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The successful training of deep learning models for diagnostic deployment in medical imaging
applications requires large volumes of data. Such data cannot be procured without consideration

for patient privacy, mandated both by legal regulations and ethical requirements of the medical
profession. Differential privacy (DP) enables the provision of information-theoretic privacy guarantees
to patients and can be implemented in the setting of deep neural network training through the
differentially private stochastic gradient descent (DP-SGD) algorithm. We here present deepee, a free-
and-open-source framework for differentially private deep learning for use with the PyTorch deep
learning framework. Our framework is based on parallelised execution of neural network operations to
obtain and modify the per-sample gradients. The process is efficiently abstracted via a data structure
maintaining shared memory references to neural network weights to maintain memory efficiency.

We furthermore offer specialised data loading procedures and privacy budget accounting based on
the Gaussian Differential Privacy framework, as well as automated modification of the user-supplied
neural network architectures to ensure DP-conformity of its layers. We benchmark our framework’s
computational performance against other open-source DP frameworks and evaluate its application
on the paediatric pneumonia dataset, an image classification task and on the Medical Segmentation
Decathlon Liver dataset in the task of medical image segmentation. We find that neural network
training with rigorous privacy guarantees is possible while maintaining acceptable classification
performance and excellent segmentation performance. Our framework compares favourably to
related work with respect to memory consumption and computational performance. Our work
presents an open-source software framework for differentially private deep learning, which we
demonstrate in medical imaging analysis tasks. It serves to further the utilisation of privacy-enhancing
techniques in medicine and beyond in order to assist researchers and practitioners in addressing the
numerous outstanding challenges towards their widespread implementation.

Artificial Intelligence (AI) is a heavily data-centric domain: the success of machine learning (ML) models depends
on the quality and quantity of data that is available during training. This is especially problematic in applications
such as medical image analysis, in which high quality data is sparse and data utilisation is restricted. Medical
data is highly sensitive, and regulatory, ethical and moral requirements restrict its sharing. These restrictions,
although crucial, hinder the development of algorithms that generalise well and therefore prevent widespread
deployment. Recent work' finds that even algorithms approved for diagnostic use are often trained on small (i.e.
less than 1000 cases), single centre datasets. Considering that state-of-the-art generic computer vision models
are customarily trained on datasets such as ImageNet? containing orders of magnitude more images, it becomes
readily apparent that the access to more data will be strictly necessary for the development of the majority of deep
learning applications in medical imaging to achieve the same success. Privacy-preserving machine learning is
anascent area of Al which proposes to bridge the gap between data utilisation and data protection through the
application of privacy-enhancing techniques®. Among these, collaborative learning protocols such as federated
learning have arguably witnessed the widest publicity*. They allow a confederation of clients to train ML models
in a decentralised fashion and without sharing the raw data. However, a number of works suggest®~ that on its
own, federated learning is an insufficient measure of privacy preservation. In the setting of medical imaging,
this can result in catastrophic privacy loss for affected patients. Prior work demonstrates that federated learning
without additional privacy-enhancing techniques can be reverse-engineered to reconstruct high-fidelity images
which encode diagnostic information about patients, such as the absence of a breast indicative of a prior history
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of breast cancer®. Moreover, three-dimensional medical imaging can be volumetrically rendered to reconstruct
facial contours which enable patient re-identification’. Lastly, even when identifying attributes are not directly
present in the image, the exploitation of side information by adversaries in the setting of linkage attacks, proven
to represent a highly effective method for membership inference'®, is also applicable to medical imaging data-
bases given that large-scale public datasets of medical images are being assembled and—increasingly—publicly
released. Thus, solutions based on information-theoretic privacy measures are required to provide comprehensive
and quantifiable guarantees to the involved parties. Differential privacy (DP)"! has arisen as the gold standard in
this regard. In brief, DP is the attribute of an algorithm to be approximately invariant to the inclusion or exclu-
sion of individual patients, providing them with formal and quantifiable privacy guarantees. Although formally
an information-theoretic privacy guarantee, in practice DP is typically achieved through computationally secure
means, that is, an addition of carefully calibrated noise to the training process, making individual contributions
indistinguishable from each other. In their seminal paper, Abadi et al.!* demonstrated the successful application
of DP in the training of deep neural networks, termed differentially private stochastic gradient descent (DP-SGD).
However, the authors of this and subsequent works noted that the utilisation of DP-SGD unavoidably negatively
affects the utility of the resulting models, a well-known effect termed the privacy-utility trade-off**. Addressing
this trade-off'* and ultimately enabling the widespread real-world utilisation of privacy-preserving ML in medi-
cal imaging and beyond requires the introduction of robust software tools, suitable for implementation within
widely-used deep learning libraries and implementing current best practices.

