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Abstract

To reduce time and cost, virtual ligand screening (VLS) often precedes experimental ligand 

screening in modern drug discovery. Traditionally, high-resolution structure-based docking 

approaches rely on experimental structures, while ligand-based approaches need known binders to 

the target protein and only explore their nearby chemical space. In contrast, our structure-based 

FINDSITEcomb2.0 approach takes advantage of predicted, low-resolution structures and 

information from ligands that bind distantly related proteins whose binding sites are similar to the 

target protein. Using a boosted tree regression machine learning framework, we significantly 

improved FINDSITEcomb2.0 by integrating ligand fragment scores as encoded by molecular 

fingerprints with the global ligand similarity scores of FINDSITEcomb2.0. The new approach, 

FRAGSITE, exploits our observation that ligand fragments, e.g., rings, tend to interact with 

stereochemically conserved protein subpockets that also occur in evolutionarily unrelated proteins. 

FRAGSITE was benchmarked on the 102 protein DUD-E set, where any template protein whose 

sequence identify >30% to the target was excluded. Within the top 100 ranked molecules, 

FRAGSITE improves VLS precision and recall by 14.3 and 18.5%, respectively, relative to 

FINDSITEcomb2.0. Moreover, the mean top 1% enrichment factor increases from 25.2 to 30.2. On 

average, both outperform state-of-the-art deep learning-based methods such as AtomNet. On the 

more challenging unbiased set LIT-PCBA, FRAGSITE also shows better performance than ligand 

similarity-based and docking approaches such as two-dimensional ECFP4 and Surflex-Dock 

v.3066. On a subset of 23 targets from DEKOIS 2.0, FRAGSITE shows much better performance 

than the boosted tree regression-based, vScreenML scoring function. Experimental testing of 

FRAGSITE’s predictions shows that it has more hits and covers a more diverse region of chemical 

space than FINDSITEcomb2.0. For the two proteins that were experimentally tested, DHFR, a well-

studied protein that catalyzes the conversion of dihydrofolate to tetrahydrofolate, and the kinase 

ACVR1, FRAGSITE identified new small-molecule nanomolar binders. Interestingly, one new 

binder of DHFR is a kinase inhibitor predicted to bind in a new subpocket. For ACVR1, 
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FRAGSITE identified new molecules that have diverse scaffolds and estimated nanomolar to 

micromolar affinities. Thus, FRAGSITE shows significant improvement over prior state-of-the-art 

ligand virtual screening approaches. A web server is freely available for academic users at http://

sites.gatech.edu/cssb/FRAGSITE.

Graphical Abstract

INTRODUCTION

Accurate modeling of protein-ligand interactions is not only of fundamental importance for 

understanding the biological processes in living cells but also has practical applications to 

drug discovery.1–6 Earlier methods for modeling protein-ligand interactions can be classified 

into two broad categories: (1) structure-based and (2) ligand-based. Structure-based methods 

use high-resolution experimental or high-accuracy homology-modeled structures and 

physicochemical principles to dock the ligand into the protein’s structure. The binding 

pose(s) is (are) then used to calculate absolute or relative protein-ligand binding affinities.
1,7–15 The advantages of docking methods are the possibility of discovering new binding 

ligands not similar to known binders and that they provide the binding position/pose for use 

in subsequent ligand optimization.11,16 However, these methods suffer from the 

unavailability of high-resolution experimental structures (e.g., membrane bound proteins: a 

majority of G-protein coupled receptors, ion channels, etc.17) and the inaccuracy of their 

scoring functions.18 In principle, one can apply homology-modeled structures for docking 

methods,15 but in addition to inaccurate scoring functions, the inaccuracy of low-resolution 

target structures significantly diminishes their performance.19 Ligand-based methods require 

at least one ligand known to bind to the target. A virtual model for the ligand is derived from 

the set of known binders, and the likelihood of an unknown ligand binding to the target is 

inferred based on similarity to known binding ligands.20–25 The advantages of ligand-based 

methods are their inexpensive computational cost and the lack of requirement of the target 

protein’s structure. In practice, ligand-based methods are often more robust and accurate 

than docking methods.26 Their disadvantage is the prerequisite of at least one known binder; 

this is often not the case for many protein targets.27 However, docking-based methods have 

the distinct advantage over ligand-based methods (except for the 3D shape-based ROCS 

methods) in that they can potentially discover novel molecules not similar to any in the 

library of all existing binders of any protein.
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To address the limitations of earlier methods that required high-resolution structures to 

achieve optimal performance or known ligand binders, recently developed methods use 

homology-modeled, coarse-grained structures. They show comparable performance as that 

when high-resolution structures are used. Furthermore, homology modeling (LHM) does not 

require known binders to the target protein. Thus, LHM expands the scope of ligand 

similarity-based approaches.19,28–30 Ligand homology modeling transfers information about 

ligands that bind to similar pockets in the template protein to those in the target protein, 

regardless of their evolutionary relationship.19,31 LHM works because the number of 

stereochemically known distinct small-molecule ligand binding pockets is remarkably small, 

about 500.32,33 LHM approaches can be assigned to two classes: (1) low-resolution 

structure-based docking and (2) structure/threading ligand similarity-based methods. 

Representatives of low-resolution docking methods include Q-DOCK,34 Q-DOCKLHM,35 

and BSP-SLIM.36 So far, Q-DOCK and Q-DOCKLHM have been tested for ligand pose 

prediction using low-resolution homology-modeled target structures and demonstrate 

comparable results to high-resolution structure-based methods. BSP-SLIM36 has only been 

tested on 6 randomly selected targets of the 40 DUD (A Directory of Useful Decoys37) set 

for virtual screening (ligand ranking). Thus, how well low-resolution structure-based 

docking methods perform in a large benchmarking set like DUD or DUD-enhanced (DUE-

E)5 for virtual screening is not clear. In contrast, the latest version of structure/threading 

ligand similarity-based methods is FINDSITEcomb2.0.31 FINDSITEcomb2.0 focuses on ligand 

ranking (instead of pose prediction) and has been shown to yield quite reliable ligand 

binding predictions. FINDSITEcomb2.031 applies the ideas of homology modeling to binding 

site prediction and virtual ligand screening.

FINDSITEcomb2.0 is a hybrid of structure-based and ligand-based approaches. It utilizes 

pockets in the target structure to search for similar pockets and their ligands by structure–

pocket and structure–structure comparison in templates. The selected ligands are then used 

to build a ligand model for the target protein.19,31 It then uses ligand model similarity as 

done in ligand-based methods to search for similar ligands in the screened compound library. 

The target structure can be experimentally determined or homology-modeled. Benchmarking 

shows that the performance of FINDSITEcomb2.0 is quite insensitive to whether an 

experimental or modeled target structure is used. Thus, FINDSITEcomb2.0 does not require 

high-resolution structures nor a known set of ligands for a given target. As such, it is 

different from pure ligand-based methods that require at least one known binder of the given 

target.

