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Curating and comparing 114 strain-specific genome-scale
metabolic models of Staphylococcus aureus
Alina Renz 1,2,3 and Andreas Dräger 1,2,3,4✉

Staphylococcus aureus is a high-priority pathogen causing severe infections with high morbidity and mortality worldwide. Many
S. aureus strains are methicillin-resistant (MRSA) or even multi-drug resistant. It is one of the most successful and prominent modern
pathogens. An effective fight against S. aureus infections requires novel targets for antimicrobial and antistaphylococcal therapies.
Recent advances in whole-genome sequencing and high-throughput techniques facilitate the generation of genome-scale
metabolic models (GEMs). Among the multiple applications of GEMs is drug-targeting in pathogens. Hence, comprehensive and
predictive metabolic reconstructions of S. aureus could facilitate the identification of novel targets for antimicrobial therapies. This
review aims at giving an overview of all available GEMs of multiple S. aureus strains. We downloaded all 114 available GEMs of
S. aureus for further analysis. The scope of each model was evaluated, including the number of reactions, metabolites, and genes.
Furthermore, all models were quality-controlled using MEMOTE, an open-source application with standardized metabolic tests.
Growth capabilities and model similarities were examined. This review should lead as a guide for choosing the appropriate GEM for
a given research question. With the information about the availability, the format, and the strengths and potentials of each model,
one can either choose an existing model or combine several models to create models with even higher predictive values. This
facilitates model-driven discoveries of novel antimicrobial targets to fight multi-drug resistant S. aureus strains.
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INTRODUCTION
Staphylococcus aureus is an opportunistic pathogen that asymp-
tomatically and permanently colonizes the nose of up to one
third of the human population1. It is a commensal of the mucosae
and the human skin, but can also cause severe infections with
high morbidity, mortality, and healthcare-associated costs2.
Methicillin-resistant S. aureus (MRSA) is one of the most successful
modern pathogens3. In 2017, the WHO published a priority
pathogens list for the research and development of new
antibiotics. Among the clarithromycin-resistant Helicobater pylori
and the vancomycin-resistant Enterococcus faecium, S. aureus,
especially the methicillin-resistant S. aureus (MRSA), vancomycin
intermediate (VISA), and vancomycin resistant strains (VRSA), are
high priority pathogens4.
Staphylococcus aureus bacteremia (SAB) is a common infection5.

The incidence rate ranges from approximately 20 cases per 100,000
persons per year in Canada6 to approximately 50 cases per 100,000
persons, inferred from the United States surveillance data7. The
higher incidence rate might be due to the greater burden of MRSA5.
SAB can be classified into three categories: (1) Hospital onset of
health-care associated infections, e.g., nosocomial; (2) Community
onset of health-care associated infections, and (3) community
acquired infections8. Besides SAB, S. aureus, and especially MRSA, is
the leading cause of endocarditis, bone and joint infections, skin and
soft tissue infections, and further hospital-acquired infections3. A
study from 2013 revealed over 80,000 invasive infections and 11,000
deaths per year due to MRSA in the United States. Compared to the
previous years, the number of invasive MRSA infections declined
slightly9. Unfortunately, the rate decline of MRSA infections has
recently slowed down according to the “Morbidity and Mortality
Weekly Report” of the Centers for Disease Control and Prevention10,

while the number of methicillin-susceptible S. aureus (MSSA)
bloodstream infections even slightly increased. In 2017, nearly
120,000 S. aureus bloodstream infections and 20,000 associated
deaths occurred in the United States10. Hence, strategies for
preventing infections inside and outside acute care settings are
required to further reduce the amount of invasive MRSA infections.
The transmission of S. aureus in general, and MRSA in

particular, is facilitate by the long persistence time of S. aureus
colonization. Nearly any item with skin contact can serve as
fomes. In a hospital setting, this can include coats and clothes
from doctors and nursing staff, pens, and mobile devices, such as
cell phones3. Studies also suggest that infecting S. aureus isolates
also persist in households three months after skin infections11.
Even across and within athletic fitness facilities, S. aureus is found
on different surfaces, including weight plates and treadmill
handles12.
Besides the challenge of controlling S. aureus colonization in

multiple environments, S. aureus strains evolve and adapt to
different environments due to variability in diversity, mobile
genetic elements (MGEs), and accumulation of mutations13–15.
Mediators of virulence, immune evasion, and antibiotic resis-
tance are commonly found within the accessory components of
the S. aureus genomes, consisting of MGEs with pathogenicity
islands, chromosomal cassettes, transposons, plasmids, and
bacteriophages. Compared to the core genome, the accessory
genome is more variable and also often more strain-specific3.
MGEs in S. aureus can carry antibiotic resistance genes for
resistances against penicillin, trimethoprim, erythromycin, clin-
damycin, and tetracyclines15. However, strains not only evolve
and develop antibiotic resistances, they even replace each other
within the same host14.
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To fight S. aureus infections, several new antimicrobial and
antistaphylococcal drugs have been developed recently3,13,
including oritavancin and ceftaroline16,17. Despite the develop-
ment of new antibiotics, S. aureus in general, and MRSA in
particular, remains a prominent pathogen with persisting high
mortality3. Since S. aureus will continue to evolve and develop
new resistances13, the research on S. aureus and the development
of new antimicrobials is of urgency to fight S. aureus infections.
One possibility for the identification of novel targets for

antimicrobial therapies is the use of genome-scale metabolic
models (GEMs). Advances in high-throughput techniques and
whole-genome sequencing facilitate the construction of
GEMs18,19. They are reconstructed based on information from
genome sequences and experimentally obtained biochemis-
try19,20. With this information, stoichiometry-based and mass-
balanced metabolic reactions can be formulated using gene-
protein-reaction associations (GPRs). These stoichiometry-based
GEMs can predict metabolic flux values within the constructed
network21 and optimization techniques. Optimization techniques,
such as flux balance analysis (FBA), use linear programming20.
Recent advances in the reconstruction of GEMs and the fast
analysis and integration of omics data enabled metabolic studies
with model-driven hypotheses and context-specific simula-
tions22,23. Among the multiple applications of GEMs is the drug
targeting in pathogens and the modeling of interactions among
multiple cells or organisms20. These approaches could be used to
investigate and develop novel antimicrobials or antistaphylococ-
cals. However, depending on the pathogen and strain, various
models of S. aureus strains might be required to investigate the
best antistaphylococcal target for a certain S. aureus strain.
In this review, we present all currently available GEMs of

S. aureus from various databases. The available models were
compared regarding their scope, their availability, their format,
and their immediate usability. For various reasons, some of the
models required revisions, such as converting spreadsheet file
formats to SBML24 or ensuring the syntactic validity of SBML files.
After having all models available as syntactically valid SBML files,
their growth-capabilities, their predictive value, and the similarities
between the various models were investigated. This review gives
an overview of the available models and their properties to
identify the appropriate model for a specific research question.