We here present deepee, a software framework for differentially private deep learning based on the PyTorch'®
machine learning library. Our main contributions can be summarised as follows:

® We present a technical implementation of the DP-SGD algorithm based on parallelised execution, which
makes our framework universally compatible with any neural network layer while enabling substantial per-
formance improvements.

®  We implement state-of-the-art tools for production-level DP-SGD application including cryptographically
secure random noise generation, automatic architecture modifications and privacy budgeting based on the
Gaussian Differential Privacy (GDP) framework which offers a tight analysis of privacy consumed.

®  We benchmark our toolkit against comparable DP-SGD implementations and analyse the behaviour of DP-
SGD in the setting of two medical imaging deep learning tasks: classification and semantic segmentation

® Our framework is aimed at facilitating the application of DP-SGD to arbitrary data by non-experts. For this
purpose, it exposes standardised application programming interfaces, is highly compatible with the PyTorch
deep learning framework and automatically enforces the relevant details to ensure the formal correctness of
the DP-SGD algorithm application.

® The source code of our framework is documented in detail, fully tested and available publicly and freely under
a permissive, open-source license to enable easy maintenance, rapid detection and correction of potential
security vulnerabilities and to encourage open-source contributions.

Two notable works have presented DP frameworks for the PyTorch machine learning library based on different
technical implementations. The Opacus framework!® provides an implementation of the DP-SGD algorithm based
on temporarily caching intermediate backpropagation results. This enables very high performance for specific
deep neural network layer types. However, it does not ensure generic compatibility with any given neural network
operation unless the procedure for obtaining said backpropagation results is explicitly defined on the user’s side.
At the time of writing, the frameworK’s privacy analysis is still based on Rényi DP (RDP)'7, whose guarantees are
not as tight as Gaussian DP (GDP). The Pyvacy'® framework implements a generic version of DP-SGD based
on serial execution. Despite its broad compatibility, this implementation is highly computationally inefficient,
rendering it impractical for production-level use. The framework also lacks cryptographically secure random
number generation and utility functions for automatic neural network architecture modification.

The TensorFlow Privacy framework' and previous work based on the JAX machine learning framework?
share some characteristics of our library, such as utilisation of the GDP accounting technique or parallelisation,
but they are based around different base libraries and thus are not directly comparable to our work.

Results
Technical overview. We begin by providing a brief technical overview of our framework. Implementa-
tion details can be found in the “Methods” section. In brief, deepee implements the DP-SGD algorithm in a
memory-efficient and parallelised manner by increasing the efficiency of the per-sample-gradient calculation
step drastically compared to serial processing. This occurs by creating one zero-memory-cost reference to the
network’s weights for each sample in the minibatch, then performing a simultaneous (parallelised) forward
and backward pass. This process introduces no additional assumptions about the networK’s architecture and
thus allows the application of the DP-SGD algorithm to any neural network architecture. This represents an
improvement compared to prior work, which requires substantial user effort to manually specify the per-sample
gradient calculations for unsupported layer types (e.g. pixel shuffle or transposed convolutions, transformers, etc.)
or relies on performing forward and backward passes serially, thus magnifying time complexity. The framework
furthermore is designed to guarantee the formal correctness of the DP-SGD procedure by e.g. removing Batch
Normalisation layers from the architecture, employing cryptographically secure random noise and automatic
privacy budgeting.

In the following, we demonstrate the utilisation of our framework in the settings of medical image classifica-
tion and semantic segmentation. We present model performance in private and non-private settings to evaluate
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Model ROC-AUC GDP e RDP ¢
Non-private 0.960 [0.946 to 0.971] oc [e9)
Private 0.848 [0.814 to 0.881] 0.52 0.64
Private (relaxed) 0.882 [0.868 to 0.899] 2.69 2.81

Table 1. Classification performance (measured as mean receiver-operator characteristic area-under-the-curve
(ROC-AUQ)) on the paediatric chest radiography binary classification dataset. Ranges in angled brackets.

The non-private model significantly outperformed the private model in both the high-privacy setting and

the relaxed privacy setting, while the private model trained with relaxed privacy guarantees significantly
outperformed the private model with strict guarantees.