Possibly due to the recent significant advances of high-accuracy protein structure prediction,
38 the major limitation of docking methods is now their lack of an accurate scoring function 

for ligand ranking;18 this makes them usually less accurate than ligand similarity-based 

methods in terms of successfully identifying binding ligands. In high-resolution docking, the 

physics-based or empirical/knowledge-based scoring function relies on predefined 

functional forms and is sensitive to small structural distortions/flexibilities. Meanwhile, in 

low-resolution docking, scoring functions are knowledge-based and usually are target/

family-specific. Thus, they are not universally applicable.34–36 To improve the scoring 

function accuracy and tolerance to structural distortion/flexibility for high-resolution 

structure docking, Ballester and Mitchell employed machine learning using random forest 
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and support vector regression approaches and features that depend on the occurrence counts 

of atomic contacts to predict binding affinities18,39 (RF-score). Their approach shows a very 

high correlation (R = 0.774) of predicted with experimental binding affinities and 

demonstrates that using only atomic contacts (which is insensitive to small structure 

distortions/flexibility) captures the essential features of protein-ligand binding. A new 

version of the RF-score called RF-score-VS has been developed by including decoys in 

training to correct a limitation of the RF-score.40 This approach was shown to be much more 

robust for VS than the original RF-score. Recently, convolutional neural network (CNN) or 

deep CNN technology was applied to VLS.41,42 CNN methods also require high-resolution 

protein structures and docked ligands and are basically a method for ranking ligands. There 

are issues with the small databases used for training and testing CNNs, which lead to 

memorization artifacts. For example, hidden biases in the DUD-E5 VLS benchmark set 

caused CNNs to perform similarly to AutoDock Vina,43 a traditional docking algorithm. A 

more recent study in ref 44 developed a new scoring function called vScreenML that 

included the RF-score features and trained on their newly developed training set. 

vScreenML performs similarly to RF-score-VS when tested on the DEKOIS 2.0 set.45 Both 

RF-score-VS and vScreenML scores show the importance of decoys in training.

While recognizing the importance of decoys in training, in this work, we exploit a new 

approach for improving ligand virtual screening, which exploits the fact that the number of 

stereochemically distinct known small-molecule ligand binding pockets is small.32,33 We 

recently observed that specific ring substructures in a given chemical structure tend to 

interact with quite unique protein subpockets that occur across evolutionarily unrelated 

proteins. These substructures explain the frequently used privileged substructures/scaffolds 

in drug discovery.46

The rest of the paper is organized as follows: In the Methods section, we describe the 

boosting tree scoring function for ligand protein-binding score prediction. Then, in the 

Results section, on the DUD-E5 set, we compare the performance of FRAGSITE predictions 

and scoring functions for virtual ligand screening to FINDSITEcomb2.031 and AutoDock 

Vina.11 We then present the results for experimental testing of the precision and ligand 

diversity of FRAGSITE’s and FINDSITEcomb2.0 predictions for two proteins, DHFR and 

ACVR1. DHFR is a key enzyme in the one carbon carrier folate pathway that occurs across 

the domains of life and provides the building blocks for DNA synthesis. ACVR1 is a 

possible therapeutic target relevant to aggressive pediatric brain cancer, diffuse intrinsic 

pontine glioma (DIPG),47 and the connective tissue disorder fibrodysplasia ossificans 

progressiva (FOP).48 Finally, in the Discussion section, we discuss some of the advantages 

and shortcomings of FRAGSITE.

METHODS

The flowchart of FRAGSITE is shown in Figure 1. Given an input target’s protein amino 

acid sequence and a small-molecule compound library, we employ the three components of 

FINDSITEcomb2.031 (i.e., FINDSITEfilt using PDB ligand-protein complex structures, 

FINDSITEX30 using DrugBank49 drug-target information, and FINDSITEX using ChEMBL 

compound-protein binding data50) to independently select the template ligands associated 
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with the target protein. As in FINDSITEcomb2.0,31 a template protein must have a TM-

score51 > 0.6 to the target protein’s structure, and at least 80% of the template sequence 

must be aligned to the target sequence. A sequence cutoff is applied in benchmarking mode 

to exclude templates whose sequence identity > cutoff for selecting template ligands. Then, 

template ligands are selected as they are in FINDSITEcomb2.031 as follows: (1) up to the top 

100 ligands from PDB ligand-protein complex structures52 (if there are more than 100 

ligands, then the top 100 ligands are selected; if there are fewer ligands, then all are 

selected), (2) drugs from up to the top 20 targets from DrugBank drug-target information,49 

and (3) compounds from up to the top 20 proteins from ChEMBL compound-protein 

binding data.50 Then, for each set of template ligands, we generate a fingerprint profile. For 

a given target, these three profiles will be independently combined with each screened 

molecule’s fingerprint and mTC score as calculated in FINDSITEcomb2.0 to generate three 

feature vectors. Finally, a machine learning, boosting regression tree method (independently 

trained on each set of template ligands) predicts three scores for each screened molecule. 

The FRAGSITE score is the maximal score of the three machine learning scores. We detail 

each of the steps below.

Feature Vector Generation.

Feature vectors are generated based on fragmentation of both the template ligands and 

screened compounds. For each ligand in the three template ligand sets and for the screened 

compounds, fragmentation is done using the substructure-based PubChem fingerprint.53 The 

PubChem fingerprint encodes molecular fragment information using 881 binary digits that 

can be represented as an 881 dimensional vector. The list of substructures encoded in each 

bit can be accessed at ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/

pubchem_fingerprints.txt. For PubChem fingerprint computation, we employed the free 

PaDEL-Descriptor package.54

Generally, there are usually multiple template ligands for a given protein target. We therefore 

build a profile P of their fingerprints using the mean value of each of the 881 bits (elements)

Pj = ∑
i = 1

N
Li, j

t /N (1)

where Pj is the jth element of profile P, Li, j
t  is the jth bit (element) of template ligand i, and 

N is the number of ligands in the template ligand set. This profile is an 881 dimensional 

vector whose elements assume values between 0 and 1. The element representing the most 

conserved fragment will have the largest value. Representing the 881 dimensional 

fingerprint vector of a to be screened compound as L with element values of either 0 or 1, 

we construct the 883 dimensional feature vector for each component of FRAGSITE as

X = mTC, P ⋅ L, and the Hadamard product of P  and L (2)

The overall similarity score mTC computed from the FP2 fingerprints55 takes into account 

the topology or sequential order of different fragments of a ligand, P·L takes into account 

the fragment composition of a ligand regardless of their topology, and the 881 dimensional 
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Hadamard product (constructed by element-wise multiplication) takes into account an 

individual fragment’s role with emphasis on the most conserved template ligand fragments. 

Each element of X ranges between 0 and 1. For a given screened molecule, three feature 

vectors are constructed based on template ligands from the PDB,52 DrugBank,49 and 

ChEMBL,50 respectively.

Boosting Regression Tree Scoring Function for Ligand-Protein Binding.

The boosting regression tree involves generating a sequence of decision trees, each grown on 

the residuals of all previous trees.56,57 A decision tree regression is implemented with a 

maximal depth of eight. The scoring function is represented as boosting decision trees57

f X = ∑
m = 1

Ntree 
εTm X (3)

where Tm is a decision tree, ε is the shrinkage factor or learning rate, Ntree is the number of 

trees or iterations, and X is the feature vector defined in eq 2.