MODEL OVERVIEW

Introduction of the models
Databases such as BiGG25 or BioModels26 comprise a variety of
genome-scale metabolic models. Together with models from
other databases and supplementary information from scientific
publications, a large number of genome-scale metabolic models
of S. aureus is available: The BioModels database contains two
models of S. aureus by Becker et al.27 and Heinemann et al.28, both
build in 2005. The BioModels database also harbors the models
created within the Path2Models project29. In this project, 33 whole
genome metabolism models of S. aureus were automatically
created and curated between 2012 and 201329. The BiGG Models
Database contains two GEMs of S. aureus: the already mentioned
model by Becker et al.27 and a recently published model by Seif
et al.30 from 2019. Lee et al. published thirteen genome-scale
metabolic reconstructions of multiple Staphylococcus aureus
strains in 200931. In 2016, Bosi et al.32 curated and published 64
genome-scale metabolic models of various S. aureus strains.
Together with the S. aureus model published within the gut
microbiota resource of the Virtual Metabolic Human (VMH)
Database33,34, a total number of 114 genome-scale metabolic
models of Staphylococcus aureus exists today.

All models were downloaded, tested, and evaluated using
COBRApy35 and MEMOTE36. MEMOTE is an open-source software
that contains a standardized and community-maintained set of
metabolic model tests36. The overall MEMOTE score comprises
information about annotations of metabolites, reactions, and
genes, the inclusion of Systems Biology Ontology (SBO) terms, and
the model’s consistency. Within the annotations sections, the
presence and conformity of different database identifiers is
evaluated. In the SBO term section, the annotation of model
instances with appropriate SBO terms is assessed. The model
consistency check comprises tests to evaluate the stoichiometric
consistency, mass and charge balances, metabolite connectivity,
and unbounded fluxes in default medium36. However, the
MEMOTE score currently does not consider information about
e.g., realistic growth rates, orphan or dead-end metabolites,
stoichiometrically balanced cycles, or duplicated reactions. MEM-
OTE includes this information in its report but does not
incorporate it into the calculated score. The number of model
instances and their MEMOTE score are indicated in Fig. 1.

iSB619—GEM by Becker et al. The first, initial draft of an S. aureus
genome-scale reconstruction was curated by Becker and Palsson
in 2005. They reconstructed the S. aureus strain N315 with 619
genes, 743 reactions, and 655 metabolites. The GEM was curated
based on the key metabolic pathways in the Kyoto Encyclopedia
of Genes and Genomes (KEGG) database37. Subsequently, The
Institute for Genomic Research (TIGR) website38 was browsed for
additional reactions. 91% of all reactions are linked with genes or
open reading frames in so-called gene-protein-reaction associa-
tions (GPRs). This first-draft GEM is almost completely elementally
and charge balanced. The biomass objective function was
formulated based on the biomass data from Bacillus subtilis39

and substituted where necessary. It contains metabolites, such as
amino acids, nucleotides, lipids, and cell wall constituents27. The
first S. aureus GEM reached a MEMOTE score of 67% and is
available as a file in SBML Level 3 Version 140 format with flux
balance constraints (fbc) extension41 and BiGG identifiers.

iMH551—GEM by Heinemann et al. In the same year, the second
genome-scale reconstruction of S. aureus was published by
Heinemann et al. Both research groups curated the S. aureus
strain N315 and used the KEGG37 and TIGR database38, together
with literature for genome regions with limited sequence
homology for gene function assignments. A new biomass
objective function was specifically defined for S. aureus based
on integration of literature data from a variety of different
S. aureus strains. The biomass objective function was build upon
the five polymer categories DNA, RNA, proteins, lipids, and cell
wall components, and extended by pool solutes. The reconstruc-
tion includes 801 metabolites and 860 reactions that are based on
551 genes and simulates aerobic and anaerobic growth28. This
S. aureus GEM reached a MEMOTE score of 35% and is also
available as SBML Level 3 file with fbc extension. The genes are
not included in the SBML file.

GEMs by Lee et al. Lee et al. utilized the ERGOTM bioinformatics
suite42 and the KEGG ligand/reaction database37 to curate
metabolic reconstructions of multiple S. aureus genomes. The
DNA sequence and associated open reading frames (ORFs) or
protein sequences were integrated into the ERGO genome
database. ORFs were called via a combination of programs and
annotated automatically or manually. BLAST was used to compute
the protein similarities. Functional assignments, relationship com-
putation, and pathway analyses based on existence of ortholog and
protein family clusters led to automated metabolic reconstructions.
Manual steps included the review of every gene in the genome,
pathway curations, and the consideration and reconciliation of
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motif/domain database results for functional assignments. For
identified missing steps within a certain pathway, Lee et al.
searched for orthologs or published biochemical activities. For all
complete, incomplete, or partial EC number annotations, associated
reactions were identified via the ERGO pathway collections and
KEGG database. Lee et al. used both biomass compositions from
Becker et al.27 and Heinemann et al.28 for their analyses. On
average, the thirteen S. aureus reconstructions included 1476 ± 14
reactions and 1406 ± 11 metabolites. All models are available as
Excel spreadsheet files with KEGG identifiers.

GEMs from Path2Models. More than 140,000 freely available and
automatically generated mathematical models from pathway
representations are available through the Path2Models project.
KEGG37, BioCharta43, MetaCyc44, and SABIO-RK45 served as
databases to generate three types of models, including
genome-scale metabolic reconstructions. The pipeline for
generating GEMs starts with the extraction of pathway data
from KEGG37 and MetaCyc44. To reconcile the different
metabolite and reaction identifiers, MNXref was used46. MNXref
was further used to define default metabolite formulas and
charge states. It allowed the mapping to different databases for
a semantical annotation in accordance with the Minimal
Information Required In the Annotation of Models (MIRIAM)
guidelines47. To all GEMs, a default biomass objective function
containing all 20 amino acids, RNA and DNA nucleotide
precursors, glycogen, and ATP was added. Between 2012 and
2013, 33 S. aureus GEMs were curated with the help of this
pipeline, including one bovine strain. This strain had 6110
reactions, 4416 metabolites, and 1198 genes. The
other S. aureus GEMs have on average 3064 ± 103 reactions,
2186 ± 75 metabolites, and 519 ± 12 genes. All models have a
MEMOTE score of 48% and are available at the BioModels
database as SBML Level 2 files48 with mixed nomenclature.

GEMs by Bosi et al. In 2016, Bosi et al. constructed 64 GEMs of
different S. aureus strains. They started by extending and adding
content from KEGG37, Model SEED49, and MetaCyc44 to the S.
aureus N315 model iSB619 by Becker et al. This manually curated
model was used as reference for other S. aureus strains. Shared
genes and reactions were identified and subsequently, strain-
specific metabolic content available from KEGG37, Model SEED49,
and BioCyc50 was manually added to the strain-specific GEMs.
Since an S. aureus biomass composition was not available, the
biomass objective functions from Becker et al.27 and Heinemann
et al.28 were combined and S. aureus-specific data regarding the
fatty acid composition in the biomass were used to adjust the
biomass objective function. A gap-filling step further refined the
models. On average, the models have 1460 ± 94 reactions, 1446 ±
47 metabolites, and 788 ± 116 genes with an average MEMOTE
score of 36 ± 1%. All models are available as SBML Level 3 files51

with fbc extension and BiGG nomenclature.