Model Dice coeflicient GDP e RDP &
Non-private 0.950 [0.948 to 0.951] o) oo
Private 0.943 [0.941 to 0.945] 0.12 0.35

Table 2. Segmentation performance (measured by the mean Dice coefficient) on the liver semantic
segmentation dataset. Ranges in angled brackets. The privately trained and the non-privately trained models
performed on par despite the provision of stringent privacy guarantees in the privately trained setting.

Task deepee (ours) Opacus Pyvacy

38.82 s [38.67 to 39.08] 16.39 s [16.29 to 16.69] 73.11 s [72.41 to 75.40]
Classification

6366 MiB [6201 to 6448] 7014 MiB [6816 to 7213] 2044 MiB [1992 to 2102]

70.89 s [70.41 to 71.01] 78.47 s [78.08 to 79.86] 97.89 s [97.26 t0 99.16]
Segmentation

9770 MiB [9508 to 9829]

9909 MiB [9812 to 10112]

2085 MiB [1890 to 2205]

Segmentation (Transposed Conv.)

47.27 s [45.12 to 51.15]

64.68 s [62.76 t0 66.32]

12014 MiB [11598 to 12249]

1537 MiB [1399 to 1620]

Table 3. Computational performance (median time for N = 25 batches of 32 examples in seconds over N = 5
repetitions) and mean peak memory consumption (one batch of 32 examples in MiB, N = 6 repetitions) of
the compared frameworks for the classification and segmentation benchmarks. Ranges in angled brackets.
The Segmentation (Transposed Conv.) row showcases framework performance in a U-Net architecture using
transposed convolutions. Opacus is incompatible with this layer type.

the expected privacy-utility trade-offs. Moreover, we compare our library’s computational performance with
alternative implementations of the algorithm offered by the Opacus and Pyvacy frameworks.

Chest radiography classification. The classification model achieved a mean receiver-operator character-
istic area-under-the-curve (ROC-AUC) of 0.848 (range 0.814 to 0.881) in the private setting and of 0.960 (range
0.946 to 0.971) in the non-private setting (DeLong-test p < 0.001, N = 10). GDP accounting yielded a privacy
budget (¢) of 0.52 at a noise multiplier of 3.0 and an L, clipping norm of 1.0, a tighter result than 0.62, which
would have resulted from the utilisation of RDP analysis (§ = 107°). We observed that relaxing the privacy
parameters (noise multiplier and clipping norm) resulted in a significant increase in classification performance
of the private model (ROC-AUC in the relaxed privacy setting 0.882, range 0.868 to 0.899, DeLong-test vs. the
strict privacy setting p < 0.001, N = 10) for an ¢ of 2.69 (GDP accounting) or 2.81 (RDP accounting). Even
in the relaxed setting however, the model still significantly underperformed compared to non-private training
(DeLong-test vs. non-private training p < 0.001, N = 10). These results are summarised in Table 1.

Semantic segmentation of computed tomography images. In the semantic liver tissue segmenta-
tion task, the non-privately and privately trained models produced nearly identical results: The mean Dice coef-
ficient achieved by the privately and the non-privately trained models was 0.943 (range 0.941 to 0.945), and 0.950
(range 0.948 to 0.951, N = 5), respectively. This segmentation performance of the privately trained model was
attained at an & of 0.12 (GDP) or 0.35 (RDP) and a §-value of 10~>, resulting from a noise multiplier of 5.0 and
an L, clipping norm of 0.5, indicating that the provision of strict privacy guarantees was possible in this setting
without a notable trade-off in model performance. Results are summarised in Table 2.

Computational performance comparison. Table 3 presents a comparison of the computational perfor-
mance and memory consumption of our framework versus the Opacus and Pyvacy libraries in the classification
and segmentation settings. We found our framework to offer significantly faster computational performance
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in the segmentation setting compared to Opacus (Student’s t-test p < 0.001) and Pyvacy (p < 0.001). Opacus
significantly outperformed our framework (p < 0.001) and Pyvacy (p < 0.001) in the classification task. (All 25
batches of 32 examples over N = 5 repetitions).

Our framework required significantly less memory than Opacus in both the classification and segmentation
setting (Student’s t-test p < 0.001). Pyvacy, due to serial processing of the individual samples in each minibatch
suffers from a drastically diminished computational performance, however requires significantly less memory
than both other frameworks as a result of only needing to cache a single sample’s gradients at a time (Student’s
t-test p < 0.001, all N = 6 repetitions).