In the training of the boosting tree function (3) for ligand-protein binding, the objective 

function value will be assigned as 1 if the molecule is a true binder of the target (in the 

DUD-E benchmarking set, the active ligands) and 0 if the molecule is not a binder (decoys 

in DUD-E).

Training and Benchmarking of the Boosting Regression Tree Scoring Function.

To benchmark FRAGSITE and train the model for future applications, we utilized the DUD-

E5 ligand virtual screening benchmark dataset. We conduct a modified leave one out cross-

validation (LOOCV). Conventionally, LOOCV will use all other targets than the tested one 

in the dataset for training. However, this will favor those targets having close homologues in 

the dataset. Here, in training, we use stricter benchmarking than just LOOCV by excluding 

all targets having a sequence identity of >30% to the given tested target; we term this 

LOOCV30%. Since the total number of molecules (actives + decoys) for all 102 targets is 

around 1.4 million, with mostly decoys, and the dimension of the feature space is 883, this 

would require quite large memory and cause too much unbalance between positive and 

negative samples to use all of them for training. We thus only randomly sample ~10% of the 

decoys and all actives for training. Based on the average training size, we use the following 

empirical parameters for the boosting regression tree (see eq 3): the number of boosted trees, 

Ntree = 150, and the learning rate, ε = 0.05.

Assessment.

In modern drug discovery, the compound library could be immense; thus, the top few 

percent of ligands could contain a large number of molecules, and the cost of experimentally 

screening all of them could be significant.6 For example, Stein et al. docked 150 million 

molecules to an MT1 crystal structure;6 1% or even 0.01% of molecules are still too many 

for experimental testing. Therefore, for cutoff-independent evaluation, we prefer AUPR, the 

area under the precision-recall curve58 to AUC (area under the ROC curve) to compare 

FRAGSITE with FINDSITEcomb2.0 and AutoDock Vina. AUPR is a better measure than 
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AUC to distinguish the ability of methods to rank positives in the very top ranks when true 

positives are rare and only the very top ranked ones are tested as is the case in virtual ligand 

screening.58 Also, for cutoff-dependent assessment, we examine the precision and recall per 

target within the top 100 ranked molecules rather than the enrichment factor of the top 

ranked few percent.

We use the AUC for cutoff-independent assessment and the enrichment factor to compare 

with some other approaches such as AtomNet41 and CNN scoring.41 The enrichment factor 

is defined as

EFx =  Numberof truepositiveswithinthetop100x%
 Totalnumberof truepositives × x (4)

at a fraction of x screened molecules.

AtomNet uses a randomly selected set of 30 targets for testing and the rest for training. The 

CNN scoring method clustered the 102 DUD-E targets with an 80% sequence identity 

threshold and divided the clusters into 3 sets in a 3-fold cross-validation test. For fair 

comparison to AtomNet and CNN scoring, we apply an 80% sequence cutoff to templates 

for template ligand selection: i.e., ligands from any template in the PDB, DrugBank, and 

ChEMBL having a sequence identity of >80% will be ignored.

In practice, as with FINDSITEcomb2.0, we also report the predicted precision and recall 

based on the machine learning score Sfrg of FRAGSITE

precision Sfrg  =  Numberof activeswithscoreswithinSfrg ± ΔSfrg 
 Totalnumberof moleculeswithscoreswithinSfrg ± ΔSfrg

(5a)

recall Sfrg > cutoff  =  Numberof activeswithscoresSfrg > cutoff 
 Totalnumberof actives  (5b)

The precision is useful for judging if the prediction is confident or not. To derive the 

predicted precision and recall using eq 5, we merge all predictions for actives and decoys of 

all targets from the DUD-E dataset5 and bin the score Sfrg from 0 to 1 using ΔSfrg = 0.05.

Experimental Testing of FRAGSITE.

We experimentally tested two protein targets to assess the ability of FRAGSITE to discover 

new hits. We then compare their chemical diversity to FINDSITEcomb2.0. FRAGSITE not 

only utilizes the global ligand structure similarity based on their mTC scores but also 

fragment similarity through their fragmentation fingerprint score; thus, it might be expected 

to find more diverse ligands. We applied FRAGSITE and FINDSITEcomb2.0 to predict 

ligands that bind Escherichia coli (E. coli) dihydrofolate reductase (E. coli DHFR) and 

human ACVR1 receptor kinase. A sequence identity cutoff of 30% for protein templates was 

applied. We screened against molecules from the National Cancer Institute (NCI) diversity 

set (https://dtp.cancer.gov/organization/dscb/obtaining/available_plates.htm). The NCI 

diversity set consists of 1597 molecules from the Diversity Set III, 97 from the Approved 

Oncology Drugs Set IV, and 118 from the Natural Product Set II (total 1812 NCI 
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molecules). Predictions from FRAGSITE and FINDSITEcomb2.0 whose expected precision > 

0.5 are selected for experimental validation by a Thermofluor assay, a sensitive 

fluorescence-based thermal shift method indicative of ligand binding to protein targets, 

using reported protocols.31,59 Then, a few top ranked true binders of E. coli DHFR identified 

by FRAGSITE were subsequently confirmed to inhibit catalysis of DHFR via steady-state 

kinetics inhibition assays. Details of the experimental methods are found in the Supporting 

Information.

RESULTS

Fragment Frequencies.

First, we analyzed the ligand fragments defined by PubChem in the PDB database52 that 

were used by FINDSITEcomb2.0 for ligand homology modeling. To avoid over-represented 

protein chains in the PDB protein-ligand structures, we clustered 142,483 sequences of these 

protein chains using 30% sequence identity cutoff into 11,615 clusters. Using the ligands 

associated with the cluster centroid chains, we calculate the frequency of each of the 881 

fragments. In Table 1, we list the top 40 most frequent fragments with frequencies ranging 

from 35 to 99% of the PDB ligands. There are nine elements, two types of rings, five simple 

atom pairs, 12 simple atom nearest neighbors, two detailed atom neighborhoods, and 10 

simple SMARTS patterns (https://www.daylight.com/dayhtml/doc/theory/

theory.smarts.html). Except for complex SMARTS patterns, all the other six types of 

fragments defined in PubChem are present in the top 40. Overall, on average, there are 115 

atomic element counts (individual chemical atoms) whose frequency is 7.4%, 148 rings 

whose frequency is 2.6%, 64 simple atom pairs whose frequency is 7.5%, 89 atom nearest 

neighbors whose frequency is 16.0%, 44 detailed atom neighborhoods whose frequency is 

10.3%, 253 simple SMARTS patterns whose frequency is 9.5%, and 168 complex SMARTS 

patterns whose frequency is 0.2%. We note that the ring fragment “≥ 1 any ring size 6” (i.e., 

at least one ring with size of six atoms) has a frequency of 43%. If we use DrugBank49 

drugs, then the same frequency is 81%. Interestingly, these mainly correspond to the most 

frequently used “privileged scaffolds” in drug discovery.46 In Table S1 in the Supporting 

Information, the top 40 most frequent fragments of the 6505 DrugBank49 drugs are listed.

Comparison to Other Methods.

