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Abstract

The population of older adults is growing dramatically and, with it comes increased prevalence of 

neurological disorders, including Alzheimer’s disease (AD). Though existing cognitive screening 

tests can aid early detection of cognitive decline, these methods are limited in their sensitivity 

and require trained administrators. The current study sought to determine whether it is possible to 

identify persons with mild cognitive impairment (MCI) using automated analysis of spontaneous 

speech. Participants completed a brief neuropsychological test battery and a spontaneous speech 

task. MCI was classified using established research criteria, and lexical-semantic features were 

calculated from spontaneous speech. Logistic regression analyses compared the predictive 

ability of a commonly-used cognitive screening instrument (the Modified Mini Mental Status 

Exam, 3MS) and speech indices for MCI classification. Testing against constant-only logistic 

regression models showed that both the 3MS [χ2(1)=6.18, p=0.013; AIC=41.46] and speech 

indices [χ2(16)=32.42, p= 0.009; AIC=108.41] were able to predict MCI status. Follow-up 

testing revealed the full speech model better predicted MCI status than did 3MS (p=.049). In 

combination, the current findings suggest that spontaneous speech may have value as a potential 

screening measure for identification of cognitive deficits, though confirmation is needed in larger, 

prospective studies.
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Introduction

The population of older adults is growing dramatically worldwide. By 2030, the population 

of adults over age 65 is projected to reach 70 million in the United States (Ortman, 

Velkoff, & Hogan, 2014) and 1 billion globally (He, Goodkind, & Kowal, 2016). This 
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societal trend is likely to increase the prevalence of neurological conditions. For example, 

the number of persons with Alzheimer’s disease (AD) is expected to triple by 2050 and 

produce an estimated $1.1 trillion in annual health care costs in the U.S. alone (Hebert et al., 

2013; Alzheimer’s Association, 2018). As such, early detection of AD and other forms of 

pathological cognitive aging is urgently needed.

Numerous brief cognitive screening instruments have been developed, though these paper-

and-pencil measures are not routinely administered in many settings due to a variety of 

practical barriers (Boustani et al., 2003; Khachaturian et al., 2009). Further, screeners that 

are commonly administered often show limited ability to identify those persons with more 

subtle cognitive deficits (Bradford et al., 2009; Chodosh et al., 2004; Valcour et al., 2000; 

Behrman, Valkanova, & Allan, 2017; Mitchell, 2009). Given these limitations, alternative 

approaches for monitoring cognitive function are needed.

It may be possible to utilize speech analysis to assist in the detection of early cognitive 

decline. Speech production is a complex neural activity which draws upon many interacting 

neural systems, including memory and executive function. Clinical and case studies have 

shown that changes in speech production are common in persons with mild cognitive 

impairment (MCI) and AD (e.g., Bayles, Tomoeda, & Trosset, 1992; Henry, Crawford, & 

Phillips, 2004; Nicholas, Obler, Albert, & Helm-Estabrooks, 1985). For example, persons 

with AD often exhibit empty speech (i.e., producing vague rather than specific words 

such as “thing” in place of “armchair”) and use higher frequency (i.e., more common) 

words, which are easier to access from semantic memory (Nicholas, Obler, Albert, & 

Helm-Estabrooks, 1985; Kavé & Dassa, 2018). Consistent with this approach, traditional 

neuropsychological tests of language function (e.g., Animal Naming, Boston Naming Test) 

have long been used to help diagnose AD and identify those persons at risk for future 

conversion to AD (e.g., Henry, Crawford, & Phillips, 2004; Eastman et al., 2013; Pravatà, 

Tavernier, Parker, Vavro, Mintzer, & Spampinato, 2016; Pakhomov, Eberly, & Knopman, 

2018; Blackwell, Sahakian, Vesey, Semple, Robbins, & Hodges, 2004).

