Skip to main content
. 2021 May 31;36(9):5085–5115. doi: 10.1002/int.22504

Table 4.

Summary of performance of ML models applied for detection of COVID‐19 using Chest X‐ray

Reference Number of samples Pre‐processing data Model's name (ML techniques) Purpose ACC/AUC Sen (%) Spec (%)
39 127 COVID‐19 images Not provided DarkCovidNet (Darknet‐19) Binary classification:
500 PNA images COVID‐19 vs. no‐findings 98.08% 95.13 95.3
500 no‐findings images Multiclass classification:
COVID‐19 vs. healthy vs. other PNA 87.02% 85.35 92.18
98 250 COVID‐19 Resize to 224 × 224 pixels VGGNet (VGG‐16) Model 1: healthy vs. COVID‐19 and pulmonary 96% 96 98
2753 other pulmonary diseases Model 2: COVID‐19 vs. other pulmonary 98% 87 94
3520 healthy controls
54 295 COVID‐19 images Not provided MobileNetV2, Multiclass classification:
98 PNA images SqueeaNet, COVID‐19 vs. healthy vs. other PNA 99.27% 100 99.07
65 normal class images SVM.
99 162 COVID‐19 images Horizontal flip, width and heigh shift range (0.2), rotation angle DL‐based decision‐tree Binary classification:
492 TB images COVID‐19 vs. TB 100%/1.00 100 100
585 Normal images COVID‐19 vs. non‐ TB 89%/0.89 93 86
55 219 COVID‐19 Rotate and flip augmentation approaches on training data CNN, SVM, KNN, Decision Tree. Multiclass classification:
1341 normal COVID‐19 vs. other viral PNA vs. normal 98.97% 89.39 99.75
1345 viral PNA.
100 180 COVID‐19; 20 viral PNA; 57 TB; 54 bacterial PNA; 191 normal Normalization FC ‐DenseNet103 Multiclass classification:
Segmentation ResNet‐18 Viral PNA including COVID‐19 vs. bacterial PNA vs. TB vs. normal 88.9% 89.5 96.4
101 231 COVID‐19 images Resize to 128 × 128 width and height shift, shift range (0.2), and horizontal flip CapsNet (5 fully convolutional layers) Binary classification:
1050 no‐findings images COVID‐19 vs. healthy 97.24% 97.42 97.04
1050 PNA images Multiclass classification:
COVID‐19 vs. other PNA vs. healthy 84.22% 84.22 91.79
102 219 COVID‐19; 1345 viral PNA;1341 normal CVDNet (CNN) Multiclass classification:
COVID‐19 vs. other PNA vs. healthy 96.69% 96.84
92 284 COVID‐19 images Resize to 224 × 224 pixels with a resolution of 72 dpi CoroNet (Xception CNN) Binary classification: COVID‐19 vs. normal 99% 99.3 98.6
330 bacterial PNA images Multiclass classification: 89.6% 89.92 96.4
327 viral PNA images COVID‐19 vs. bacterial PNA vs. viral PNA vs. healthy controls
310 normal images COVID‐19 vs. healthy vs. other PNA 95% 96.9 97.5
103 142 COVID‐19 images Resize to 224 × 224 pixels, horizontal and vertical flipping nCOVnet (CNN) Binary classification:
142 normal images COVID‐19 vs. normal 88.10% 97.62 78.57
104 105 samples COVID‐19 Flipping, translation and rotation, a histogram modification technique DeTraC (pretrained CNN) Multiclass classification:
11 samples SARS COVID‐19 vs. normal vs. SARS 93.1% 100 85.18
80 samples normal
105 364 images COVID‐19 The image contrast enhancement algorithm (ICEA) MH‐CovidNet (DL, BPSO and BGWO meta‐heuristic algorithms, SVM) Multiclass classification:
364 images PNA COVID‐19 vs. healthy vs. other PNA 99.38%
364 images normal.
21 423 images COVID‐19 Resize, rotation, and translation pre‐trained CNN algorithms Binary classification: COVID‐19 vs. normal 99.70% 99.70 99.55
1485 images viral PNA Multiclass classification: 97.94% 97.94 98.80
1579 images normal COVID‐19 vs. normal vs. other viral PNA
53 184 images COVID‐19 Flipping and rotation ResNet18, Binary classification:
5000 images Non‐COVID‐19 ResNet50, SqueezeNet, DenseNet‐161 COVID‐19 vs. No‐COVID‐19 0.992 98 92.9

Abbreviations: ACC, accuracy; AD3D‐MIL, attention‐based deep 3D multiple instance learning; AFS‐DF, adaptive feature selection guided deep forest; AUC, area under the receiver‐operating characteristics curve; CAP, community‐acquired pneumonia; CP, common pneumonia; IAVP, influenza‐A viral pneumonia; MLP, multilayer perceptron; MSCNN, multiscale convolutional neural network; PNA, pneumonia; Sen, sensitivity; Spec, specificity; SVM, support vector machine.