To compare FRAGSITE to other state-of-the art methods, FINDSITEcomb2.0,31 docking-

based methods,11,16 and the state-of-the-art deep learning-based methods AtomNet41 and 

CNN scoring,41 we employed the DUD-E dataset5 using the modified LOOCV30% test with 

a sequence identify cutoff of 30%. For comparison to AtomNet41 and CNN scoring,41 the 

sequence identity cutoff for excluding targets in training is 80%. Table 2 summarizes the 

virtual screening performance of FRAGSITE in comparison to FINDSITEcomb2.0,31 

AutoDock Vina,11 AtomNet,41 and CNN scoring41 methods. AutoDock Vina results are 

obtained locally using its default setting for both experimental and modeled target structures. 

AtomNet41 and CNN scoring41 results are taken from their respective publications. Since 

FRAGSITE and FINDSITEcomb2.0 perform similarly with experimental and modeled target 

structures, we present in Table 2 their results with modeled structures, except for the 

comparison to AtomNet41 and CNN scoring41 where we provide results of FRAGSITE and 
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FINDSITEcomb2.0 on both modeled and experimental structures. To explore the sensitivity to 

fingerprint definition, we also implemented two alternative methods using slightly different 

molecular fingerprints FRAGSITE_MACCS and FRAGSITE_FP2 using the SMARTS 

pattern-based 256 bit MACCS and a path-based 1024 bit fingerprint FP2, which indexes 

small-molecule fragments based on linear segments of up to 7 atoms (somewhat similar to 

the Daylight fingerprints55) generated by Open Babel.60 We concluded that the currently 

used fingerprint definition is the best. In addition, we examined the contribution from 

different components of the feature vector from three methods FRAGSITE_no-mTC, 

FRAGSITE_no-DOT, and FRAGSITE_no-HADA excluding the mTC score, dot product, 

and Hadamard production in the feature vector, respectively.

Clearly, FRAGSITE and FINDSITEcomb2.0 perform significantly better than AutoDock Vina 

using both experimental and modeled structures. When modeled target structures are used, 

AutoDock Vina’s performance is much worse than when experimental target structures are 

used. Within the top 100 ranked molecules, FRAGSITE has a precision and recall increase 

of 14.3 and 18.5% relative to FINDSITEcomb2.0 (precision from 41.6 to 47.5%, recall from 

25.7 to 30.5%, respectively). When considering the consensus set of the top 100 predictions 

from both methods, the precision increases further to 55.7%. Moreover, the mean top 1% 

enrichment factor increased from 25.22 to 30.20 (an average increase of 19.8%). Notably, 

the relative increase of AUPR from 0.321 to 0.397 is 23.7%. Both FRAGSITE_MACCS and 

FRAGSITE_FP2 are only slightly worse than FRAGSITE, which uses PubChem 

substructures. We note that FRAGSITE_no-mTC performs somewhat worse than 

FINDSITEcomb2.0. This means that the global similarity characterized by mTC score is a 

very important contribution to FRAGSITE’s performance. The observation that the 

elimination of the Hadamard product FRAGSITE_no-HADA is slightly better than 

FRAGSITE_no-mTC suggests that the Hadamard product is the next most important 

contributor to FRAGSITE following mTC. The fact that FRAGSITE_no-DOT is better than 

FRAGSITE_no-HADA indicates that the dot product is the least important contributor to 

FRAGSITE. By including fragment similarity as assessed by machine learning, FRAGSITE 

is better than FINDSITEcomb2.0. Thus, FRAGSITE demonstrates a significant and robust 

improvement over FINDSITEcomb2.0.31

Table 2 also shows that both FRAGSITE and FINDSITEcomb2.0 are both better than the 

state-of-the-art deep learning-based CNN scoring and AtomNet,41,42 with FRAGSITE being 

the best. For all 102 targets, using modeled structures, FRAGSITE has a mean AUC of 

0.910, with the number of targets having an AUC > 0.9 of 73, respectively, compared to 

0.868 and 49, respectively, by CNN scoring using experimental target structures.42 When 

experimental target structures are used by FRAGSITE, its performance slightly increases 

from a mean AUC of 0.910 to 0.924, with the number of targets having an AUC > 0.9 

increasing from 73 to 77. For a randomly selected set of 30 targets, with modeled target 

structures, FRAGSITE has a mean AUC and number of targets having an AUC > 0.9 of 

0.915 and 20, compared to 0.855 and 14 by AtomNet using experimental target structures.41 

Again, FRAGSITE has slightly improved performance for these 30 targets when 

experimental as opposed to modeled target structures are used.
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To examine the improvement on individual targets, Figure 2 shows the scatter plot 

comparison of EF0.01 for FRAGSITE and FINDSITEcomb2.0. Table S2 presents the 

performance (EF0.01 and AUPR) of FRAGSITE for individual targets in comparison to 

FINDSITEcomb2.031 and AutoDock Vina using modeled target structures. Overall, for 

EF0.01, FRAGSITE performs better for 72 targets, worse for 26 targets, and is tied for 4 

targets. FRAGSITE has 91 targets having an EF0.01 > 1 (meaning better than random 

performance), whereas FINDSITEcomb2.0 and AutoDock Vina have an EF0.01 > 1 for 86 and 

59 targets, respectively.

Comparing the performance of the three methods on individual targets shows that 

FRAGSITE has the best performance for 69 (78) targets as assessed by EF0.01 (AUPR), 

while FINDSITEcomb2.0 and AutoDock Vina are the best performing on 25 (27) and 7 (8) 

targets, respectively. Thus, FRAGSITE’s improvement is not just for few targets that show a 

large improvement; rather, it shows improvement for the majority of targets. Of note is target 

cxcr4, a GPCR receptor, where FRAGSITE has an EF0.01 of 42.5 compared to 0.0 by 

FINDSITEcomb2.0 and AutoDock Vina. Another example is pygm. FRAGSITE has an 

EF0.01 of 14.29, whereas FINDSITEcomb2.0 and AutoDock Vina have an EF0.01 of 0.0 and 

10.43, respectively. FINDSITEcomb2.0 failed for this target, but AutoDock Vina seems to 

have good performance. These results further demonstrate the superior performance of 

FRAGSITE over FINDSITEcomb2.0 and AutoDock Vina; this might be due to its capture of 

the physical interaction pattern of the ligand fragments with the receptor protein.

To trace back the sources of improvement and suggest directions for future improvement, we 

now turn to the analysis of the improvement of the individual FRAGSITE components over 

FINDSITEcomb2.0 (see Methods and Figure 1), i.e., the improvement using template ligands 

from the PDB,52 DrugBank,49 and ChEMBL50 (see Figure 1). Table 3 summarizes the 

results for each of the components. The relative increases of EF0.01 and AUPR by 

FRAGSITE over FINDSITEcomb2.0 for the PDB component are 42.8 and 51.7%, for the 

DrugBank component 52.3 and 60.2%, and 18.2 and 21.2% for the ChEMBL component, 

respectively. This indicates that all components of FRAGSITE show significant 

improvement. For 62 targets, the FINDSITEcomb2.0 result is contributed mostly by the 

ChEMBL component; ~20% of the relative increase of the final FRAGSITE improvement is 

dictated by the ChEMBL component. Thus, future method improvements in FRAGSITE 

should focus on improving the performance of the ChEMBL component.