Recent research suggests that spontaneous speech may be even more sensitive to AD risk 

than are traditional neuropsychological tests of language function (Bayles et al., 1992; 

Nicholas et al., 1985; Bucks, Singh, Cuerden, & Wilcock, 2000; Fraser, Meltzer, & Rudzicz, 

2016; Giles, Patterson, & Hodges, 1996; Kavé & Dassa, 2018; Toth et al., 2018; Meilan 

et al., 2014; Meilan et al., 2018; Lopez-de-Ipina, 2018; Konig, et al., 2017; Misiewicz, 

et al., 2017). Spontaneous speech can be collected by asking individuals to describe a 

picture (such as the Cookie Theft; [Goodglass H, Kaplan E. The Assessment of Aphasia 

and Related Disorders. 2nd ed. Lea & Febiger; 1983.]), engage in a semi-structured guided 

interview with the examiner, or retell a well-known story. Responses are audio-recorded and 

transcribed by human listeners. Linguistic characteristics can then be computed using the 

transcriptions and recordings, and divided into different linguistic levels, including low-level 

acoustic and temporal (e.g., speech rate, duration of pauses and hesitations), lexical-semantic 

(e.g., word choice, word finding difficulties, repetitions, empty speech), morphosyntactic 

(e.g., syntactic structures and inflection errors), and discourse/pragmatic elements (e.g., 

cohesion, diversity of word choice) (Boschi et al., 2017; Slegers et al., 2018). Recent 

reviews have characterized the many changes in spontaneous speech observed in persons 
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with AD, including frequent hesitations, semantic and lexical errors, repetitions, greater 

inflectional errors, and reduced referential and temporal cohesion (Boschi et al., 2017; Filiou 

et al, 2019; Slegers et al., 2018).

Technological advances have greatly enhanced the potential of utilizing speech analysis 

to help monitor cognitive function over time. Historically, analysis of spontaneous speech 

required substantial human labor and linguistic training to transcribe, code, and analyze 

speech. New approaches such as automatic speech recognition and machine learning 

techniques, as well as automated ways to measure various linguistic features from an audio 

recording or transcript have automated many of these processes while maintaining high 

levels of accuracy. One recent study automatically calculated a suite of lexical-semantic 

linguistic features from several spontaneous speech tasks and found that these linguistic 

features were predictive of both current and future cognitive test performance in older adults 

without dementia (Ostrand & Gunstad, 2020).

When combined with the many practical advantages of speech-based screening relative 

to existing methods (e.g., repeatability, scalability, and self-administration), such findings 

encourage examination of the utility of spontaneous speech as a method for monitoring 

cognitive status over time. The current study sought to determine whether a spontaneous 

speech task could be used to predict MCI in a sample of community-dwelling older adults. 

We chose to focus on lexical-semantic aspects of speech, as decline in these abilities 

is frequently observed in persons with pathological cognitive decline (e.g., word finding 

difficulties, vague or empty speech) and techniques for automated generation of these speech 

indices has been previously validated.

Materials and Methods

Participants

A total of 90 individuals completed the study protocol, though two were excluded prior 

to data analyses due to missing data that precluded determination of MCI status (years of 

education and Digit Span). Data from the remaining 88 participants were analyzed to test 

study hypotheses. See Tables 1 and 2 for sample characteristics.

Speech tasks and indices

To elicit a spontaneous speech monologue sample from participants, the experimenter 

provided a picture book of the fairy tale Cinderella with the words removed. The participant 

looked through the pictures to remind themselves of the story, gave the book back to 

the experimenter, and then retold the story from memory (following Saffran, Berndt, & 

Schwartz, 1989; see also MacWhinney, Fromm, Holland, Forbes, & Wright 2010). This task 

has been used in past work to assess people with aphasia as well as healthy, non-aphasic 

controls, and has been shown to be sensitive to lexical patterns and morphosyntactic control 

in persons with intact cognitive function (MacWhinney et al., 2010; Fromm et al., 2017). 