GEM by Magnúsdóttir et al. To elucidate the role of microbial
communities in human metabolism and health, Magnúsdóttir
et al. semi-automatically generated genome-scale metabolic
reconstructions of 773 human gut bacteria, including S. aureus
USA300-FPR375733. By using a comparative metabolic reconstruc-
tion method that propagates refinements from one metabolic
reconstruction to others, the model quality of all 773 models was
improved. The basis for each reconstruction were draft GEMs from
Model SEED49 and KBase52 including gap-filling, refinement via
rBioNet53, and quality control and quality assurance testing.
Further refinement steps included the verification of reaction
directionalities as well as mass and charge imbalances. The
reconstructions were extended by gut-microbiota specific

subsystems and central metabolic subsystems, and anaerobic
growth was enabled. Leak tests and the removal of infeasible flux
loops further refined the model. The S. aureus model contains
1403 reactions, 1193 metabolites, and 859 genes, and reached a
MEMOTE score of 45%. It is available as SBML Level 3 file with fbc
extension and VMH nomenclature.

iYS854—GEM by Seif et al. Seif et al. manually reconstructed a
comprehensive genome-scale metabolic model of S. aureus
USA300 str. JE2 containing 886 genes, 1455 reactions, 1335
metabolites, and 673 three-dimensional protein structures. The
GEM was build upon one of the reconstructions of Bosi et al.32.
Extensive and detailed manual curation was supported by
literature reviews and network evaluations. The initial model was
extended by an updated biomass objective function. Model
instances, such as genes, reactions, and metabolites, were
enriched with cross-references and metadata. More than 50
metabolic sub-modules were examined, curated, and added to the
GEM, together with over 200 confidence scores and 300
references. By this manual curation, 569 new metabolic processes,
214 new ORF assignments and 207 new metabolites were added.
Experimental validation of the model revealed an 85% agreement
with gene essentiality data and 68% agreement with experimental
physiological data30. A model evaluation with MEMOTE revealed
with 81% the highest MEMOTE score of all tested models. The
model is available as SBML Level 3 file with fbc extension and
BiGG identifiers.

Fig. 1 Properties of all available S. aureus models and their
scopes. For all models, the number of reactions, metabolites, and
genes in the model is illustrated. MEMOTE conducts standardized
and community-maintained metabolic tests for quality control and
quality assurance of genome-scale metabolic models (GEMs) and
assigns the tested model a score ranging from 0 to 100%. Lee
et al.31, Bosi et al.32, and the Path2Models Project29 published a
collection of different S. aureusmodels. For the collections, the mean
number of model instances is shown and the error bar indicates the
standard deviation (s.d.).
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Presence of strains
The 114 currently available GEMs divide into 65 different S. aureus
strains. In Fig. 2, the diverse S. aureus strains and their occurrence
in the different publications is illustrated. Some strains, such as
USA300-FPR3757 or N315 occur several times in different
databases. Others, like the GEM for S. aureus strain JE2 occur only
once in literature so far. The colors indicate the metabolite and
reaction identifier in the respective model. Among the five models
of the strain N315, two models exist that both carry BiGG
identifiers. Models with same identifiers can be compared more
easily than models with discriminating identifiers. Thirteen
S. aureus strains occur at least in three different databases or
publications with varying identifiers.
Due to the vast amount of different S. aureus strains, we

elucidate only the strains that are shared over multiple databases.
As already mentioned, the GEMs of the S. aureus strain N315 are
the most prevalent. This strain was isolated from the pharyngeal
smear of a Japanese patient in 198254. It is a methicillin-resistant
S. aureus (MRSA). The only effective antibiotic against it was
vancomycin. However, in 1997, a vancomycin-resistant MRSA
strain, Mu50, was discovered in a Japanese infant with a surgical
wound infection54. The closely related strain Mu3 is a hetero
vancomycin-intermediate MRSA strain. Strains with heteroge-
neous vancomycin resistance can spontaneously produce cells
with increasing resistance against vancomycin55,56.
The isolates JH1 and JH9 stem from a series of MRSA isolates

obtained from a patient receiving extensive therapy. These strains
are also vancomycin-intermediate S. aureus. The first isolate, JH1,
was taken before the chemotherapy and was fully susceptible to
vancomycin. The last isolate, JH9, from the end of the therapy
showed decreased susceptibility to vancomycin57.
The S. aureus strains of type USA300 are clones of the

community-acquired MRSA58,59. It causes invasive infections in
children and adults in the USA58, but also in Canada and Europe59.
It is suggested that USA300 is more virulent than other
community-acquired MRSA strains58. FPR3757 is a multidrug-
resistant USA300 strain with acquired mobile genetic elements
(MGEs) encoding resistance and virulence determinant that
probably lead to enhanced pathogenicity59. The other USA300
isolate, TCH1516, also named USA300-HOU-MR, was isolated at
the Texas Children’s Hospital in 2007. Significant differences to
other MRSA strains lie within the plasmid content and the
antibiotic susceptibility profiles58.
MW2 is another community-acquired MRSA isolate. It carries a

wide range of virulence and resistance genes60. At the moment,
more than fifteen different pathogenicity islands are identified in
S. aureus. Interestingly, MW2 contains almost the same complement
of pathogenicity islands as USA300-TCH151658. In contrast, the
S. aureus strain COL contains six pathogenicity islands, such as
Mu50, but in different combinations58. COL is one of the first MRSA

isolates from the early 1960s. It is a penicillinase-negative strain61,62.
In contrast to the highly virulent MW2 strain, where virulence
factors are found outside of prophages, fewer virulence factors are
found outside of prophages in S. aureus strain Newman. This strain
carries four integrated prophages and two large pathogenicity
islands with important contributions for the pathogenesis. This
S. aureus strain is susceptible to methicillin63.
As the Newman strain, the S. aureus isolate MSSA476 is a

methicillin-susceptible clone. It is a community-acquired strain,
such as MW2. It was isolated in 1998 and susceptible to most
commonly used antibiotics, excluding penicillin and fusidic acid64.
In contrast MRSA252 is a clinically important hospital-acquired
MRSA lineage. It is genetically diverse to other S. aureus strains64.
S. aureus does not only infect humans, it is also the cause of a

mastitis in cattle. Strain RF122 contains genomic features that
distinguish the human and the bovine pathogens65.
Eight different S. aureus isolates belong to the South German

clone lineage ST228. This clone spread over 10 years in a hospital
in Switzerland. The isolates were collected between 2001 and
2008. The eight isolates represent the evolutionary history of the
clone. As many others, it is an MRSA66.

MODEL IMPROVEMENTS
A variety of different S. aureus models from various strains is
available. However, not all 114 downloaded S. aureus models were
of the same quality: Some SBML files were syntactically invalid,
others utilized an older SBML format, or were not available as
SBML file at all. To provide a collection of usable and updated
SBML models, we performed debugging and/or improvement
steps on some of the models. Models with valid SBML files of the
latest level were not improved. All debugging and improvement
steps served the purpose of standardizing and annotating the
models. No content changes were performed that affect model
calculations.