Predicted Precision and Recall.

Next, we plot the dependence of predicted precision/recall on the machine learning score of 

FRAGSITE Sfrg in Figure 3. Sfrg is expected to be between 0 and 1, with 1 being the best 

value. However, since machine learning has errors, the actual values of Sfrg sometimes can 

be <0 or >1. For example, among the 1,419,743 predictions for the DUD-E set, the largest 

value can be 1.3 with 1384 (0.097%) predictions having Sfrg > 1, and the lowest Sfrg value is 

−0.08. This figure clearly shows that when the score is below 0.5, the precision is below 

10%. A 20% precision requires a cutoff score of 0.65, where the recall is ~32%. The 

maximal precision is 85.8% with score Sfrg ≤ 1. For scores Sfrg > 1, we simply assign a 
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precision of 90.0%. Thus, we have a confidence index that can tell when it is worthwhile to 

perform an experiment based on the FRAGSITE ranking score.

Comparison to Other Methods.

A number of studies have pointed out that hidden biases in the DUD-E set could favor 

similarity-based methods over docking-based methods.43,61 In practice, FINDSITEcomb2.0 

has a similar step to ligand similarity-based approaches, with the fundamental difference 

being that FINDSITEcomb2.0 does not use any information from the known ligands that bind 

to the target. However, FRAGSITE, due to its machine learning component, could learn the 

hidden biased patterns from its training set that are similar to the testing target. Therefore, it 

is important to benchmark completely different test sets from the training set.

Here, we conduct tests using a recently developed unbiased benchmarking set LIT-PCBA61 

to compare FRAGSITE and FINDSITEcomb2.0 to ligand similarity and docking methods. 

LIT-PCBA is designed to solve the problems faced by classically used benchmarking sets, 

e.g., DUD, DUD-E, and MUV that are biased by obvious and hidden chemical biases.44 

These biases could favor machine learning and/or similarity-based approaches over docking 

methods. LIT-PCBA has 15 targets. Each has multiple PDB structures (for a total of 129 

structures). FRAGSITE and FINDSITEcomb2.0 use a sequence identity cutoff of 30% for 

target structure modeling and template ligand selection. Moreover, FRAGSITE employed a 

30% identity cutoff for training the machine leaning model on the DUD-E set. The results 

are compiled in Table 4. Since multiple sequences/structures for each target are used, only 

the mean values are reported for each target. The average EF0.01 of FRAGSITE for the 15 

targets is 4.78, which is 57% better than the EF0.01 = 3.04 for FINDSITEcomb2.0. Both 

methods are better than two-dimensional (2D) ECFP4 similarity search, 3D shape similarity 

search, or the molecular docking program Surflex-Dock v.3066 with average EF0.01s of 

2.49, 0.96, and 1.70, respectively.61 We note that FRAGSITE has only two targets worse 

than random (EF0.01 < 1), whereas each of FINDSITEcomb2.0 and 2D ECFP4 similarity 

search has six, 3D shape similarity search has ten, and Surflex-Dock v.3066 has seven 

targets with EF0.01 < 1.

We then conducted another test on a 23 target subset of the DEKOIS 2.0 set45 to compare 

FRAGSITE and FINDSITEcomb2.0 to the recently developed vScreenML scoring function 

that has similar performance to RF-score-VS.44 In fact, vScreenML uses the same RF-score 

as a component of its features and the same boosted tree regression method as FRAGSITE. 

vScreenML uses the majority of the DEKOIS 2.0 set45 for training and a 23 target subset for 

testing. Thus, this comparison will test if FRAGSITE has better features than vScreenML. 

Since vScreenML performs similarly to RF-score-VS, this comparison will also serve as an 

indirect comparison of RF-score-VS to FRAGSITE and FINDSITEcomb2.0. Once again, we 

used a sequence identity cutoff of 30% for target structure modeling and template ligand 

selection. To have a fair comparison to vScreenML whose training set had up to 77% 

sequence identity to the testing set, FRAGSITE employed an 80% identity cutoff for the 

training machine learning model on the DUD-E set. The results of EF0.01 are shown in Table 

5 where the vScreenML results were taken from ref 44. Table 5 shows that FRAGSITE with 

an average of EF0.01 of 15.2 and FINDSITEcomb2.0 with an average EF0.01 of 13.9 are both 
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significantly better than vScreenML whose average EF0.01 is 6.7. FRAGSITE shows a 9% 

improvement over FINDSITEcomb2.0. FRAGSITE has five targets worse than random 

(EF0.01 < 1), whereas FINDSITEcomb2.0 and vScreenML have six targets with an EF0.01 < 1. 

Thus, FRAGSITE performs better due to its better features and possibly better training set.

Experimental Validation.

Finally, we present the results for experimental testing on two proteins: the enzyme 

Escherichia coli dihydrofolate reductase (E. coli DHFR) and the human ACVR1 receptor 

kinase screened against the NCI molecules from the National Cancer Institute (NCI) 

diversity set (https://dtp.cancer.gov/organization/dscb/obtaining/available_plates.htm). A 

sequence identity cutoff of 30% for protein templates was applied. For prediction, 

FRAGSITE was trained on the whole DUD-E set excluding targets having a sequence 

identity of >30% to E. coli DHFR or ACVR1. To be fair to both methods, we tested 

molecules predicted by both FRAGSITE and FINDSITEcomb2.0 methods with an estimated 

precision of >0.5 using the thermal shift method (see the Supporting Information).

Table 6 summarizes the results. Overall, with a precision cutoff of 0.5, for E. coli DHFR, 

FRAGSITE predicted 21 ligands, whereas FINDSITEcomb2.0 predicted 7 ligands. For human 

ACVR1, FRAGSITE predicted 50 ligands, whereas FINDSITEcomb2.0 predicted 12 ligands. 

The experimental results show that 7 more hits for DHFR are found by FRAGSITE than 

FINDSITEcomb2.0; FINDSITEcomb2.0 only has 2 within the top ranked 20 ligands (~1% of 

1812 molecules). For ACVR1, FRAGSITE has 14 more hits, including the strongest, new 

binder NSC105827 with a 9.7 °C thermal shift; only 2 ligands are within the top 20 of 

FINDSITEcomb2.0. On average, the mean ranks of all binders by FRAGSITE for DHFR and 

ACVR1 are 10.4 and 29.5, whereas those by FINDSITEcomb2.0 are much lower at 20.0 and 

61.2, respectively.

We found that the experimentally observed precision (the overall hit rate of true binders 

defined as compounds displaying a thermal shift over 1 °C at 500 μM final concentration) of 

the FRAGSITE predictions with an expected precision cutoff of ≥0.5 is generally consistent 

with the average expected precision based on the DUD-E benchmark set when both protein 

targets tested here are considered (see the summary in Table 6 and the melting curves in 

Figures 4 and 5). The true positive binder hit rate of the E. coli DHFR predictions was 

higher than that of the ACVR1 drug predictions. Consistent with benchmarking results (see 

Table 2), when comparing FRAGSITE with FINDSITEcomb2.0, the common set predictions 

for both proteins of the two methods have a much higher observed precision of 0.85 (85% 

true positive hit rate) than the unique set predictions of each method. These results suggest a 

strategy for identifying high-confidence predictions by combining the two methods. The 

observed precision of the unique set predictions is 47 and 0% for FRAGSITE and 

FINDSITEcomb2.0, respectively, when both E. coli DHFR and human ACVR1 are 

considered. Overall, FRAGSITE is more powerful than FINDSITEcomb2.0 in identifying true 

binders with diverse scaffolds. It also expands the chemical space of known binders (Figures 

6 and 7). We next examined the drug predictions of the common set vs unique sets of each 

protein.