Moreover, to exemplify our framework’s compatibility, we benchmarked an additional U-Net architecture
utilising transposed convolutions as described in the original work?'. The Opacus framework is incompatible
with transposed convolutions and could thus not be assessed. Pyvacy, while requiring less memory (p < 0.001),
again was significantly slower per batch compared to deepee (p < 0.001).

Discussion

Here we present a novel technical implementation of the DP-SGD algorithm which we demonstrate and bench-
mark in the setting of medical image analysis. We found our technique’s computational performance and memory
consumption to be comparable to state-of-the-art frameworks without a requirement for user-side modifications.
Our framework thus provides formal privacy guarantees regardless of the dataset, learning task and of model
selection. Moreover, by leveraging the current state-of-the-art in DP analysis, we demonstrate tighter privacy
bounds compared to previous DP accounting techniques. The two applications presented provide evidence for
the usefulness of our DP-SGD algorithm in real-world medical image processing.

Medical imaging represents a domain in which privacy-utility trade-offs are especially problematic, as mod-
els that generalise well require large and diverse multi-centre datasets during training and must not divulge
personal test data once deployed. Such demands are—for example—placed on ML models utilised for remote
diagnosis-as-a-service??, where expert-level algorithm performance is expected, while the model may be exposed
to probing by malicious third parties. Formal security and secrecy mechanisms such as model encryption can
only partially address this requirement, as even encrypted models have been found to leak sensitive information
in previous work?*?*. Similarly, distributed learning techniques such as federated learning, often touted as being
“privacy-preserving” because the data does not leave its owner, have been proven ineffective against attackers
who participate in the training protocol and are able to capture updates submitted by other participants®®. Dif-
ferentially private model training therefore stands as the only formal mechanism for privacy protection, able to
shield models from feature reconstruction, model inversion and membership inference attacks®?*. Moreover,
recent work demonstrates that DP can reduce the susceptibility of models to other adversarial interference such
as back-door attacks*, which can be attributed to the increased robustness of DP models imparted through the
regularising properties of noise addition?.

Inherent to these beneficial properties of DP model training is—however—also an unavoidable net reduction
in model utility. We identify three key components of this utility penalty: (1) Diminished task-specific perfor-
mance, e.g. in classification or segmentation tasks; (2) computational performance penalties through an increase
in training time and memory consumption and (3) incompatibilities of the DP-SGD algorithm with the neural
network architecture. Our work attempts to address all three of these points.

The use-cases chosen in our study, image classification and segmentation, represent two typical workflows in
medical imaging analysis. Interestingly, we observed a marked performance decrease in the private classification
task compared to non-private model training even under relaxed privacy guarantees. Semantic segmentation
was possible under very strong privacy notions with unexpectedly strong performance. The only other work
to report an e-value in a medical image segmentation task?® utilises a different DP technique, whose utilisation
results in a high privacy expenditure of over 120 under the study’s assumptions, compared to 0.12 in our work.
No previous work—to our knowledge—reports e-values for medical image classification. At present, it is not yet
conclusively investigated to which extent the difficulty of the task, the choice of model and the specific training
technique influence the privacy-utility trade-off. Future work will thus have to elucidate these relationships and
expand on recent studies in this direction!*!4%.

Besides these factors, more refined techniques for privacy accounting are able to offer an improved analysis of
the DP mechanism and thus allow higher utility. In the medical imaging domain, the combination of high utility
and low privacy budget is particularly important. As datasets are complex, highly sensitive and typically small,
each individual in the dataset experiences a relatively higher privacy loss. A tight privacy analysis allows training
the models for a longer time before the privacy budget is exhausted, enabling higher task-specific performance
and therefore, a better diagnostic prediction. Our work utilises Gaussian Differential Privacy, a recently intro-
duced DP formulation which—through a tight characterisation of the sub-sampled Gaussian noise mechanism
utilised in DP-SGD—improves the outlook on the spent privacy budget compared to previous frameworks. It is
expected that further advances, such as individual privacy accounting®! will increase the granularity of privacy
tracking further, allowing for the preservation of even higher utility during algorithm training.