GEMs by Bosi et al.
The 64 S. aureus models by Bosi et al.32 were downloaded and
evaluated using COBRApy35. The built-in validity check for SBML
files returned a number of errors. In a first step, a pipeline for
debugging the errors was created. All files lacked the XML
declaration, which was added together with the XML version
number and the encoding attribute. According to the SBML
language specifications, metabolite, reaction, and model identifier
need to fulfill certain properties67, e.g., model identifiers cannot
start with a number. The identifiers were adapted according to the
guidelines. The downloaded SBML file contained an empty
compartment list, which was filled with the compartments during
the debugging. As the compartment list comprises all cellular
compartments in which metabolites and reactions occur, the

Fig. 2 Occurrence of models for S. aureus strains. Sixty-five different strains of S. aureus are available over the seven publications. Some
S. aureus strains, such as the S. aureus strain USA300-FPR3757, occur in several publications, for other strains, only one publication is available.
The colors indicate the utilized metabolite and reaction identifiers in the respective models. Models with similar or same identifiers can be
compared more easily.
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different compartments were extracted from the metabolites’
information and subsequently incorporated into the compartment
list. The charges, chemical formulas, and compartments of the
models’ metabolites were adapted or added, where necessary.
After these debugging steps, the models were exported as valid
SBML files and evaluated with MEMOTE. The MEMOTE score of
36% in Table 1 is the score after these debugging steps, since
MEMOTE requires a syntactically valid SBML file as input.
Since a pipeline for altering all 64 S. aureus GEMs already

existed, we added further steps to the pipeline to extend the
models with respect to their annotations. With the use of the
Systems Biology Ontology (SBO), semantic information about
model components can be provided. This information allows an
explicit and unambiguous understanding of the components’
meaning68. For the model genes and metabolites, appropriate
SBO terms were defined. Reactions were divided into metabolic
and transport reactions, each receiving different SBO terms.
Transport reactions were even further refined to active, passive, or
co-transport with antiporters or symporters. After the assignment
of appropriate SBO terms, further annotations were added using
ModelPolisher69. ModelPolisher accesses the BiGG Models Data-
base for the annotation and autocompletion of SBML models69.
With the help of the ModelPolisher, additional metadata was
incorporated for the different model instances. After those
extensions, the MEMOTE score of the 64 GEMs increased on
average to 83 ± 1%, which is an average improvement of 47%. The
complete pipeline for debugging and extending all 64 models and
saving them as valid SBML files is summarized in Fig. 3.
All debugging and extension steps served the purpose of

making the models simulatable. Since reaction-sets, metabolite-
sets, or gene-sets were not altered, the models’ simulation
behavior is not affected. However, the models can now directly
be used, as they are now all available as valid SBML files.

GEMs by Lee et al.
The thirteen GEMs by Lee et al. were available as Excel
spreadsheet. For all reactions and metabolites in the list, the
respective information, such as reaction or metabolite name, or
chemical formula was extracted from the KEGG database37, where
available. Based on the information from the KEGG database and
the Excel spreadsheet, a consensus model including all reactions
was created. Both biomass objective functions from Becker et al.27

and Heinemann et al.28 were added to the consensus model, as
well as exchange reactions for all extracellular metabolites.
ModelPolisher69 was used for annotating the model. Based on
this consensus model, the individual models of the thirteen
S. aureus strains were curated: The strain-specific reactions listed in
the Excel spreadsheet were added to the respective models, and

the biomass objective function from Becker et al. was adapted
strain-specifically. The KEGG database was browsed for the strain-
specific gene identifiers. The models now include on average
491 ± 8 genes, except for S. aureus strain RF122, where no strain-
specific KEGG gene identifier was available. Further annotations,
such as KEGG annotations and EC-codes were added to the
models. Despite manual effort, all thirteen models do not show
growth for neither of of the biomass objective functions.
The MEMOTE score for all models excluding the model for the
S. aureus strain RF122 reached 66%. Since the GEM for the
RF122 strain does not contain any genes, its MEMOTE score only
adds up to 57%. Comparing the originally published models
concerning model simulations and growth predictions is not
possible, because only Excel spreadsheets with reactions and
metabolites were available.

GEMs from Path2Models
The 33 models from the Path2Models project are the only models
of S. aureus that are still SBML Level 2 Version 470. Since the fbc
package is officially only available from Level 3, it is not yet
integrated in the files. We updated all models to SBML Level 3
Version 140 with the fbc package enabled using libSBML71.
However, the original chemical formulas did not match the
scheme that the official fbc package72 requires. In order to avoid
creating syntactically invalid SBML files, all chemical formulas
needed to be adapted according to the fbc specification72. The
original chemical formulas can still be found in the notes field.
This notes field further contained a variety of annotations from
different databases, including BRENDA73, KEGG37, MetaCyc44,
MetaNetX46, Rhea74, BiGG25, Reactome75, Model SEED49, Unipath-
way76, the Human Metabolome Database (HMDB)77, ChEBI78, and
InChI79. All database annotations that can be found in the
identifiers.org47 registry were transferred to the annotations, using
identifiers.org uniform Resource Identifiers (URIs). The service
identifiers.org provides directly resolvable identifiers from a
multitude of different databases. The final and valid SBML files
were evaluated using MEMOTE. The total score for the GEMs from
the Path2Models project increased from 48 to 59% and all models
are now available as SBML Level 3 files. Again, no changes on the
reaction, metabolite, or gene content were performed, which
would affect the model simulations.

MODEL ANALYSIS
In the following section, we examined the available models for
their predictive value and their similarity. As the growth behavior
of S. aureus is reported in various defined media, the models’
capability of reflecting growth under these conditions indicates

Table 1. Overview over the available S. aureus models.

Model Year Model count Availability Format MEMOTE score Initial growth Curation

iSB61927 2005 1 BiGG & BioModels Database SBML L3V1 with fbc 67% ✓ m

iMH55128 2005 1 BioModels Database SBML L3V1 with fbc 36% ✓ m

Lee31 2009 13 Supplements Excel spreadsheet file 65% s

Path2Models29 2013 33 BioModels Database SBML L2V4 48% a

Bosi32 2016 64 Supplements SBML L3V1 with fbc 36% ✓ s

Magnúsdóttir33 2017 1 Virtual Metabolic Human (VMH) Database SBML L3V1 with fbc 45% ✓ s

iYS85430 2019 1 BiGG Models Database SBML L3V1 with fbc 81% ✓ m

All GEMs were downloaded from the respective database or from the supplements of the publication. Their format and SBML version were determined. The
initial growth was tested (indicated with the symbol ✓ in case of success) and the MEMOTE36 score was calculated for each model. The information for the
models by Bosi et al. was determined after the debugging steps (see Fig. 3 steps 1–7). These debugging steps only served the purpose of generating valid
SBML files. No additional improvements, which could increase the MEMOTE score, were performed at this point. The curation column indicates, whether the
model was curated manually (m), automatically (a), or semi-automatically (s).
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the predictive value of the model. Subsequently, the publications
were checked for the inclusion of experimental data in the models
or the verification of model-driven hypothesis. Additionally, the
predictions of gene essentialities using different models are
compared. In the last step, the models’ similarities were examined
concerning their reaction and gene content.

Growth capabilities
The growth of genome-scale metabolic models on different media
is an important characteristic of a model’s capabilities and
flexibility to reflect the organisms behavior in different environ-
ments. Since S. aureus is known to grow in a variety of different
environments, its growth was simulated in chemically defined
environments to investigate the model’s capabilities.

Chemically defined medium (CDM). The CDM is a complete
defined medium with 18 amino acids, two purines, and six
vitamins and initially developed to study the slime production by
coagulase-negative staphylococci80. It was used by Halsey et al. to
study the amino acid catabolism in S. aureus81. Either no carbon
source was added (CDM), or glucose (CDM_glc) or galactose
(CDM_gal) was added to the medium. The growth of S. aureus
strain JE2 is already computationally and experimentally validated
and verified on CDM and its variants30.

