictions for 4 out of 8 molecules 
at all three-time points (ATF4, HSP72, NRF2 and PERK), 2 
molecules at two-time points (BCL2 at 7 & 28-wk and CHOP 
at 7 & 19-wk) and remaining 2 molecules for one-time point 
each (BIP at 28-wk and IRE1 at 19-wk). These results support 
the predictions made by analyses of the RNA data.

Discussion

Mechanisms of chronic arsenic-exposure-induced carcino-
genesis are widely studied, but a clear picture is far from 
emerging. A multitude of mechanisms has been implicated 
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and debated for their putative role in arsenic-induced car-
cinogenesis (Chen and Costa 2018; Cohen et  al. 2016; 
Huang et al. 2019; Lee and Yu 2016; States 2015; Zhou 
and Xi 2018). It is well established that transcriptomic and 
proteomic profiles are globally altered in arsenic-induced 

cancer tissues or in arsenic-transformed cell lines (Guo 
et al. 2016; Mir et al. 2017). Furthermore, experimental data 
from our group and others indicate that such genome-wide 
differential expression might be regulated partly by differ-
ential expression of miRNAs (Al-Eryani 2017; Al-Eryani 

Fig. 3   Chronic As3+exposure leads to widespread dysregulation in 
predicted canonical pathways in a longitudinal manner. A Bar graph 
showing the number of predicted dysregulated pathways at 7, 19 and 
28-wk time points in HaCaT cells exposed to 100 nM As3+ compared 
with passage matched unexposed controls (activated: closed bars; 
inhibited: open bars). Activation is defined as -log(p-value) > 1.3; 
Z-score > 1, while inhibition is defined as -log(p-value) > 1.3; 
Z-score < -1. B Heat Map of predicted activated/inhibited pathways 
based on all differentially expressed mRNA molecules at 7, 19 and 
28-wk (presented in the same order as in Supplementary Table  5). 
The color code bar on top refers to the Z-score values. Absence of 

a bar (represented by white) signifies that the pathway was not pre-
dicted to be activated or inhibited at that time point. C Venn dia-
gram depicting the distribution of predicted dysregulated pathways 
[-log(p-value) > 1.3; Z-score >  ± 1] at each time point along with the 
number of overlaps at different time points. D Bar graph showing the 
number of pathways at 7, 19 and 28-wk time points predicted to be 
activated/inhibited both by the differentially expressed mRNA data-
set (presented in Supplementary Table 5) as well as the differentially 
expressed mRNA targets of differentially expressed miRNA dataset 
(Presented in Supplementary Table 6)
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et al. 2018a; Bustaffa et al. 2014; Cardoso et al. 2018). How-
ever, a considerable knowledge gap exists in understanding 
the molecular processes that are operative in the interim 
between the beginning of exposure and the time cells are 
fully transformed.

The current study aims to fill this gap in the existing lit-
erature by providing a comprehensive picture of the molecu-
lar events at three stages of arsenic-induced carcinogenesis 
(early transformation related changes at 7-wk, transforma-
tion initiation at 19-wk and fully transformed at 28-wk). 
For this purpose, we combined longitudinal study design 
using passage-matched independent quadruplicate biologi-
cal replicates along with large-scale genome-wide RNA-seq 
platform. This approach ensured that the analyses have con-
siderable power to rule out random stochastic events as false 
positives or negatives while generating high-quality in-depth 
data. The passage matching was an important aspect in our 
study to rule out the effect of long passaging time. It is evi-
dent that several molecules follow a temporal variation in 
expression pattern irrespective of the exposure status (ATF4, 
BCL2, IRE1, NRF2 and CHOP in Fig. 4). While the reasons 
for this observation are not clear, it is certain that without 
appropriate passage matching, the robustness of our analyses 
would have been seriously compromised.

We unequivocally demonstrate temporally modulated 
changes in the growth patterns in the As3+ exposed HaCaT 

cells (Fig. 1) in agreement with data from other groups (Pi 
et al. 2008; Sun et al. 2009). The slower growth rates in 
As3+ exposed cells at early stages of exposure could reflect 
the well-characterized cell cycle arrest/delay effects of As3+ 
exposure (Al-Eryani et al. 2017; States 2015; States et al. 
2002; Tam et al. 2020). This inference is supported by the 
pathway analysis which shows a multitude of cell cycle 
related pathways being dysregulated at 7-wk (Fig. 3B, Sup-
plementary Table 5 and Supplementary Fig. 2). In the next 
phase between 7 and 19-wk, there is a clear switch in the 
growth rate and a concomitant reversal of expression pattern 
of epithelial marker ZO-1 and mesenchymal marker Slug 
(Fig. 1B, D) which signals the initiation of EMT. Finally, 
at 28-wk, the growth rate of As3+-exposed cells far exceeds 
that of passage matched unexposed controls, along with the 
reversal of the expression profiles of all the EMT markers 
tested (Fig. 1B, E), telltale signatures of carcinogenic trans-
formation (Brabletz et al. 2018; Mehrara et al. 2007).