Zhou et al. Page 12

J Chem Inf Model. Author manuscript; available in PMC 2022 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://dtp.cancer.gov/organization/dscb/obtaining/available_plates.htm


For, E. coli DHFR drug binder predictions, in the common set, 5 (of 6) high-confidence 

predictions with very large thermal shifts of 14–21 °C are known nanomolar DHFR 

inhibitors (Table 6). For example, Pralatrexate (NCI ID: NSC754230, DrugBank ID: 

DB06813), Methotrexate (NSC740, DB00563), and Premetrexed (NSC698037, DB00642) 

are approved anticancer drugs of the antifolate family.49 AMPQD (NSC309401) and PQD 

(NSC339578) are experimental compounds also reported as DHFR inhibitors62 with the 

tricyclic core scaffold distinct from and the diaminopyrimidine moiety observed in 

methotrexate. In contrast, Imiquimod (NSC369100) lacks the diaminopyrimidine moiety and 

shows a smaller thermal shift of 4 °C; it is likely a weak binder. On the other hand, 

NSC715055 (Gefitinib, DB00317) and NSC760766 (Vandetanib, DB05294) identified by 

FRAGSITE but not FINDSITEcomb2.0 belong to the kinase inhibitor families of 

chemotherapy drugs (according to DrugBank49) that have not been previously reported to 

bind to DHFR. Both bind to E. coli DHFR with relatively large thermal shifts of 6.7 and 8.0 

°C (Figure 4B).

The DHFR enzyme family is a well-studied model system for enzyme catalysis and 

dynamics that is the target of antimicrobial and chemotherapeutic drugs. DHFR catalyzes 

the stereospecific reduction of 7,8-dihydrofolate (FH2) to (6s)-5,6,7,8-tetrahydrofolate 

(FH4) via hydride transfer from NADPH.63,64,71 Structural inspection of Gefitinib, 

Vandetanib, and an E. coli DHFR Michaelis complex mimic (Protein Data Bank, PDB entry 

4PSY65) suggests a new ligand scaffold that may not only occupy the electron acceptor 

dihydrofolate pocket but also the electron donor NADPH pocket and a third new unexplored 

pocket adjacent to the dihydrofolate pocket; see Figure 6. The estimated Kd values of 

Vandetanib and Gefitinib with E. coli DHFR are at a 2–10 μM level based on thermal shift 

analysis66 and comparison to reference thermal shifts of Methotrexate (NSC740, Kd of ~9.5 

nM)67 (Figure 4). We attribute these new findings to FRAGSITE’s scaffold diversification.31 

Thus, despite the fact that DHFR has been extensively studied, FRAGSITE discovered a new 

class of binders that may be clinically relevant and will be pursued in subsequent work.

Functional assays confirmed that the above top ranked E. coli DHFR binders are true 

inhibitors of the enzyme (Figure 7). Compared to the reaction under the DMSO control 

condition, Vandetanib (NSC760766) and Gefitinib (NSC715055) identified by FRAGSITE 

but not FINDSITEcomb2.0 showed strong inhibition with an approximately 5-fold decrease in 

kobs (Figure 7). In contrast, Imiquimod (NSC369100) identified by both VLS methods 

showed no inhibition at the 100 μM level. This is consistent with the trend of larger ΔTm 

values of Vandetanib and Gefitinib, 8.0 and 6.7 °C, respectively (estimated Kd of 2–10 μM), 

compared to the potentially weak binder Imiquimod, 4 °C (see Table 6). Methotrexate 

(NSC740, Kd of ~9.5 nM)67 completely blocked the enzyme activity as expected with kobs 

reaching the detection limit of ~0.05 s−1. The inhibitory dose response assays further 

confirmed that the top ranked true binders Vandetanib and Gefitinib (NSC715055) 

representing new scaffolds as identified by FRAGSITE indeed inhibit DHFR catalysis with 

estimated IC50 of 39 and 64 μM, respectively (Figure 8). The slightly stronger inhibition 

(smaller apparent IC50) of Vandetanib over Gefitinib is consistent with the larger ΔTm value 

of Vandetanib over Gefitinib (8.0 vs 6.7 °C) as measured in the thermal shift assays. The 

IC50 calculated from the inhibitory dose response assays and Kd estimated from thermal 

shift assays are generally consistent at low to mid μM levels, confirming that Vandetanib and 
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Gefitinib are true micromolar affinity inhibitors of E. coli DHFR. Their exact inhibition 

constants and mechanism of inhibition require further studies.

For human ACVR1 drug binder predictions, we observed the same trend that the common 

set of FRAGSITE and FINDSITEcomb2.0 predictions has higher true positive hit rates 

(precision of 71.4%) than unique set predictions by individual methods (see Table 6). 

FRAGSITE’s precision is 42.0% versus 0.0% by FINDSITEcomb2.0. This is an interesting 

test given that most of the true positive hits in the common set are known kinase inhibitors 

not originally designed to target ACVR1. This is in principle expected because of the known 

similarity of kinase ligand binding pockets, which results in the promiscuity of many kinase 

inhibitors.68 Unexpectedly, without prior knowledge, FRAGSITE was able to enrich the 

number of high affinity binders in the top ranked drug predictions. Of note, the FDA-

approved drugs from our virtual ligand screening results that showed the relatively large 

positive thermal shifts (Table 6) are among the few high affinity kinase inhibitors of ACVR1 

previously identified by the large-scale, brute force high-throughput experimental target 

screening among 182 different clinical kinase inhibitors across the human kinome.68 These 

include NSC760766 (Vandetanib, Kd of 0.15 μM),68 NSC732517 (Dasatinib, Kd of 0.62 

μM),68 and NSC749005 (Crizotinib, Kd of 0.44 μM),68 consistent with our observed trend of 

ΔTm values of 8.0, 4.0, and 8.0 °C, respectively, of human ACVR1. However, neither 

FINDSITEcomb2.0 nor FRAGSITE identified the known potent ACVR1 inhibitor K02288 

(IC50 of 1.1 nM),70 which was used as the positive control in ACVR1 thermal shift assays.