Several factors guided the selection of this speech elicitation task. First, it provides a 

middle ground of task constraint, in between other common speech elicitation tasks – higher 

constraint than an open-ended interview question, as it gives participants some amount of 
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semantic context from the storyline, but lower constraint than picture description, where 

the participant is bound by the content of the picture. As the goal of current study is to 

investigate whether individual participants’ variability in linguistic measures can account 

for their variability in cognitive status, a speech task which allows for greater variability 

in behavior between participants may be a more effective predictor of cognitive status. 

Additionally, a story-retelling task imposes higher memory demands than does a picture 

description task, as the participant must remember the storyline without having external 

memory support from the visual cues to guide their speech and recall. As a result, retelling 

a story draws on not just semantic memory to retrieve appropriate words, but also episodic 

memory of the story itself as well as attentional and executive function controls to keep the 

thread of the story continuous and comprehensible. Similarly, retelling a story avoids overt 

labelling of nouns which may occur during a picture description task.

Responses were audio-recorded and later transcribed. Specifically, participants’ speech 

samples were recorded using a Shure SM10A head-mounted, directional (cardioid) 

microphone, which isolates the participant’s speech from the experimenter’s voice and 

other background noise. Recordings were manually transcribed and time-stamped off-line by 

trained transcribers who were blind to the participant’s cognitive status and were checked by 

a second trained transcriber.

A collection of lexical-semantic features of speech, based on those used in past work, were 

calculated automatically from the transcribed text using Python (version 2.7.17). Part-of-

speech tags were computed using the Natural Language Toolkit (NLTK, version 3.2.1; Bird, 

Klein, & Loper, 2009) and the Penn Treebank tagset (Marcus, Santorini, & Marcinkiewicz, 

1993). Lexical frequency indices were computed based on corpus data from the widely-used 

Switchboard and Fisher corpora (Godfrey & Holliman, 1993; Cieri, Graff, Kimball, Miller, 

& Walker, 2004; Cieri, Graff, Kimball, Miller, & Walker, 2005), which jointly comprise 24 

million words. A description of each of the linguistic features is presented in Table 3.

Neuropsychological test battery

A brief battery was administered in a fixed order under the supervision of a licensed clinical 

neuropsychologist. Specific clinical tests included the 3MS (Teng & Chui, 1987), Hopkins 

Verbal Learning Test (Brandt & Benedict, 2001), Complex Figure Test (Meyers & Meyers, 

1995; Berry, Allen, & Schmitt, 1991), Digit Span (Weschler, 2008), Trail Making Test A 

and B (Reitan, 1958), Frontal Assessment Battery (Dubois, Slachevsky, Litvan, & Pillon, 

2000), Controlled Oral Word Association Test (Lezak, Howieson, & Loring, 2004), Animal 

Naming (Lezak et al., 2004), and Boston Naming Test – Short Form (Williams, Mack, & 

Henderson, 1989). The 3MS was chosen over other global cognitive screening tests, such 

as the Mini-Mental State Exam (MMSE), as it has been found to better identify persons 

with diagnosis of MCI and captures greater variability in performance reflecting cognitive 

domains most often associated with Alzheimer’s disease (Van Patten, Britton, & Tremont, 

2019). Normative values (i.e., t-scores) adjusting for age and education (Jones, Schinka, & 

Vanderploeg, 2002) were used to characterize test performance (see Table 1).

The 88 participants were classified into two groups based on established criteria (Jak et al., 

2016): Intact (N = 62) vs. MCI (N = 26). Specifically, participants with two or more t-scores 
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less than 40 in at least one cognitive domain on objective testing were identified as meeting 

criteria for MCI.

Procedure

After being evaluated for capacity and completing informed consent, participants 

completed a 75-minute session comprised of questionnaires, neuropsychological testing, 

and spontaneous speech tasks. At the completion of testing, participants were compensated 

for their time.