Our RNA-seq analyses show that multitudes of mRNAs 
and miRNAs targeting those mRNAs are differentially 
expressed in a time dependent manner (Fig. 2). Interest-
ingly, the majority of the differentially expressed miRNA 
and mRNA molecules at each time point (corresponding to 
different stages in cancer development) are largely unique, as 
are the predicted activated/inhibited pathways they populate 
(Fig. 2 and Fig. 3). This limited longitudinal overlap between 

Fig. 4   Immunoblot analysis validates dysregulation of ER stress 
pathway predicted by RNA-seq data analyses at the protein level. A 
Immunoblot for ER stress markers at 7, 19 and 28-wk time points in 
HaCaT cells exposed to 100 nM As3+ or passage matched unexposed 
controls. B Densitometric analysis of ER stress marker expression 
at 7-wk. C Densitometric analysis of ER stress marker expression 

at 19-wk. D Densitometric analysis of ER stress marker expres-
sion at 28-wk. Protein expression data in panels B–D are plotted as 
means ± SD and expressed as % mean unexposed. Statistical analy-
sis was done by unpaired two-tailed t-test; *p ≤ 0.05, **p ≤ 0.01; 
***p ≤ 0.001
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the differentially expressed miRNAs or mRNAs suggest that 
the changing landscape of differentially expressed miRNAs 
might be contributing considerably to the changing land-
scape of differentially expressed mRNAs at each time point. 
Moreover, the mRNA expression alone may be a poor sur-
rogate to understand exactly the impact of these changes in 
mRNA expression. Secondly, pathway analyses of differen-
tially expressed mRNA targets of differentially expressed 
miRNAs at each time point show a great degree of overlap in 
the predicted canonical pathways with those of all differen-
tially expressed mRNAs at those time points (Fig. 3E). Con-
sequently, it is reasonable to hypothesize that the predicted 
alterations in the canonical pathways are largely guided by 
differential expression of mRNAs that are being targeted 
by the differentially expressed miRNAs at that time point. 
Thirdly, the fact that analysis of a subset of the differentially 
expressed mRNAs produces results similar to that of the 
entire dataset points to the robustness of the data and the 
analyses performed. Taken together, it is possible that at 
each stage, a new set of key molecules are being induced/
suppressed that could be bringing about molecular changes 
associated with the sequential process of carcinogenesis.

Interestingly, only one pathway (osteoarthritis pathway) 
was found to be dysregulated at all three-time points (acti-
vated at 7-wk, inhibited at 19 and 28-wk) both in the differ-
entially expressed mRNA (Fig. 3B) as well as differentially 
expressed mRNA targets of differentially expressed miRNA 
datasets (Supplementary Fig. 1). Furthermore, one more 
pathway (hepatic fibrosis signaling pathway) was found to 
be inhibited across all three-time points in the differentially 
expressed mRNA targets of differentially expressed miRNA 
datasets (Supplementary Fig. 1). While these pathways 
apparently have little to do with skin carcinogenesis, a closer 
look at the dysregulated molecules yield some interesting 
insights (Supplementary Fig. 3). Several of the dysregulated 
molecules, including molecules in the MAP kinase pathway, 
Rho signaling, TGF-β signaling, and MMPs, are involved in 
multiple cellular processes and are well-known players in 
the carcinogenesis of multiple organs (Derynck et al. 2021; 
Gialeli et al. 2011; Goel and Mercurio 2013; Huebner et al. 
2019; Vella et al. 2018).

However, the question remains how these changes might 
usher in the changes that ultimately culminate in carcino-
genesis. Pathway analysis data from this study shed some 
interesting light in this regard. Several of the top predicted 
canonical pathways at each time point reflect well-estab-
lished mechanisms previously implicated in arsenic-induced 
carcinogenesis. At 7-wk, there is clear evidence of dysregu-
lation of several cell cycle-related pathways (Supplemen-
tary Fig. 4). This observation is consistent with the widely 
accepted hypothesis that cell cycle dysregulation is an early 
event in arsenic-induced carcinogenesis (Al-Eryani et al. 
2017; Hunt et al. 2014; States 2015; Tam et al. 2020; Zhou 