In particular, FRAGSITE appears to be more effective in finding true hit binders as reflected 

in the empirical observation that the no. 1 ranked Vandetanib prediction for ACVR1 

identified by FRAGSITE (expected precision of 0.9) is ranked no. 11 (among 1812 

molecules) by FINDSITEcomb2.0 (expected precision of 0.62) (Table 6). Of particular 

interest, in an in vivo mouse model of a rare pediatric brain cancer, diffuse intrinsic pontine 

glioma (DIPG), Vandetanib (originally designed to inhibit VEGFR/RET/EGFR) when 

combined with the mTOR inhibitor Everolimus was recently reported to effectively inhibit 

pharmacodynamic biomarkers of DIPG.69 Considering that there is no current effective 

treatment and the aggressive nature of DIPG with a median survival rate in child patients of 

less than a year, our new virtual ligand screening method FRAGSITE is able to identify 

FDA-approved drugs with repurposing potential for DIPG when inhibition of ACVR1 kinase 

activity is required. We note that ACVR1 kinase inhibitors may not be effective therapeutics 

for all forms of DIPG.47 These repurposed drugs might also be applicable to fibrodysplasia 

ossificans progressiva (FOP),48 an inherent connective tissue disorder due to increased 

kinase activity that results from a mutation in ACVR1.

Interestingly, FRAGSITE also identified a series of diverse scaffolds as true hit binders for 

ACVR1 that could serve as a starting point for in silico and experimental fragment-based 

drug design for high affinity binders and inhibitors, see Figure 9. Moreover, FRAGSITE 

independently identifies a new, apparent high affinity binder NSC105827 

(thiosangivamycin), which FINDSITE could not identify. NSC105827 has a ΔTm of 9.7 °C, 

which is higher than the above-mentioned FDA-approved kinase inhibitors, which have 

nanomolar affinity for ACVR1 in the common set. Among the new true hit binders of 

ACVR1 identified in this study, three compounds NSC63701, NSC274905, and NSC105827 
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are conservatively estimated to have nanomolar affinity (Figure 9). These ligands will be 

pursued as new kinase inhibitors in future studies.

Our results corroborate the predictive power of FRAGSITE over FINDSITEcomb2.0. 

FRAGSITE is a powerful VLS approach that can identify new, diverse scaffolds and 

potential high affinity true binders for protein targets. FRAGSITE alone or in combination 

with FINDSITEcomb2.0 should help accelerate experimental drug lead discovery by in silico 

ligand prescreening and scaffold diversification. These experimental results are also 

consistent with benchmarking on the DUD-E set, which shows that when a precision cutoff 

of 0.5 is applied (i.e., predicted precision > 0.5), FRAGSITE has an average recall of 21.9%, 

whereas FINDSITEcomb2.0 has an average recall of 15.7%.

DISCUSSION

By utilizing fragment information from the template and target ligands, we have developed 

the boosting tree regression machine learning-based virtual ligand method FRAGSITE. 

FRAGSITE shows significant improvement over the state-ofthe-art FINDSITEcomb2.0 and is 

also significantly better than the deep learning technology-based CNN scoring and AtomNet 

methods. Our results are robust and only depend slightly on the particular choice of 

fragmentation methods such as MACCS or FP2 fingerprints. Experimental testing on two 

proteins, DHFR and ACVR1, validated that FRAGSITE discovers more hits with more 

diverse chemical scaffolds than FINDSITEcomb2.0. Interestingly, despite the fact that DHFR 

has been extensively studied, FRAGSITE was able to find new hits that are kinase inhibitors 

that were not previously known as DHFR binders. In addition, for ACVR1, FRAGSITE 

identified new classes of kinase binders, which will subsequently be assessed for their ability 

to inhibit kinase activity. With its increase in performance, FRAGSITE is slightly more 

computationally expensive than FINDSITEcomb2.0. However, once the models are trained 

and the fingerprints of the ligand library (both template ligands and to be screened 

compounds) are generated, the additional cost is minimal. For example, for screening 31,980 

molecules, the total additional time on a typical single CPU node is 35 s, equivalent to ~1 

ms/molecule or just 20 min for one million molecules. Thus, it is still much more efficient 

than docking-based methods.11,16,31 Overall, FRAGSITE is a powerful new VLS approach 

that exploits the insight that ligand fragments bind to rather unique protein subpockets to 

identify new and diverse scaffolds. FRAGSITE will be employed in future work to not only 

identify new ligands but as part of an approach to predict drug mode of action, efficacy, and 

drug side effects.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Flowchart of the FRAGSITE approach.
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Figure 2. 
Scatter plot comparison of EF0.01 for FRAGSITE and FINDSITEcomb2.0 for the DUD-E set.
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Figure 3. 
Dependence of the predicted precision (up) and recall (down) on FRAGSITE machine 

learning score Sfrg.
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Figure 4. 
(A–C) Thermal shift assay melting curves of E. coli DHFR with the top ranked drug binders 

predicted by FRAGSITE and FINDSITEcomb2.0 with an expected precision above 0.5. The 

slope of each curve is also plotted as dotted lines with the corresponding color coding. The 

final drug concentration is 500 μM. The reaction buffer contains 50 mM HEPES pH 7.3 and 

100 mM NaCl. Each reaction condition has three replicates. ΔTm = Tm (protein with drug) − 

Tm (apo protein). See details in Methods.
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Figure 5. 
(A–C) Thermal shift assay melting curves of the human ACVR1 receptor kinase cytosolic 

domain with top ranked drug binders predicted by FRAGSITE and FINDSITEcomb2.0 with 

expected precision above 0.5. The slope of each curve is also plotted as dotted lines with the 

corresponding color coding. The reaction buffer contains 50 mM HEPES pH 7.3 and 100 

mM NaCl. Each reaction condition has three replicates. ΔTm = Tm (protein with drug) − Tm 

(apo protein). The final drug concentration is 500 μM except for K02288 (5 μM), which is a 

known nanomolar inhibitor of ACVR1 and tested in parallel as a positive control.70 Only 

melting curves displaying a quantifiable increase in the fluorescence signal of protein above 

that of the drug alone are shown here and considered for further analysis. See details in 

Methods.
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Figure 6. 
Proposed structural basis of the new true binders of E. coli DHFR identified by FRAGSITE. 

Using the PyMOL Molecular Graphics System Version 2.3.2 (Schrödinger, LLC), the PDB 

ligand model structures of NSC715055 (Gefitinib, PDB ligand code IRE, shown as purple 

sticks) and NSC760766 (Vandetanib, PDB ligand code ZD6, shown as cyan sticks) were 

manually and rigidly docked into ligand binding pockets in the E. coli DHFR:folate:NADP+ 

ternary complex crystal structure (PDB entry 4PSY,65 pockets shown as the van der Waals 

surface in white color) based on spatial alignment of the bicyclic core of the new true 

binders identified by FRAGSITE to the pterin moiety of the folate ligand in the crystal 

structure. Based on the structural alignment and the conceivably rotatable O and N-linkages 

extended from the bicyclic core of these new ligands, their proposed binding modes in E. 
coli DHFR may result in occupying not only the dihydrofolate pocket but also NADPH and 

a third new pocket. The protein secondary structures are shown as white ribbons, and the 

original crystallographically identified ligands (NADP+ and dihydrofolate) in PDB entry 

4PSY65 are shown as white sticks. The chemical structures of Gefitinib, Vandetanib, and 

dihydrofolate are also shown for comparison.