Synthetic nasal medium (SNM). The primary ecological niche of
S. aureus is the human nose82,83. Krismer et al. developed a
defined synthetic nasal medium (SNM) based on the composition
of nasal fluid components determined by metabolomics84,85. This
medium was initially developed to monitor the growth of S. aureus
under similar physiological conditions as in the nose. Growth in

this medium is experimentally verified for the S. aureus strains
USA300 LAC and Newman. Since the medium is chemically
defined, it can also be established in growth simulations in
systems biology.

Gut medium. Already in the 1950s and 1960s, the intestinal
colonization of S. aureus was reported82. Recent interest in the gut
microbiome revealed and enlightened the relevant role and
influence of S. aureus on the intestinal microbial ecology and
diversity83,86–89. Intestinal colonization by S. aureus is, e.g.,
assumed to induce pseudo-membranous colitis and to change
the gut microbial ecology89. Alterations in the composition of the
gut microbiota can result in the development of chronic diseases,
such as type 2 diabetes, colorectal cancer, and obesity90. Hence,
studying the role of S. aureus in the context of the gut microbiome
is of high relevance. Magnúsdóttir et al. generated 773 genome-
scale metabolic reconstructions for 773 members of the human
gut microbiome, including S. aureus. To simulate the growth in the
gut, they chemically defined a medium according to experimental
data. The medium definition was extracted from the S. aureus
model created by Magnúsdóttir et al.33. Magnúsdóttir et al.
validated two of the 773 genome-scale reconstructions experi-
mentally, where S. aureus was not included. However, as their
model grew in the defined medium, and S. aureus is reported to
colonize the intestine, we inferred that growth should be possible.

SCFM. S. aureus does not only occur on the human skin, in the
human nose82,83, or the nasopharyngeal tract91,92. It is furthermore
observed in patients, especially in children, with cystic fibrosis
(CF)93, an autosomal recessive disease. As one of the earliest and
also most prevalent pathogens, S. aureus causes chronic airway
infections in patients with CF94. To investigate the role of S. aureus

Fig. 3 Debugging and extension steps in GEMs by Bosi et al. Not all the 64 SBML files downloaded from the supplement of Bosi et al. did
directly pass the syntactic validation. In seven steps, the errors reported in the validity check were solved to receive valid SBML files. The valid
files were then further extended with appropriate SBO terms for genes, species, and reactions. In a final step, annotations were added to the
model using ModelPolisher69.
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and other associated pathogens, such as Pseudomonas aerugi-
nosa93, Palmer et al. developed a synthetic cystic fibrosis medium
(SCFM), mimicking the nutritional composition of the sputum of
patients with CF by chromatographic and enzymatic analyses of
the CF sputum. This medium was initially created to analyze the
nutritional behavior of Pseudomonas aeruginosa in CF sputum95.
Clinical isolates of S. aureus are reported to grow in SCFM96.
Since the thirteen models by lee et al. and the 33 models from

the path2models project did not exhibit any growth in full
medium, these models were not included in the analysis of
growth capabilities. During the analysis, three of the models by
Bosi et al. reported a low growth rate of 0.00186 mmol/(gDW × h)
without any active exchange reactions (models sa_118, sa_gr1,
and sa_lct). A positive growth rate without active exchange
reactions can be an indicator for futile cycles and a necessity for
manual verification and refinements.
Not all models by Bosi et al. were capable of growing on any of

the tested media. In total, 33 out of the 61 remaining models were
not able to grow on any of the tested media. This might be
explained by the auxotrophies for amino acids and vitamins in
several S. aureus strains observed by Bosi et al.32. None of the
models by Bosi et al. grew on the SCFM or the gut medium. For
SNM and the CDM compositions, different patterns emerged: ten
strains, including N315, only grew on SNM, while six strains only
grew on the CDM with galactose. Seven strains grew on all three
variants of the CDM and the remaining five strain models grew on
both the SNM and all CDM. The model iSB619 by Becker et al. only
grew on the gut medium, while the model iMH551 by Heinemann
et al. returned a positive growth rate for all tested media types.
The model iYS854 exhibits growth on almost all tested media,
except for the SCFM and the gut medium. It is comparable to the
models by Bosi et al., with the difference of a higher growth rate.
The model by Magnúsdóttir only grew on its own gut medium. In
Fig. 4, the growth capabilities of the various S. aureus GEMs under
different environmental conditions is illustrated.

Presence of experimental data
Besides the correct prediction of growth in a defined environ-
ment, a model’s predictive value also increases when laboratory
data is included or in silico observations are verified in laboratory
experiments.

Automatically curated GEMs. The models from the Path2Models
project were automatically constructed. Within automated recon-
struction processes, the inclusion of experimental data for
individual models is complicated. For this reason, the GEMs from
the Path2Models project do not contain experimental data29.
Moreover, the models are not simulatable and, thus, can also not
predict any growth. Verification of model predictions is hence not
possible.

Semi-automatically curated GEMs. Curating a collection of multi-
ple GEMs is time and labor intense. Manual reconstruction would
take a significant amount of time. Thus, the models from Lee et al.,
Bosi et al., and Magnúsdóttir et al. were constructed semi-
automatically.
Lee et al. verified their models using gene essentially analysis

and growth experiments of two models. They found literature
evidence and experimental verification for six of the 44 identified
genes that were essential in all strains in silico. The growth
experiments supported their minimal-medium predictions31.
The models from Bosi et al. were examined for the correct

simulation of already known auxotrophies. Furthermore, the
predictions of the growth capability in the presence of spermidine,
and the growth on chemically defined media were verified in
laboratory experiments for several strains32.
The model from Magnúsdóttir et al. was curated based on

literature-derived experimental data. However, it is not specified
which experimental data is used exactly. Metabolic predictions of
two of the 773 reconstructions were validated against experi-
mental data33.

Manually curated GEMs. Becker et al., Heinemann et al., and Seif
et al. manually curated their strain-specific GEMs. The in silico
growth predictions of the model iSB619 in a minimal medium
were compared to laboratory experiments. Becker et al. addition-
ally predicted essential genes. As this was the first available GEM
of S. aureus, no experimental data was available to compare the
predicted essential genes with27. The model iMH551 was
compared to available knowledge about auxotrophies in S. aureus.
The model’s growth predictions under aerobic and anaerobic
conditions were validated against available experimental evi-
dence28.
The model iYS854 underwent the most experimental verifica-

tions compared to all other models. Its predictions are in 85%

Fig. 4 Growth rate of S. aureus GEMs in different media. All models with initial growth (see Table 1) were tested on the different media. For
the GEMs by Bosi et al.32, the prefix “Bosi” was added to the model strain name. The other models are named according to their published
model ID or, in case of the model from the VMH database, by the author. Media types are the synthetic nasal medium (SNM), synthetic cystic
fibrosis medium (SCFM), gut medium, chemically defined medium (CDM), CDM with glucose (CDM_glc), and CDM with galactose (CDM_gal).
Models that did not show growth in any of the tested media were excluded. The color-bar indicates the growth rate: the darker the color, the
higher the growth rate of the model organism on the given medium.
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agreement with gene essentiality experiments. The in silico
predictions of the catabolism of carbon sources are in 68%
agreement with experimental physiological data. They compared
the models’ growth predictions on various media with laboratory
experiments, and performed extensive condition-specific GEM
validation and evaluation in the presence and absence of
glucose.