and Xi 2018). Interestingly, the nucleotide excision repair 
(NER) pathway is induced at 7-wk (Fig. 3B and Supplemen-
tary Table 5). As3+ exposure is reported to inhibit the func-
tion of the NER pathway in human lung fibroblast cell line 
IMR-90 and mouse primary keratinocytes, albeit with much 
higher (10–40 μM) acute (24 h) As3+ exposure (Holcomb 
et al. 2017). Furthermore, single nucleotide polymorphisms 
in several NER pathway genes have been demonstrated to 
be associated with arsenic-induced skin cancer development 
(Applebaum et al. 2007; Banerjee et al. 2007) and height-
ened chromosomal aberration in chronically exposed human 
populations (Banerjee et al. 2007). It is possible that the 
induction in the NER pathway (Supplementary Table 5) is a 
homeostatic response to alleviate the reduced function upon 
As3+ exposure. Notably, in our analysis, the z-score for the 
NER pathway drops sharply from 6.47 in the differentially 
expressed mRNA dataset (Supplementary Table 5) to 2.496 
in the differentially expressed mRNA targets of differentially 
expressed miRNA (Supplementary Table 6). This suggests 
that many of the differentially expressed NER pathway mol-
ecules could be modulated by feedback between the protein 
and mRNA levels independent of miRNA regulation.

Analyses of differentially expressed mRNAs at 19-wk 
reveal dysregulation of a plethora of transformation-related 
pathways including Rho-GTPAse signaling and nuclear 
hormone receptor pathways. Activation of Rho-GTPases 
is a central and critical event in carcinogenesis (Alan and 
Lundquist 2013; Aspenstrom 2018). It is therefore not sur-
prising to find a significant inhibition of Rho-GTPase sign-
aling pathway (Fig. 3B and Supplementary Table 5) in our 
dataset and probably represents a homeostatic mechanism 
to curb the effects of heightened signaling upon chronic 
As3+ exposure as the cells are undergoing transformation 
initiation. Furthermore, several nuclear hormone receptor 
signaling pathways are also predicted to be dysregulated, 
including androgen signaling, estrogen receptor signaling 
and prolactin signaling (Fig. 3B, Supplementary Table 5 and 
Supplementary Fig. 5). These pathways are known to be dys-
regulated in multiple cancer types including hormone inde-
pendent melanoma and non-melanoma skin cancers and are 
often targets for chemotherapeutic intervention (Chan et al. 
2018; Dika et al. 2019; Hua et al. 2018; Karayazi Atici et al. 
2020; Mal et al. 2020; Pisano et al. 2021; Porter et al. 2019; 
Rajabi et al. 2017; Xiao et al. 2019). As3+ exposure at the 
environmentally relevant level of 100 nM for 48 h was found 
to suppress the expression of ERα mRNA and protein in 
MCF-7 cells and bind competitively to its hormone binding 
domain with Ki of 5 nM, modulating its downstream signal-
ing (Davey et al. 2007; Stoica et al. 2000; Watson and Yager 
2007). Furthermore, such low As3+ exposure (100–700 nM) 
using a hepatoma cell line has also been shown to inhibit 
transcription of androgen receptor signaling modulated tar-
get molecules, possibly by interaction with its zinc finger 
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containing DNA binding domain (Bodwell et al. 2006; Wat-
son and Yager 2007). Dysregulation of these pathways are 
instrumental in EMT (Di Zazzo et al. 2019; Voutsadakis 
2016; Yoriki et al. 2019), and perhaps unsurprisingly, we 
observe first signs of EMT in As3+ exposed cells at this time 
point. Our data thus clearly demonstrate hallmarks of trans-
formation initiation in As3+ exposed HaCaT cells at 19-wk.

Data at 28-wk time point also reveal dysregulation of 
several critical pathways classically associated with a wide 
variety of cancers. e-NOS signaling, a master regulator of 
cancer development (Khan et al. 2020) including skin can-
cer (Bruch-Gerharz et al. 1998; Dhar et al. 2002), is inhib-
ited (Fig. 3B and Supplementary Table 5). Such inhibition 
is well characterized to promote tumor growth (Xu et al. 
2002). Dysregulated NOS signaling in turn leads to ER 
stress (Gotoh and Mori 2006) and subsequently modulates 
unfolded protein response (UPR) (Nakato et al. 2015). Both 
ER stress and UPR are predicted to be dysregulated at 28-wk 
time point (Fig. 3B, Supplementary Table 5 and Supplemen-
tary Fig. 6). ER stress initially brings about induction in the 
translation of ATF4 and modulation of macroautophagy and 
apoptosis but this ATF4 induction is abrogated under cir-
cumstances of prolonged ER stress (Rozpedek et al. 2016). 
In agreement, our data show a trend of induction for ATF4 at 
7-wk (not significant) with significant suppression at 28-wk 
(Fig. 4). In addition, we also demonstrate that ER stress is 
invoked via the PERK arm at 7wk, whereas, at 28-wk, all 
three arms (PERK, IRE1 and ATF4) are involved. Our data 
thus reflect prolonged molecular stress that could play a key 
role in carcinogenesis upon chronic As3+ exposure. Dys-
regulation of ER stress pathway leads to UPR (Pallmann 
et al. 2019) and cancer (Wortel et al. 2017) both of which 
are occuring at the 28-wk time point in As3+-exposed cells. 
UPR is inhibited by proteasomal inhibition (Amanso et al. 
2011; Lee et al. 2003) and dysregulated proteasome is itself 
a hallmark of cancer (Morozov and Karpov 2019). UPR thus 
is a key process bringing about molecular cross-talk between 
the two arms of protein degradation pathway, viz., ubiquitin-
proteasome system and ER stress-induced autophagy. This 
cross-talk could mean that chronic As3+ exposure brings 
about proteome-wide changes not only by modulating the 
epigenome and the transcriptome, but also the cellular 
degradome, as recent studies suggest (Dodson et al. 2018; 
Tam and Wang 2020).