Data Analysis

All analyses were performed using IBM SPSS 25. After generating descriptive statistics 

to characterize the sample, chi-square and t-tests were used to compare persons with and 

without MCI. A series of logistic regressions were then used to identify the extent to which 

the 3MS and the automatically-calculated speech features from the Cinderella task could 

predict group status (MCI vs intact). In the regression using 3MS as a predictor, participants’ 

3MS score was t-scored, accounting for age and education, in order to promote consistency 

to its use in clinical settings. In the regression analysis using the linguistic features as 

predictors, all linguistic features were simultaneously entered into the logistic model as 

predictors in a single step. McNemar’s test was used to compare the predictive ability 

of these two models. Finally, exploratory logistic regressions were conducted to further 

investigate the nature of the association between individual speech indices and MCI status.

Results

Sample characteristics

For the full sample, participants averaged 68.03 ± 7.90 years of age, 67.0% were female, 

and completed an average of 15.41 ± 2.56 years of education (see Table 1). There were 

no significant group differences in any demographic or medical characteristics between the 

participants identified as having intact cognitive function (n = 62) and those with MCI (n = 

26) (all p > 0.05). As expected through operationalization of MCI using Jak criteria, Intact 

and MCI groups differed on most neuropsychological tests and many speech indices (see 

Table 2).

Of note, the groups differed on the 3MS [t(87) = 2.62, p = 0.01], though average 3MS 

t-scores for both groups fell within the normal range (Intact = 58.19 ± 6.23 ; MCI = 53.19 ± 

11.64) and exhibited similar proportions of participants with t-scores less than 40 (Intact = 

3.2%; MCI = 7.7%; χ2 (1) = 0.83, p = 0.36).

Using 3MS t-scores to predict MCI status

A logistic regression analysis was performed with 3MS t-scores as the predictor variable and 

MCI status as the binary outcome variable. The overall proportion of variance accounted for 

was modest (Nagelkerke R2 = 0.10), with the model showing sensitivity of 7.7% (i.e., 2 out 

of 26 MCI participants correctly classified as MCI) and specificity of 95.2% (i.e., 59 out of 

62 intact participants correctly classified as intact). The unstandardized Beta weight for the 

predictor was β = −0.72 (SE=0.03, Wald=4.85, p=0.03) and estimated odds ratio indicated 
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a reduced likelihood of falling into the MCI group by a factor of Exp(β) 0.931 (95% CI 

= 0.873 to 0.992) for each one unit increase in 3MS t score. This model results in an 

overall classification accuracy of 69.3%, which is significantly better than an intercept-only 

model [χ2 (1) = 6.18, p = 0.013; AIC 41.46]. However, it is important to note that group 

sizes are unbalanced in the present sample, with 70.5% of participants in the Intact group 

and 29.5% of participants in the MCI group. Thus, although the model using 3MS as a 

predictor produced an overall prediction accuracy of 69.3%, this is actually lower than the 

accuracy that would be obtained by a model which assigned all participants to the majority 

class (in this case, Intact). As a result, although the comparison of this model against an 

intercept-only model was statistically significant, the model’s lackluster performance when 

compared to chance highlights the need for novel approaches to rapidly assess cognitive 

status.

Using spontaneous speech indices to predict MCI status

A logistic regression was performed using the full set of speech indices jointly as predictors 

and MCI status as the binary outcome variable. See Table 4 for the output of the logistic 

regression. This model showed 50% sensitivity (i.e., 13 out of 26 persons with MCI 

correctly identified) and 91.9% specificity (i.e., 57 out of 62 intact persons correctly 

identified; Nagelkerke R2 = 0.44). The model using the speech features as predictors 

explained significantly more variance than a constant-only model [χ2(16) = 32.42, p = 

0.009] with 79.5% accuracy.