Prediction of gene essentialities
Another indicator for the predictive value of a model is the
correctness of predicted gene essentialities. The essentiality of a
gene depends on the environment and the availability of
nutrients. To identify essential genes in silico, each gene is
individually knocked out in a so-called single gene deletion
analysis and its effect on the growth rate is evaluated. This
analysis, however, requires a model’s capacity to simulate growth
in the investigated environment. As the models from the
Path2Models project and Lee et al. did not show any initial
growth (see Table 1), these models were excluded from the single
gene deletion analysis. Additionally, this review aims to compare
models from different sources. Since the models from the
Path2Models project and Lee et al. were already excluded from
this analysis, only two strains remain with more than one model:
S. aureus USA300-FPR3757 and S. aureus N315. Two models from
Bosi et al. and Magnúsdóttir et al. are available for the strain
USA300-FPR3757, which can simulate growth. The model from
Magnúsdóttir et al. contains gene identifiers that cannot be
resolved within the PATRIC database97, leading to its exclusion
from this analysis. With only one remaining model from Bosi et al.,
a comparison of predicted gene essentialities for the strain
USA300-FPR3757 is not possible anymore.
Becker et al., Heinemann et al., and Bosi et al. curated models

for the strain N315 simulating growth. The model from
Heinemann et al., however, had to be excluded from the single-
gene-deletion analysis as the model did not contain any GPRs and,
thus, no genes. We downloaded the list of 302 essential genes for
N315 from the Database of Essential Genes (DEG)98 and mapped
all genes to the respective KEGG gene identifier. The medium is
indicated as a rich medium in the DEG, but no further description
of the chemical definition is given. Therefore, all exchange
reactions were opened for the single gene deletion analysis.
The model from Bosi et al. predicted 117 essential genes, while

the model from Becker et al. predicted 80. Of the 302 essential
genes from the DEG, only 176 and 107 genes were present in the
models from Bosi et al. and Becker et al., respectively. From the
117 predicted essential genes by Bosi et al., 27 (23.1%) were
predicted correctly, while 90 (76.9%) of the predicted essential
genes are not in accordance with the experimentally derived
essential genes. Similarly, from the 80 predicted essential genes by
Becker et al., 18 (22.5%) were predicted correctly, while 62 (77.5%)
of the predicted essential genes are not listed in the DEG. One
possible explanation for the similar predictions of essential genes
is that the models from Bosi et al. are based on the model from
Becker et al. The low number of true positive predicted essential
genes could indicate further refinement potential of the two
models.

Similarities between models
The analysis of the growth capabilities implied a clustering of
models with similar growth behavior, especially for the models by
Bosi et al. To identify further similarities between the models, the
reaction sets were compared. Mapping identifiers between
different databases induces a bias, since a complete mapping is
currently not feasible. Tools, such as ModelPolisher69, can be
helpful for annotating and comparing models. However, these
tools rely on cross-references in various databases, which holds
some challenges: The tools can only search with the correct

identifier; if a model, however, has identifiers not included in the
database, the tools will not find any annotations for that model
instance. One other challenge lies within the administration and
topicality of the databases. Changes in one database might not be
reported or updated in the cross-references of other databases,
leading to erroneous allocations that would bias the result of the
comparison.

Heat maps of reaction similarity. Since the models have diverging
identifiers, we divided them into three different groups. The first
group comprises the 33 models from the Path2Models project
with consistently mixed identifiers The second group includes all
thirteen models by Lee et al. with KEGG IDs. The third group
includes all models with BiGG identifiers, namely all models by
Bosi et al., as well as the models iSB619 and iYS854. Furthermore,
this third group contains the model created by Magnúsdóttir et al.
This model possesses VMH identifiers, however, those identifiers
can easily be converted to BiGG identifiers since they bear a
resemblance to the BiGG IDs. Within these groups, all reactions
were listed and checked for their occurrence in the models. With
this table of reaction occurrences, the Jaccard distance was
calculated between all pairwise combinations of the models.
With this distance matrix, the heat-map in Fig. 5 was created.

The models iSB619, Magnúsdóttir, and iYS854 vary widely
between each other and the models by Bosi et al. Within the
Bosi models, clusters of more and less similar models can be
identified (Fig. 5c). Such clusters are expected, as we assumed that
genetically similar strains also lead to more similar GEMs, due to
the gene–protein-reaction associations (GPRs). For example, the
two closely related USA300 strains TCH1516 and FPR3757 have a
distance value of 0.015, while the distance to one of the isolates of
the ST228 lineage (ST228-16035) is 0.160. Strain MRSA252 is
reported to be genetically diverse compared to other S. aureus
strains. Its distance, however, to the USA300-TCH1516 strain is
smaller (0.06) than the distance to the isolates of the ST228
lineage. Hence, the genetic differences between the different
strains are not necessarily reflected in their respective GEMs so far.
The distances between the models with BiGG IDs (group three)

ranged from 0 to 0.8, with the maximal distances between the
models iSB619, Magnúsdóttir, and iYS854. The models by Lee
et al., however, are more similar, indicated by the scaling of the
color-bar that ranges from 0 to 0.05. The model of the S. aureus
strain TCH1516 differs the most from all other models (Fig. 5b).
Unlike the models from Bosi et al., the two USA300 strains
(TCH1516 and USA300) do not cluster. They have a distance of
0.037. In contrast to the models of Lee et al., the strain TCH1516
does not stand out in the groups with BiGG IDs and the
Path2Models models.
Most distances between the models from the Path2Models

project (group one), ranged from 0.25 to 0.35. However, the model
of strain RF122 protrudes with a mean distance of 0.62. This trend
can also be observed in the heat-map of the models by Lee et al.,
but not as prominent as in Fig. 5a. One possible explanation is
given in the taxonomy for the S. aureus strain RF122, which is an
bovine mastitis-associated isolate with notable differences to
human clones of S. aureus99. This difference is, however, not as
obvious in the Models of Bosi et al. compared to the models of Lee
et al. and the Path2Models project.

Venn diagrams of gene similarity. Despite significant effort to
standardize and consistently annotate all models using different
annotating tools, such as the ModelPolisher, or database requests
for aliases from databases like BiGG or ModelSEED, a satisfying
comparison of the reaction sets between different identifiers is still
not possible. For example, for the models with KEGG identifiers
from Lee et al., we could not use the ModelPolisher, as this
annotation tool currently requires BiGG identifiers. For that reason,
we browsed the BiGG Models Database locally for cross-references

A. Renz and A. Dräger

8

npj Systems Biology and Applications (2021)    30 Published in partnership with the Systems Biology Institute



Fig. 5 Model comparison based on Jaccard distance between reaction sets. The models were divided into three groups based on their
metabolite and reaction identifiers: (a) has all models of the Path2Models project with consistently mixed identifiers, (b) has all models with
KEGG identifiers (hence, all GEMs by Lee et al.), and (c) contains all models with BiGG identifiers. Within the three groups, all pairwise Jaccard
distances were calculated based on the models’ reaction sets. The distances are displayed in the heat map. The color bar range is equal for (a)
and (c) for better comparison. As the distances in (b) are much smaller, the color bar’s range was adapted.
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to KEGG identifiers. Unfortunately, 842 out of 1486 KEGG reaction
identifier were not referenced at all in BiGG, 359 KEGG identifiers
were not uniquely mapped to a BiGG identifier, and only 285
identifiers were uniquely mapped. We checked some of the non-
referenced KEGG identifiers in the ModelSEED database for aliases
but could not determine the respective identifiers.
For that reason, we looked at the gene content of the models.