Our main technical contribution is the introduction of a parallelised execution model for the DP-SGD algo-
rithm within the PyTorch framework, which enables both fast performance and efficient memory utilisation. In
addition, our technique-contrary to frameworks relying on the a priori specification of per-sample gradient cal-
culations such as Opacus- is compatible by default with any neural network operation including (but not limited
to) transformer architectures or transposed convolutions, as seen above. This disparity is discussed in®, a line of
work complementary to ours, whose authors utilise just-in-time compilation and vectorised execution to increase
DP-SGD performance, albeit within a different machine learning framework. We moreover see a target for future
work focused around automatic differentiation with inbuilt support for obtaining and manipulating per-sample
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gradients. After all, the requirement to calculate per-sample gradients in current DP-SGD frameworks stems
from the inherent design philosophy of reverse-mode automatic differentiation systems, which are focused on
efficiently obtaining gradients for minibatches but not for individual samples. We moreover note that techniques
concerned with approximate gradient calculations® have some overlap with the objectives of DP-SGD, which
inherently performs an “imprecise” gradient update step through noise addition, and could thus be utilised for
increased performance, after considering their effect on privacy guarantees.

Similar to previous work'®, our work offers the capability to automatically modify the neural network archi-
tecture in case layers incompatible with DP-SGD are included. An example of this phenomenon in the current
work is the deactivation of running statistics collection for Batch Normalisation layers. Moreover, our framework
includes support for cryptographically secure random noise generation which is crucial to avoid vulnerabilities
associated with default pseudo-random number generators®.

We consider some limitations of our work: Our framework’s focus is to provide a generic framework for
DP-SGD and the examples presented represent a simplification of real-life use-cases intended to illustrate its
utilisation in medical imaging. In the segmentation case-study in particular, we provide image-level privacy guar-
antees, whereas a real-life deployment would be adjusted to offer patient-level guarantees (that is, a “summary”
of privacy guarantees derived from the utilisation of all images of a single patient). Moreover, DP techniques
purpose-designed for high performance in classification, such as PATE* could yield improved privacy-utility
trade-offs in the classification use-case compared to DP-SGD, however at the cost of not generalising well to
other tasks such as segmentation®® and an additional assumption of a publicly available dataset that cannot be
reliably expected in a sensitive setting, such as medical imaging.

In conclusion, our work aims to facilitate the utilisation of differentially private deep learning in everyday
practice. It is well-suited to privacy-sensitive tasks such as medical imaging analysis. We publicly release our
framework and experiments in the hope that it will stimulate future research and lead to the design of improved
algorithms and training techniques to enable privacy-preserving machine learning with improved algorithm
utility in medical imaging and beyond.

Methods

Framework implementation details.  User-facing components. Our framework provides the following
high-level user-facing components: (1) A collection of procedures to automatically modify the neural network
architecture in case it contains layers which are incompatible for utilisation with DP-SGD. One example is the
Batch Normalisation layer which maintains a (non-private) running average of statistics over more than one
training example and is thus not compatible with the notion of per-sample gradient calculations, which are
required in DP-SGD. (2) A data structure encapsulating the user-supplied model architecture, responsible for
the main model training and evaluation loop. This wrapper internally maintains one copy of the user-supplied
model per sample in the minibatch, performs a parallelised forward and backward pass over the minibatch
and abstracts the gradient clipping and noise application of the DP-SGD procedure. (3) A privacy accounting
mechanism for keeping track of the privacy spent at each training step and including a procedure to automati-
cally interrupt the training if the privacy budget is exhausted. The system is supplemented by a cryptographically
secure random number generator* suitable for use on the graphics processing unit and capable of parallelising
the random noise generation step of the DP-SGD algorithm.

DP-SGD algorithm implementation. We implement the DP-SGD algorithm as described in'?. In brief, the algo-
rithm consists of the following steps:

Performing a forward pass on a minibatch of samples

Calculating the gradient of the loss with respect to each sample individually (per-sample gradients)
Normalising (clipping) the per-sample gradients to a predefined Ly-norm

Aggregating the per-sample gradients by averaging or summing over the minibatch axis

Adding calibrated Gaussian noise to the resulting gradient vector

M

In practice, step (2) of the above-mentioned procedure is the most time-consuming subroutine of the algorithm,
as automatic differentiation systems are not designed with per-sample gradient computation in mind. To tackle
this problem, our framework first creates a copy of the neural network for each sample in the minibatch and
then performs step (1) of the algorithm above in parallel by dispatching one execution thread per minibatch
sample. Thus, the backpropagation procedure yields per-sample gradients per definition (step (2) above). This
approach has several benefits: It is computationally efficient as it is performed in parallel over the minibatch
leveraging multi-threaded execution on e.g. the graphics processing unit (GPU). Moreover, memory only needs
be allocated once for the neural network weights (as all copies share the same weights). Lastly, the process is
entirely generic and can be used for any arbitrary neural network architecture without the requirement for user
interaction. A similar technique to ours, albeit based on serial execution instead of a parallelised forward pass
and only demonstrated for convolutional neural networks, is presented in*, reportedly going back to (unpub-
lished) work by Goodfellow et al.