An important point, however, is that many of the individual linguistic features are highly 

correlated with each other – for example, type-token ratio, Honoré’s statistic, and Brunet’s 

index are different but related ways of measuring lexical diversity. As a result, many of 

the predictors in this multiple regression are highly collinear with each other, making 

interpretation of the individual β weights from the multiple regression difficult (predictors 

which are highly collinear may result in β weights which are largely loaded onto Predictor 

A, Predictor B, or unpredictably split between the two). Although we report β weights 

for the multiple regression, they may not be meaningful in interpreting the contribution 

of individual linguistic features towards predicting MCI group status and thus should be 

considered with caution.

Therefore, to investigate the relationship between each individual linguistic feature and 

MCI status, separate binary logistic regression analyses were performed using each speech 

feature individually as a predictor of MCI status. Table 5 shows the outcome of each 

individual regression. Numerous indices showed significant improvement in prediction over 

the intercept-only model, with Nouns (Wald = 4.52, p =.002), Determiners (Wald = 7.78, 

p = .005) and Honoré’s statistic (Wald = 7.94, p = .005) remaining so after correcting for 

multiple comparisons (Benjamini & Hochberg, 1995).

Comparing 3MS to Full Speech model

McNemar’s test showed that the full model of linguistic features better predicted MCI group 

status than did the model using 3MS t-score as predictor (p = .049).

Sanborn et al. Page 6

Appl Neuropsychol Adult. Author manuscript; available in PMC 2023 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Exploratory Speech Models to Predict MCI Status

Three exploratory analyses were then conducted to examine the extent to which various 

combinations of speech indices could predict MCI status. The first utilized the three 

speech indices above that showed a significant independent relationship to MCI status after 

correction (i.e., Nouns, Determiners, and Honoré’s statistic). This model explained more 

variance than did the intercept only model [χ2(3) = 13.28, p = 0.004; Nagelkerke R2 = 0.20] 

and exhibited 19.2% sensitivity and 93.5% specificity. However, McNemar’s test indicated 

this model did not differ from those using the 3MS (p = 0.75) or full collection of speech 

indices (p = 0.12) as predictors.

A second analysis sought to limit multicollinearity across speech indices. A linear regression 

was first performed after centering all values, and speech indices with an elevated variance 

inflation factor (VIF ≥ 5) were removed (Kutner, Nachtsheim, & Neter, 2004), specifically: 

Total words (VIF = 37.46), Filler words (VIF = 43.51), Definite article (VIF = 16.32), 

Pronouns (VIF = 5.65), Nouns (VIF = 20.03), Verbs (VIF = 19.35), Determiners (VIF = 

31.34), Content words (VIF = 64.17), Type-Token ratio (VIF = 88.55), Brunet’s index (VIF 

= 106.76), and Filler rate (VIF = 36.29). Entering the five remaining indices (i.e., Empty 

words, Indefinite articles, Lexical frequency, Honoré’s statistic, and Speech rate) produced a 

model that performed significantly better than the intercept-only model [χ2(5) = 12.68, p = 

0.027; Nagelkerke R2 = 0.19], with a sensitivity of 23.1% and specificity of 93.5%, though 

did not differ from either the 3MS (p = 0.55) or full speech model (p = 0.21).

A final model was developed using speech indices that could be readily observed by 

clinicians, specifically Total words, Filler words, Empty words, Pronouns, Nouns, and 

Speech rate. This model was superior to the intercept-only model [χ2(6) = 19.77, p = 0.003; 

Nagelkerke R2 = 0.29] and correctly identified 34.6% of persons with MCI and 90.3% of 

intact controls. Significance was largely driven by greater use of filler words (Exp (β) = 

2.94, p = .02) and fewer nouns (Exp (β) = .15, p = .005) in persons with MCI. McNemar’s 

test indicated this model did not differ from the models using 3MS (p = .45) or the full 

collection of speech indices (p = .27) as predictors.