Most models used KEGG gene identifiers, regardless of the
identifier database of the reactions and metabolites. As the
different strains have strain-specific gene identifiers, the following
analysis was conducted strain-wise. Strains with at least three
models from various resources were taken into account (see also
Fig. 2): For eleven strains, three models are available, for the strain
USA300-FPR3757, four models are present in this collection, and
for the strain N315, five models are available. However, the SBML
file of the N315 model by Heinemann et al. does not include any
genes. Thus, the model was excluded from the comparison. Same
accounts for the RF122 strain-specific model by Lee et al., which
also does not contain any genes. For this reason, the model was
also excluded from the analysis. By that, the strain RF122 did no
longer fulfill the criterion of at least three available models.
The gene sets from the remaining models were compared. As

indicated, most models used KEGG gene identifiers, but not all.
The model by Magnúsdóttir et al. included strain-specific and
unspecific PATRIC identifiers97. With the help of the PATRIC ID
mapping service, the respective KEGG gene identifiers were
extracted. However, this was only feasible for the strain-specific
identifiers. Despite significant effort, the unspecific identifiers
could not be resolved, as no mapping scheme could be identified.
Thus, from the 859 genes included in the Magnúsdóttir model,
only 192 could be resolved to KEGG identifiers.
Model iSB619 contained new locus tags, whereas the KEGG

identifiers correspond to the old locus tags. With the GenBank flat
file (gbff)100 of S. aureus strain N315, the locus tags were mapped.
For the 619 new locus tags 611 respective old locus tags, and thus
KEGG identifiers, were extracted.
The models by Bosi et al. included mostly KEGG gene identifiers.

Within the strains JH1 and JH9, the gene identifiers were
truncated by the included word “DRAFT” to make them consistent
with the actual KEGG identifiers. For example, the initial identifier
SaurJH1DRAFT_0595 was truncated to the correct KEGG
identifier SaurJH1_0595.
After these mapping and adapting steps, the gene sets within

the different strains from the different resources were compared,
and Venn diagrams were created as shown in Fig. 6. Across all
twelve comparisons, the models by Bosi et al. have the largest
portion of genes that are solely reflected in these models. This
number varies between 20.1% in the N315 strain and 59% in the
Newman strain. As these models have the highest gene content
on average with approximately 788 ± 116 genes per model, this
seems apparent. The models from the Path2Models project have
an average gene content of 519 ± 12 genes per model, and the
models by Lee et al. contain 488 ± 149 genes on average. It was
already mentioned that the gene identifiers from the JH1 and JH9
models by Bosi needed to be adapted. Despite this adaption, only
half of the gene content is present in the other models as well. For
the Newman, MW2, and Mu3 strains, we further analyzed the gene
identifiers after these observed discrepancies between the gene
contents with the models from the other two databases. These
three strain-specific models from Bosi include non-strain-specific
gene identifiers, which could not be mapped to the correspond-
ing strain-specific gene identifier.

The models from Lee et al. and the Path2Models project are
relatively similar concerning their gene content. Since both
models are curated based on the KEGG database, this similarity
is evident. The four models of the S. aureus USA300-FPR3757 strain
have a gene content overlap of 15.7%. The model by

Magnúsdóttir et al. has only 0.3% gene content that is not
reflected in the other three models. However, one needs to keep
in mind that many genes in the model are not strain-specific and
could not be mapped and compared.
With these twelve gene content comparisons, we again

calculated the Jaccard distance between the models from Bosi
et al., Lee et al., and the Path2Models project. As already visible
from the Venn diagrams, the models from Lee and the
Path2Models project are most similar with respect to their gene
content. They have a mean Jaccard distance of 0.288 ± 0.004.
However, one might have speculated that the models are more
similar based on the Venn diagrams. It needs to be highlighted
that the Venn diagrams are calculated based on the gene content
of all compared models. In contrast, the Jaccard distance
calculates pairwise distances and, thus, only considers two models
at once. For that reason, the models from Lee et al. and the
Path2Models project are still the most similar ones, but their
identity might not be as large as first expected when looking at
the Venn diagrams. The Bosi models have a mean distance to the
Lee models of 0.666 ± 0.179 and to the Path2Models project
models a mean distance of 0.616 ± 0.203.
Although the different models from the various databases

reflect the same strain, the models have distinct diversities. This
can be explained by the differences in the reconstruction process.
How the model is curated seems to play a pivotal role for the final
model and its model instances. Thus, the reconstruction method
needs to be chosen carefully, and manual or semi-automated
additions might be required.

Decision guidance
With the vast amount of different strain-specific S. aureus models,
the identification of the suitable GEM for a specific research
question or purpose might become difficult. Table 2 gives an
overview about the main features of the S. aureus GEMs. The
features were assigned based on the strengths of the different
models or model collections after the model improvement steps. If
one is interested in simulatable models, the table guides the reader
to the corresponding models. By combining different required
features, the selection can be tailored. If one needs, e.g., a model
with BiGG IDs that grows on different media, the models by Bosi
et al. or the model iYS854 are suggested, depending on the desired
strain. High MEMOTE scores indicate a high degree of annotations,
which facilitates the re-usability and comparability of a model.
A predictive value score was calculated based on the model

analysis regarding their growth capabilities and the presence of
experimental data. If a model was not simulatable, it received a
predictive value score of 0. Otherwise, a score of 1 was added. For
growth capabilities in one environment, a score of 1 was added;
for growth in multiple environments, 2 was added. For every
experimental verification procedure, such as growth verifications,
auxotrophies, compliance with physiological data, or other
experiments, a score of 1 was added. The prediction of essential
genes was not included in this score, as this analysis was only
conducted for two models. By this scheme, the model iYS854 had
the highest predictive value score of 7, followed by iMH551 and
some models by Bosi et al. The models by Bosi et al. received a
score between 3 and 5, as some models do not predict growth in
any tested environment, while others do. As the models from Lee
et al. and the Path2Models project are not simulatable, they
received a predictive value score of 0. Models with high predictive
value score and high MEMOTE score are recommended for further
use, while models with low predictive value score might need
further refinement and experimental verification before usage.
This table does not contain strain-specific information. Including

