Table 2.
Random forest | Rpart | LASSO | XGBoost | Ensemble | |
miRNAs selected by model, n | 10 | 4 | 13 | 8 | 20 |
Sensitivity (95% CI) |
0.86 (0.65-0.97) | 0.91 (0.71-0.99) | 0.77 (0.55-0.92) | 0.91 (0.71-0.99) | 0.91 (0.71-0.99) |
Specificity (95% CI) |
0.71(0.42-0.92) | 0.64 (0.35-0.87) | 0.64 (0.35-0.87) | 0.71 (0.42-0.92) | 0.64 (0.35-0.87) |
Positive predictive value (95% CI) | 0.83 (0.61-0.95) | 0.80 (0.59-0.93) | 0.77 (0.55-0.92) | 0.83 (0.63-0.95) | 0.80 (0.59-0.93) |
Negative predictive value (95% CI) | 0.77 (0.46-0.95) | 0.82 (0.48-0.92) | 0.64 (0.35-0.86) | 0.83 (0.52-0.98) | 0.82 (0.48-0.92) |
Correct classification rate (95% CI) | 0.81 (0.64-0.92) | 0.81 (0.64-0.92) | 0.72 (0.55-0.86) | 0.83 (0.67-0.94) | 0.81 (0.64-0.92) |
AUC (95% CI) |
0.84 (0.69-1) | 0.79 (0.63-0.95) | 0.79 (0.63-0.94) | 0.82 (0.66-0.99) | 0.85 (0.70-1) |