Discussion

The current study examined whether automatically-generated indices from spontaneous 

speech could be used to identify older adults meeting research criteria for MCI. Analyses 

showed that a combination of lexical-semantic speech features was somewhat better than 

the 3MS in predicting current cognitive status. Several aspects of these results warrant brief 

discussion.

Past work has shown that spontaneous speech indices are associated with 

neuropsychological test performance and are impaired in persons with conditions like AD 

(Ostrand & Gunstad, 2020; Pistono, Jucla, Bézy, Lemesle, Le Men, & Pariente, 2019; 

Pistono et al., 2016; Boschi et al., 2017; Bayles et al., 1992). This pattern is not surprising, 

as speech production is a complex neural process, particularly when considering the multiple 

cognitive processes needed to correctly retell a story without external cues. Features such 

as the use of fewer nouns and determiners, more filler words, and lower lexical diversity 
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distinguished intact persons from those with MCI and may serve as an initial step toward the 

development of self-administered, ambulatory monitoring of cognitive status. For example, 

the current study used an automated approach when generating values for lexical-semantic 

features of speech, which dramatically reduces the time and effort needed for this task 

relative to traditional approaches. Continued advances in automatic speech recognition 

(ASR) and growing evidence for a link between cognitive function and other aspects 

of spontaneous speech (e.g., acoustic features, syntax, coherence; Boschi et al., 2017; 

Slegers et al., 2018) encourage further work in this area to develop automated approaches 

for clinical features such as circumlocutory speech or literal or semantic paraphasias. If 

successful, these tools could provide a method for broad screening for cognitive dysfunction 

through smart devices at home or even be modified to provide real-time information in 

clinical settings to assist with diagnosis.

However, prospective studies are much needed to better understand many aspects of 

spontaneous speech in older adults, including factors that contribute to normal between-

subjects variability and identifying those linguistic indices that best distinguish normal aging 

from pathological conditions like AD. Socioeconomic and demographic factors such as 

age, race, ethnicity, education, premorbid lexicon, literacy levels, region, and bilingualism 

are well known to affect speech production (e.g., Kavé et al., 2009; Daller et al., 2003). 

In addition to these trait-like features, factors such as the identity of the listener, recent 

linguistic input, and concurrent memory load – among many others – can influence speech 

production. Similarly, the specific aspects of speech production which are affected by 

AD may change at various stages of the disease, as impairments in lexical access, in 

particular to higher-frequency and more specific words, appear to occur early in AD, 

whereas changes in syntactic production seem to emerge later (Davis & Maclagan, 2009; 

Ahmed, Haigh, de Jager, & Garrard, 2013; Snowdon, Kemper, Mortimer, Greiner, Wekstein, 

& Markesbery, 1996). Further, and as noted above, the present study focuses primarily on 

lexical-semantic features, and future investigation of other domains of speech (e.g., phonetic 

and phonological, morphosyntactic, and discourse levels) may provide additional insight 

and improve ability to detect MCI. Lastly, as noted in the present findings, determining 

which linguistic features of speech (taken in combination or individually) are associated 

with cognitive function is difficult and complex; despite differing outcomes in classifying 

MCI status, McNemar’s test showed no statistically significant differences in the models’ 

predictive abilities. Future research is needed to help clarify which outcomes may be 

clinically useful versus statistically significant and the benefits of utilizing continuous values 

from neuropsychological testing (c.f. Ostrand & Gunstad, 2020), though such studies will 

require larger samples and more diverse samples to draw conclusions.