This interaction may also explain in part why we have 
some discordance in protein and RNA-seq data for a few 
of the EMT markers and ER stress molecules we tested 
(Figs. 1 and 4). Other explanations are also possible. For 
example, while tarbase predicts that ERN1 (gene encod-
ing IRE1) is targeted by miR-let7 (Karagkouni et al. 2018), 
which is induced in our 19 and 28-wk dataset (Supple-
mentary Table 2), IPA does not show this in their miRNA-
mRNA expression pairing (Supplementary Table 4). Thus, 

the predictions of miRNA-mRNA pairing can be discord-
ant in the databases. Additionally, several miRNAs lead to 
translation repression of the target proteins without altering 
the mRNA levels (Bhattacharyya et al. 2006; Wilczynska 
and Bushell 2015), such as those of ZO-1 (mir-34 at 7-wk; 
miR-let7 at 28-wk), β-Catenin (mir-200a at 28-wk), Slug 
(miR-218 at 28-wk) and N-Cadherin (mir-181b at 28-wk).

Additionally, this also partly explains why we see a con-
siderable discordance in our miRNA-mRNA expression 
pairing. Our data demonstrate that several differentially 
expressed miRNA molecules are potentially able to mod-
ulate the expression of one differentially expressed target 
mRNA molecule (Supplementary Table 4). However, in the 
cellular context, it is likely that only one of the differen-
tially expressed miRNAs is actually targeting the differen-
tially expressed mRNA molecule rather than all the miRNAs 
together. For example, in our 7-wk dataset (Supplementary 
Table 4), AQP3 mRNA is induced and can be targeted by 4 
distinct differentially expressed miRNAs (hsa-miR-222, hsa-
miR-3661, hsa-miR-663b; all induced and hsa-miR-4688; 
suppressed). It is possible that in the cells, only the hsa-
miR-4688 is actually regulating the expression of AQP3 
mRNA, although, all the other three are also potentially 
capable of doing so. Another possibility is that AQP3 is 
induced at the mRNA level and the induction of one or more 
targeting miRNAs (hsa-miR-222, hsa-miR-3661, hsa-miR-
663b) is actually a homeostatic response to bring down the 
expression of AQP3 mRNA to the basal level. Together, 
these observations suggest that while expression pairing is 
an important and useful tool to categorize possible miRNA-
mRNA interactions in a large dataset, further experimental 
validation needs to be performed to elucidate the nature 
of these predicted pairings, both at the mRNA and protein 
level.

The present work provides a much-needed picture of the 
sequence of molecular events taking place at each phase 
of carcinogenic transformation by chronic As3+ exposure 
in a well-established model of arsenic-induced cSCC. The 
events change dynamically with time and consist of several 
alterations that are consistent both with As3+ exposure as 
well as established mechanisms of carcinogenesis in the skin 
and other organs. In addition, we also provide considerable 
validation of transcriptomic prediction at the protein level 
in multiple molecules spanning three different branches of 
the ER stress pathway. This work thus presents a framework 
for understanding the events leading from exposure initia-
tion through to transformation. Together, our data provide 
strong evidence as to how different molecules and pathways 
known to be dysregulated individually in cancer and upon 
As3+ exposure interact as complex coordinated networks 
(Supplementary Fig. 4–6) to bring about cellular changes 
at successive steps in the process of As3+-induced skin car-
cinogenesis at toxicologically relevant exposure conditions. 
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This work and the existing dataset open up possibilities of 
future studies to empirically address the effects of stochas-
ticity in carcinogenesis as well as the efficacy of passage 
matching for chronic exposure scenarios. Finally, it would be 
imperative to study proteome-wide changes brought about 
by chronic As3+ exposure in a similar model to understand 
how the proteomic and transcriptomic changes are correlated 
in the process of carcinogenesis.
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