the information from Figs. 2 and 4 will further guide the decision
for a suitable model.
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Fig. 6 Strain-specific model comparison based on gene sets. For all models occurring in at least three different resources, the gene content
was compared strain-specifically. After unifying the gene identifiers to KEGG IDs, Venn diagrams were created comparing the gene content. The
models from Bosi et al. have, on average, the highest gene content, explaining the large fraction of genes occurring only in these models.
The models by Lee et al. and the Path2Models project seem more similar, which could be explained by the fact that both are curated based on
the KEGG database. Although all models in one Venn diagram (and thus, one comparison) represent the same strain, the models have
differences, indicating the influence of the reconstruction method on the final model content.
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DISCUSSION
The analyses show that despite genomic and genetic similarities,
GEMs of related strains are not necessarily similar to each other.
This accounts for both models of the same strain curated by
different research groups and to related strains curated by the
same group. One example is the model from Magnusdóttir et al.
with the S. aureus strain USA300-FPR3757 and the corresponding
model from Bosi et al. Despite it is the same strain, the GEMs are
quite different in their reaction content. In contrast, the two strain-
specific models of the strains MRSA252 and USA300-TCH1516 by
Bosi et al. are quite similar despite the genetic diversity of the
strain MRSA252. This observation might have several reasons. The
first, and probably most striking, reason is the incompleteness of
the models. As high-quality genome-scale metabolic reconstruc-
tions require manual curation and evaluation101, and many
models introduced in this review were created automatically or
semi-automatically, some models might lack general or strain-
specific reactions. This lack of required reactions is also visible
when optimizing the flux distributions of the models. For multiple
models, no growth could be simulated in FBA, not even in full
medium. This was especially the case for the automatically curated
models from the Path2Models project and the semi-automatically
curated models from Lee et al. But also some of the semi-
automatically curated models from Bosi et al. did not show any
growth. Thus, a connection between automated or semi-
automated curation and the functionality of the models seems
to exist. However, automated or semi-automated curation does
not necessarily result in poor growth prediction, especially when
the basis for the (semi-) automated processes underwent
significant manual curation. The other models from Bosi et al.
showed growth on up to four different media. The semi-
automatically constructed model by Magnusdóttir et al. could be
simulated on one medium, which is also the case for the manually
curated model iSB619. Furthermore, some of the S. aureus strains
have plasmids carrying additional genes. For a strain-specific
model, these additional genes need to be incorporated into the
GEM as well. Especially the metabolic and transporter genes are
relevant for the strain-specific model. The plasmid of the S. aureus
strain N315, e.g., carries a gene for the cadmium resistance
transporter CadD, which facilitates the export of cadmium ions
and other cationic compounds102. Besides further proteinogenic
genes, the plasmid of strain N315 also carries a gene for the
penicillin-hydrolyzing class A β-lactamase enzyme. These two
genes are, e.g., also present on the plasmid of the S. aureus strain
USA300-TCH1516.
As explained previously, the challenge lies within the different

reaction and metabolite identifiers. In this review, we additionally
tried to annotate the GEMs further to simplify the comparison of
models with differing identifiers. However, only approximately

one third of all reactions and metabolites are annotated with
identifiers of external databases. It is still challenging to find all
cross-references for a particular metabolite or reaction in a specific
database. For that reason, we additionally evaluated the gene
content of the strain-specific models, as most models contained
identifiers from the KEGG database. The gene identifiers from
other databases were mapped to the KEGG identifiers. Again, a
bias is introduced when identifiers are mapped between
databases: On the one hand, not all identifiers can be resolved
in the other database. On the other hand, some identifiers do not
comply with the databases’ identifiers scheme and do not have
annotations. This makes an automated mapping of several
hundred identifiers infeasible. Extensive manual labor would be
necessary to map these identifiers. The usage of consistent
identifiers that comply with the database scheme and additional
annotations is highly recommended and would simplify the re-
usability, translatability, and comparability of models103. The
comparison of the strain-specific models’ gene content confirmed
that GEMs from different resources could vary, despite their
genetic equality, highlighting the relevance of the curation
process on the resulting GEM. This observation is even more
explicit when comparing the models by Lee et al. and from the
Path2Models project: both rely on the KEGG database. However,
the models are not equal, as the two groups used different
approaches for the curation of the models.
Missing reactions and strain-specific genes might also affect the

growth behavior of a strain-specific model on a given medium.
Only the model iMH551 showed growth on all tested media.
Additional growth experiments for specific S. aureus strains can
help to identify the missing growth capabilities of the model. The
model’s ability to adapt to different environmental conditions is
crucial to simulate an organism in silico. This is also reflected in the
predictive value score, which was assigned to the models.
Especially for models with a low predictive value score, additional
experiments would help determine and also increase the
predictive value of the model.
The models from Lee et al., the Path2Models project, Bosi et al.,

and Magnúsdóttir et al. are curated automatically or semi-
automatically. Except for the models from Bosi et al., all models
have a comparatively low predictive value score than the
manually curated models. The models from the Path2Models
project and Lee et al. have a score of 0. The low score from the
Path2Models projects’ models might go back to the lack of
experimental data in both the curation and verification process,
thus highlighting its importance for predictive genome-scale
metabolic reconstructions. The low score for the models from Lee
et al. accentuates the importance of standardized GEMs, which
allow re-usability. Although the models from Bosi et al. are curated
semi-automatically, their predictive value scores are comparable

Table 2. Feature-based decision guidance.

Feature iSB619 iMH551 Lee Path2Models Bosi Magnúsdóttir iYS854

Database ✓

Simulatable models ✓ ✓ ✓ ✓ ✓

BiGG IDs ✓ ✓ ✓

Kyoto Encyclopedia of Genes and Genomes (KEGG) IDs ✓

Growth on different media ✓ ✓ ✓

High MEMOTE score ✓ ✓ ✓ ✓

Predictive value score 3 5 0 0 3–5 2 7

The main features of the S. aureus GEMs are listed and indicated with the symbol ✓ when present. The models are assigned to the features based on their
strengths after the model improvement steps. A predictive value score was calculated as described in the section “Decision guidance”. With the help of the
features and the predictive value score, one can identify the best suited model for the research question of interest.
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high. They based their pipeline on a manually refined model and
verified their predictions with experimental data. More experi-
mental data accompany more knowledge. The latest model,
iYS854 has the highest predictive value score, was manually
curated, and extensively experimentally validated. The result of
such a time- and labor-intensive work is a GEM with a high
predictive value and a strong recommendation for future usage.

CONCLUSION AND OUTLOOK
In this review, all 114 currently available genome-scale metabolic
models (GEMs) of Staphylococcus aureus were presented and
evaluated. It serves as guide for the different available reconstruc-
tions in various databases, using differing metabolite and reaction
identifiers. Some models originally comprise a large number of
reactions, metabolites, and genes, after undergoing several manual
curation steps and extensive annotating. Such models have a high
MEMOTE score. The model with the highest MEMOTE score is the
iYS854 model by Seif et al. Other models have a vast amount of
reactions and metabolites, such as the reconstructions of the
Path2Models project. Such models could, e.g., serve as information
sources for the reconstruction or refinement of already existing
strain-specific models. Based on the information regarding
availability, model format, MEMOTE score, growth behavior, used
database identifiers, predictive value, and similarities between
models, together with a previously defined research question, the
appropriate genome-scale reconstruction can be chosen from the
vast amount of available GEMs. Another approach would be to use
the strengths of every reconstruction and incorporate it into
merged or combined models, which increase the correctness and
the predictive value of a strain-specific model. Despite the vast
amount of presented models in this review, there is no suitable
model for every S. aureus strain available. Furthermore, missing
annotations or identifiers that do not comply with the database
identifier scheme impede the models’ re-usability and compar-
ability. Standardization of all models would be desirable but is
currently not feasible with the available tools without extensive
manual labor for hundreds of identifiers. No omics data was
incorporated into many of the published GEMs so far. Information
about transcription profiles, for example, can help to refine
metabolic reconstructions to better reflect the metabolic state of
an organism in a defined environment. The incorporation of omics
data can thus increase the predictive value of genome-based
metabolic reconstructions104.
However, with the help of the already available reconstructions

and further information, strain-specific models could be created or
extended. Information from literature, merging of strain-specific
models, and manual curation steps could further improve the
predictive value of simulations and analyses of metabolic features
of S. aureus. Having predictive GEMs can eventually lead to the
identification of novel targets for antimicrobial therapies in the
fight against antibiotic resistant strains of S. aureus.
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