The current study is limited in several important ways. The sample size was modest 

and study participants were highly educated, native English speakers, and resided 

within a single, largely monolingual region of the USA. These and other demographic 

factors are likely to affect performance on spontaneous speech indices as well as on 

neuropsychological test performance (Rosselli & Ardila, 2003; Saykin et al., 1995; Ardila 

& Rosselli, 1996). Additionally, research criteria for MCI was used rather than diagnosis 

through a comprehensive clinical evaluation. Though this approach is frequently used 

in past work and shows good predictive validity, it cannot replace a formal evaluation. 
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Conducting a comprehensive clinical evaluation in conjunction with spontaneous speech 

could provide important insight into underlying mechanisms, including the contribution 

of key neuroimaging markers (e.g., amyloid deposition, global vs. hippocampal atrophy) 

and other known risks for cognitive decline in older adults (e.g., APOE4; Nevler, Ash, 

Irwin, Liberman, & Grossman, 2019). Finally, additional work is needed to determine the 

most appropriate method for utilizing indices of spontaneous speech in neuropsychological 

research. Though the current study found a combination of lexical-semantic features was 

associated with cognitive status, future studies should evaluate the potential benefits of 

combining multiple features to represent components of speech (Cohen, Renshaw, Mitchell, 

& Kim, 2016; Cohen, Mitchell, Docherty, & Horan, 2016) as they may permit broad 

assessment of speech features while addressing statistical concerns.

In conclusion, the current study found that indices derived from spontaneous speech 

performed as well as a commonly used cognitive screening test frequently used in clinical 

settings in identifying older adults meeting research criteria for MCI. Additional studies are 

needed to further investigate automated speech analysis as a method to monitor cognitive 

decline in community settings.
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Table 2.

Sample-wise Characteristics for Each Speech Feature.

Speech Index Intact MCI t (df = 86) p Cohen’s d

Total words 491.55 ± 233.54 348.23 ± 241.29 2.60 .01 0.60

Filler words 0.64 ± 0.61 0.73 ± 0.80 0.55 .58 0.13

Empty words 0.25 ± 0.16 0.18 ± 0.12 1.91 .06 0.49

Definite articles 1.63 ± 0.55 1.26 ± 0.64 2.78 .007 0.62

Indefinite articles 0.51 ± 0.17 0.47 ± 0.19 0.90 .37 0.22

Pronouns 2.54 ± 0.72 2.12 ± 0.77 2.47 .02 0.56

Nouns 4.43 ±1.11 3.51 ± 1.12 3.55 .001 0.83

Verbs 4.43 ± 1.14 3.81 ± 1.28 2.22 .03 0.51

Determiners 2.51 ± 0.73 1.98 ± 0.80 3.04 .003 0.69

Content Words 9.81 ± 2.49 8.06 ± 2.89 2.87 .005 0.64

Lexical Frequency 5.42 ± 0.33 5.62 ± 0.52 2.23 .03 0.46

Type-Token ratio 0.40 ± 0.07 0.44 ± 0.09 2.52 .01 0.50

Honoré’s statistic −6.10 ± 1.44 −7.86 ± 3.30 3.50 .001 0.69

Brunet’s index 13.40 ± 0.98 12.70 ± 1.36 2.74 .008 0.59

Speech rate 2.41 ± 0.34 2.31 ± 0.43 1.11 .27 0.26

Filler rate 0.07 ± 0.06 0.09 ± 0.08 1.23 .22 0.28

Note. Values show mean and standard deviation of each linguistic feature for each participant group, as well as the t-statistic, p-value, and Cohen’s 
d for the comparison between the two groups.
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Table 3.

Lexical-semantic features that were calculated on the transcripts of spontaneous speech produced by 

participants retelling the Cinderella story.

