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LETTER TO THE EDITOR

A more holistic view could
contribute to our understanding
of ‘silent hypoxaemia’ in Covid
-19 patients

The article written by Simonson et al.
(2021), ‘Silent hypoxaemia in COVID-19
patients’, provides a comprehensive and
interesting review on how hypoxaemia is
related to dyspnoea.However, wewould like
to address some points that need further
clarification.
Firstly, the terms ‘happy hypoxia’ and
‘silent hypoxia’ are based on the clinician’s
perception of an expected response
related to levels of oxygen saturation
(SpO2 ; Tobin et al. 2020), which implies
that the only symptom of hypoxaemia
is dyspnoea. Dyspnoea, however, is
complex and difficult to define, as it
can be perceived in different ways – not
only by ‘air hunger’ (Tobin, 1990). As
dyspnoea is a subjective experience, it is
difficult to match specific levels of arterial
partial pressures of oxygen (PaO2 ) with
this symptom. Indeed, a more appropriate
term could be ‘asymptomatic hypoxia’,
as we need to measure many variables
including tissue hypoxia to be sure that it is
‘silent’.
Humans have been dealing with hypoxia
inmany different ways across our evolution,
both as breath-hold divers (Schagatay, 2009)
and as indigenous permanent inhabitants
of moderate to high altitude regions of
the Tibetan plateau, the Andes, Eastern
Africa and North America (Huang, 2014;
Simonson, 2015; West, 2019), proving that
humans can thrive even in conditions of
hypoxia. In addition, even in critical care
patients, some levels of hypoxaemia could
be accepted (permissive hypoxaemia) if
tissue oxygenation is not affected (Martin
& Grocott, 2013; Panwar et al. 2016).
The individual response to hypoxia is
highly variable; therefore it is difficult to
define a precise threshold value of PaO2

and SpO2 (Tobin et al. 2020). Another
important factor is timing, as the concept
of acclimatization plays an important role
in the response to hypoxia in order to cope
with the restricted supply of oxygen (West,
2006). In COVID-19 patients, dyspnoea
typically occurs 8–12 days after the onset of
symptoms (Li&Ma, 2020; Zhou et al. 2020).
Since it has been shown that acclimatization
to high altitude takes between 4 and 8 days

(Rahn & Otis, 1949), it may be possible
that a similar process occurs in COVID-19
patients, having to cope with hypoxia for
several days, hence reducing their oxygen
consumption accordingly (West, 2006).
Secondly, we would like to clarify some
statements about breath-hold diving. In
the review, the authors cite two references
(Lindholm & Lundgren, 2006; Overgaard
et al. 2006) to explain normal arterial
partial pressures of carbon dioxide (PaCO2 )
at the end of a breath-hold. Parenthetically,
hyperventilation is avoided nowadays in
competitive breath-hold diving, as it is
a risk factor for hypoxic syncope (Pearn
et al. 2015). Regardless, Overgaard et al.
(2006) found end-tidal partial pressures
of carbon dioxide (PET,CO2 ) at the end of
breath-holding (at different lung volumes)
ranging between 45.7 and 50.2 mmHg,
which is not in the normal range. A classical
study on exhaled gases (Liner & Linnarsson,
1994) found a baseline PET,CO2 of 39 mmHg,
which, after a surface breath-hold, had gone
up to 46mmHg, while it was 45mmHg after
a simulated 20 m dive. Recently, PaCO2 was
measured at 40 m depth, and it was found
that baseline values of 37.7 mmHg had
increased to 42mmHg at depth (Bosco et al.
2018), but these were not maximal-effort
dives.
Competitive breath-hold divers repeatedly
expose themselves to hypercapnia and
hypoxia, which increases tolerance to
these stimuli due to a blunted ventilatory
response to hypercapnia and/or hypo-
xia (Ferretti et al. 1991). During a
breath-hold, PaO2 will continue to drop
as long as apnoea is extended, while PaCO2

concomitantly rises, causing hypoxia-
and hypercapnia-induced chemoreceptor
activity in carotid and aortic bodies
(Parkes, 2006). The resulting neural activity
causes involuntary contractions of the
diaphragm and inspiratory muscles, known
as involuntary breathing movements (IBM;
Hentsch & Ulmer, 1984). While untrained
individuals may terminate apnoea shortly
after the onset of IBM’s, competitive
freedivers can consciously suppress this
respiratory sensory information due to
training-induced psychological tolerance
until discomfort and/or signs of asphyxia
(tunnel vision, hearing distortion) indicates
them to break apnoea, before losing
consciousness (Schagatay, 2009). Thus, in
untrained individuals, the breaking point

of apnoea will most likely be influenced by
hypercapnia alone, while the combination
of both hypoxia and, to a lesser extent,
hypercapnia, will be the determining factor
for competitive freedivers. Freedivers also
possess a powerful "diving response" which
efficiently reduces metabolism and oxygen
consumption (Schagatay, 2009).
The responses to extreme hypoxia and
hypercapnia are not only a feature of elite
breath-hold divers, as studies show that
this adaptation can be trained (Hentsch
& Ulmer, 1984; Engan et al. 2013).
Breath-holding therefore seems to be a
good in vivo model to understand severe
hypoxia, which may be useful to test hypo-
theses regarding the ventilatory drive on
healthy individuals.
Additionally, when hypoxia occurs,
an early response is the rapid splenic
contraction which elevates haematocrit.
This response has been observed during
breath-holding (Baković et al. 2003;
Schagatay et al. 2005), at high altitude
(Purdy et al. 2019; Schagatay et al. 2020)
and under hypobaric hypoxia (Richardson
et al. 2008; Lodin-Sundström & Schagatay,
2010). It allows an increase in oxygen blood
content by 10%without any changes in SpO2 .
So far, this response has not been studied in
clinical situations related to hypoxia, but it
was evident in drowning victims (Haffner
et al. 1994) and could have importance in
clinical conditions.
Wewould like to remark on an observation
of the authors in regard to the lack of
an excessive ventilatory response that
could reduce self-induced lung injury
(Mascheroni et al. 1988; Brochard et al.
2017). We believe that a more holistic
view that includes our natural defence
mechanisms against hypoxia would
be fruitful for better understanding of
asymptomatic hypoxaemia. We advocate
for this more holistic view as organism
survival can be addressed in multiple
ways.
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