Datasets. Classification task. We evaluated our framework on a classification task on chest radiographs
from the Paediatric Pneumonia dataset originally described in*. Originally, the task was formulated as three-
class classification, however we merged the viral and bacterial pneumonia labels to obtain a binary classification
task, in which the algorithm attempts to predict whether the radiograph shows signs of pneumonia or not. The
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dataset contains 1339 training images of healthy patients and 3824 images of patients that present evidence of
pneumonia. The dataset is pre-split into a training (n = 5163) and a test set (n = 624). We further split the train-
ing set into 85% training data (n = 4389) and 15% validation data (n = 774). To account for class imbalance, we
weighted the resulting loss by one minus the proportion of the dataset of the class. Data augmentation was per-
formed using affine transformations (rotation, scaling, translation, shearing). Every occurence of an image from
the same patient, regardless whether it was augmented or not, was counted against the total privacy expenditure.
We trained the models for 20 epochs using the Adam optimiser in the non-private setting and the Stochastic
Gradient Descent (SGD) optimiser in the private setting. Learning rates were determined using a learning rate
finding algorithm? and set to 0.005 in both settings. Learning rate scheduling with halving of the learning rate
on stagnation of the validation loss for two consecutive epochs was employed.

Semantic segmentation task. For the semantic segmentation task, we used the Medical Segmentation Decath-
lon (MSD) Liver segmentation dataset®®. We split the available data into a training set (n = 5184), a validation
set (n = 640) and a held-out test set (n = 2560), mindful to enforce strict patient independence between the
training/validation sets and the test set. The task was re-formulated as a binary segmentation task, in which the
liver tissue pixels (including tumours) are labelled as 1 and the background as 0. For augmentation purposes,
affine transformations (rotation, translation, scaling, flipping) alongside random Gaussian noise were applied to
the input images. Every occurence of an image from the same patient, regardless whether it was augmented or
not, was counted against the total privacy expenditure. The model was trained for 20 epochs in the non-private
setting. In the private setting, we limited the number of epochs to 5 in order to maintain a low privacy budget.
Learning rates were determined using the same learning rate finding algorithm and set to 0.01, while utilising
the Adam optimiser in both cases. Learning rate scheduling was performed in the same manner as for the clas-
sification task.

Model training. For the classification task, we utilised the same model architecture in the private and non-
private setting, namely a VGG-11*" architecture with Batch Normalisation. However, in order to satisfy the
assumptions essential for DP training, the collection of running statistics of Batch Normalisation layers was disa-
bled for both non-private and DP training. For the segmentation task, we use a modified U-Net architecture?!
utilising VGG-11 with Batch Normalisation as a backbone*!. Similarly to the classification task, the running
statistics collection was disabled. The 6-parameter was set to 10> in all cases.

Computational performance and memory benchmarks. For the purposes of computational per-
formance benchmarking we measured the time to train for 25 steps with a minibatch size of 32 on the tasks we
presented above, i.e., binary classification on 224x224 sized images and the segmentation of 256x256 images.
Each measurement was repeated five times.

For memory utilisation benchmarking, a minibatch size of 32 images at a resolution of 256 x 256 was used,
with a single channel for the classification benchmark and three channels for the segmentation benchmark.
All benchmarks were conducted in triplicate to ensure stability between runs and repeated on two operating
systems, macOS 11.2.3 and GNU Linux on the 5.4.0-72 kernel (total N = 6 runs). Peak memory consumption
was measured using the Python programming language (CPython v. 3.8.8) standard library module resource.

Statistical methods. Areas under the ROC-curve were compared using the DeLong-test as described in*2
Continuous variables were compared using the Student’s t-test. Bonferroni’s correction was used for three-way
comparisons with the adjusted statistical significance threshold set to p = 0.016.

Accession codes

The deepee framework and code to reproduce the experiments is available at https://github.com/gkaissis/deepee.
The paediatric pneumonia dataset is available from https://data.mendeley.com/datasets/rscbjbr9sj/3. The liver
segmentation dataset is available from http://medicaldecathlon.com.
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