Feature name Description

Total words Overall count of all phonological entities spoken; including real words, nonwords, and partial words

Filler words Count of filled pauses (e.g., “uh”, “um”, “hmm”), as a percentage of total word count

Empty words Count of empty words (e.g., “thing”, “place”, “stuff”), as a percentage of total word count

Lexical frequency Mean of the log of the frequency of all real words spoken

Type-token ratio Ratio of unique words (types) to total words (tokens) spoken, used as a measure of vocabulary size and lexical diversity; 
higher values means the speaker produced a more varied vocabulary

Honoré’s statistic Measure of lexical richness/diversity based on the number of words produced exactly once; higher values mean more 
diverse speech. It is calculated as: (100 * log(tokens)) / (1 - V1/types), where V1=number of words spoken exactly once

Brunet’s index Measure of lexical richness (i.e., degree of variation in vocabulary), which is less biased by text length, calculated from 
the total number of words produced (tokens) and the number of unique words (types); lower values mean richer speech. It 
is calculated as: tokens ^ types ^ (−0.165)

Speech rate Count of total words divided by total elapsed time of the speech (in words per second)

Filler rate Count of filler words divided by total elapsed time of the speech (in words per second)

Definite articles Count of uses of “the”, as a percentage of total word count

Indefinites articles Count of uses of “a” and “an”, as a percentage of total word count

Pronouns Count of pronouns, as a percentage of total word count

Nouns Count of nouns, as a percentage of total word count

Verbs Count of verbs, as a percentage of total word count

Determiners Count of determiners, as a percentage of total word count

Content words All words that are not function words (as defined by the list of stop words in NLTK), as a percentage of total word count
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Table 4.

Multiple Logistic Regression Using All Speech Features Jointly to Predict MCI Status.

β Wald Exp(β)

95% Confidence Interval
for

Exp(β)

Lower
Bound

Upper
Bound

Intercept 81.45 1.33

Total words 0.00 0.00 1.00 0.98 1.02

Filler words 6.99 4.28 1089.78 1.45 821255.69

Empty words −3.38 1.60 0.03 0.00 6.37

Definite articles 4.88 4.01 131.37 1.11 15572.28

Indefinite articles 3.43 1.95 30.92 0.25 3841.58

Pronouns −0.01 0.00 0.99 0.13 7.28

Nouns −2.70 4.30 0.07 0.01 0.86

Verbs 2.44 4.64 11.42 1.25 104.65

Determiners −2.83 1.45 0.06 0.00 5.88

Content words 0.11 0.01 1.11 0.19 6.64

Lexical frequency −0.78 0.41 0.46 0.04 5.05

Type-token ratio −48.52 0.90 8.49 x 10−22 3.00 x 10−65 2.40 x 10+22

Honoré’s statistic −0.55 1.78 0.58 0.26 1.30

Brunet’s index −5.17 1.81 0.01 3.03 x 10−06 10.65

Speech rate 1.32 1.28 3.74 0.38 36.66

Filler rate −45.83 2.53 1.25 x 10−20 3.68 x 10−45 42149.03
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Table 5.

Simple Logistic Regression Using Each Speech Feature Individually to Predict MCI Status.

Wald
Exp(β)

% Intact Correctly
Predicted

% MCI Correctly
Predicted

p

Total words 5.87 1.00 98.4 11.5 .015

Filler words 0.31 1.21 100.0 0.0 .58

Empty words 3.46 0.04 100.0 0.0 .06

Definite articles 6.74 0.32 95.2 15.4 .009

Indefinite articles 0.81 0.29 100.0 0.0 .37

Pronouns 5.46 0.44 98.4 11.5 .019

Nouns 9.84 0.46 91.9 19.2 .002*

Verbs 4.52 0.63 98.4 11.5 .033

Determiners 7.78 0.36 95.2 23.1 .005*

Content words 7.04 0.76 96.9 19.2 .008

Lexical frequency 4.40 3.53 96.8 15.4 .036

Type-token ratio 5.51 1314.58 95.2 15.4 .019

Honoré’s statistic 7.94 0.66 95.2 19.2 .005*

Brunet’s index 6.38 0.68 95.2 19.2 .012

Speech rate 1.22 0.49 100.0 0.0 .27

Filler rate 1.43 49.03 98.4 3.8 .23

Note.

*
indicates p<.05 when corrected for multiple comparisons using the Benjamini-Hochberg (1995) method.
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