Zhou et al. Page 25

J Chem Inf Model. Author manuscript; available in PMC 2022 February 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Steady-state kinetics inhibition assays of E. coli DHFR. The reaction at each condition was 

replicated 4 times and presented as the average value and standard deviation along with 

unpaired t-test p values. All drugs tested were at a final concentration of 100 μM plus a trace 

amount of DMSO (1%) residual from stock solution. The reactions were performed under a 

constant room temperature of 18 °C at steady-state conditions with a catalytic amount of E. 
coli DHFR (93 nM) and saturated electron acceptor dihydrofolate (50 μM) and electron 

donor NADPH (100 μM) levels. The oxidation of NADPH was followed at 340 nm for 60 s. 

The observed initial linear rate was calculated using the published delta molar extinction 

coefficient Δε of 11.8 mM−1 cm−1 71 and normalized against the rate of the DMSO control 
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sample. DMSO at a final concentration of 1% was included as the negative control for 

inhibition, and Methotrexate at 100 μM was included as the positive control of inhibition.
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Figure 8. 
Inhibitory dose response of E. coli DHFR steady-state kinetics to Vandetanib and Gefitinib. 

The reaction was performed under a constant room temperature of 18 °C under steady-state 

conditions with a catalytic amount of E. coli DHFR (93 nM) and saturated electron acceptor 

dihydrofolate (50 μM) and electron donor NADPH (100 μM) levels. The oxidation of 

NADPH was followed at 340 nm for 30–60 s. The observed initial linear rate was calculated 

using the published delta molar extinction coefficient Δε of 11.8 mM−1 cm−1.71 The reaction 

at each condition was replicated 3–4 times and is presented as the average value and 

standard deviation. Inhibitory dose response curve fitting was carried out using the 

“Absolute IC50” method of Prism software with the default setting and a baseline parameter 

value set to be 0, consistent with the control data of complete inhibition by Methotrexate and 

the current detection limit of kobs.
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Figure 9. 
Chemical structures of true binder hits of ACVR1 uniquely identified by FRAGSITE but not 

FINDSITEcomb2.0 comprising diverse scaffolds for fragment-based drug design. Three 

compounds labeled red have a conservatively estimated Kd < 1 μM based on the reference 

ΔTm values observed in this study for the known affinity of kinase inhibitors NSC760766 

(Vandetanib, Kd of 0.15 μM),68 NSC732517 (Dasatinib, Kd of 0.62 μM),68 and NSC749005 

(Crizotinib, Kd of 0.44 μM)68 and K02288 (IC50 of 1.1 nM),70 8.0, 4.0, 8.0, and 13.0 °C, 

respectively. The rest of the true hit binders have estimated affinity for ACVR1 at the 

micromolar level based on the above reference compounds and the reported method of 

estimating binding affinity based on thermal shift assays.63
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Table 1.

Top 40 Most Frequent Fragments in PDB Ligands

index fraction of ligands PubChem fragment

0 0.993599 ≥4 H

9 0.975919 ≥2 C

284 0.974334 C–C

283 0.974151 C–H

344 0.970676 C(~C)(~H)

18 0.958361 ≥1 O

286 0.935804 C–O

352 0.933122 C(~C)(~O)

19 0.93172 ≥2 O

1 0.929098 ≥8 H

308 0.923185 O–H

406 0.878803 O(~C)(~H)

332 0.84765 C(~C)(~C)

366 0.828568 C(~H)(~O)

346 0.823081 C(~C)(~H)(~O)

571 0.769737 [#1]–C–O–[#1]

617 0.758215 C–C–C–O–[#1]

567 0.723831 O–C–C–O

663 0.706029 O–C–C–O–[#1]

10 0.701884 ≥4 C

341 0.691642 C(~C)(~C)(~O)

639 0.664756 O–C–C–C–O

339 0.643846 C(~C)(~C)(~H)(~O)

582 0.528684 C–C–C–C–C

20 0.527647 ≥4 O

637 0.499238 O–C–C–C–C

680 0.448881 O–C–C–C–C–C

405 0.443151 O(~C)(~C)

11 0.441931 ≥8 C

614 0.432726 C–C–O–C–C

178 0.43236 ≥1 any ring size 6

662 0.41846 O–C–C–O–C

14 0.401024 ≥1 N

285 0.398829 C–N

351 0.397488 C(~C)(~N)

420 0.367677 C=O

374 0.361336 C(~H)(~H)(~H)

443 0.361153 C(–C)(=O)

390 0.360056 N(~C)(~C)
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index fraction of ligands PubChem fragment

181 0.35335 ≥1 saturated or aromatic heteroatom-containing ring size 6
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Table 2.

Performance of Various Virtual Screening Methods on the DUD-E Set

Comparison to FINDSITEcomb2.0 and AutoDock Vina
a

method EF0.01 AUPR top 100 precision
b

top 100 recall

FRAGSITE 30.20 0.397 0.475 0.557 0.305

FRAGSITE_MACCS
c 28.28 0.367 0.459 0.282

FRAGSITE_FP2
d 29.79 0.387 0.476 0.297

FRAGSITE_no-mTC 22.12 0.283 0.355 0.227

FRAGSITE_no-DOT 27.23 0.358 0.438 0.284

FRAGSITE_no-HADA 23.42 0.283 0.386 0.240

FINDSITEcomb2.0 25.22 0.321 0.416 0.557 0.257

AutoDock Vina:11 experimental target structure 9.13 0.093 0.151 0.093

AutoDock Vina: modeled target structure 3.57 0.045 0.063 0.045

Comparison to AtomNet and CNN Scoring
e

method (no. of targets) AUC no. of targets having an AUC > 0.9 (%)

FRAGSITE (102) 0.910 73 (71.6%)

FRAGSITE (102) (experimental target structure) 0.924 77 (75.5%)

FINDSITEcomb2.0 (102) 0.874 61 (59.8%)

FINDSITEcomb2.0 (102) (experimental target structure) 0.892 65 (63.7%)

CNN scoring (102) 0.868 49 (48.0%)

FRAGSITE (randomly selected 30)
f 0.915 20 (66.7%)

FRAGSITE (randomly selected 30, experimental target structure) 0.916 21 (70.0%)

FINDSITEcomb2.0 (randomly selected 30)
f 0.881 16 (53.3%)

FINDSITEcomb2.0 (randomly selected 30, experimental target structure) 0.888 18 (60.0%)

AtomNet (30) 0.855 14 (46.7%)

a
Since FRAGSITE and FINDSITEcomb2.0 perform similarly on experimental and modeled target structures, we present only results with modeled 

target structures. We have generated AutoDock Vina results locally using its default settings.

b
The second number is the precision of consensus prediction of FRAGSITE and FINDSITEcomb2.0.

c
FRAGSITE using the 256 bit MACCS fingerprint generated by Open Babel.60

d
FRAGSITE using the 1024 bit FP2 fingerprint generated by Open Babel.60

e
A sequence identity cutoff of 80% is used by both FINDSITEcomb2.0 and FRAGSITE for target structure modeling and template ligand selection 

and training in boosted tree regression.

f
Since AtomNet was only tested on 30 DUD-E targets and their identities are not known, we randomly selected 30 targets for comparison to 

AtomNet.
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Table 3.

Performance of Individual FRAGSITE Components

FRAGSITE FINDSITEcomb2.0

component
a EF0.01 AUPR EF0.01 AUPR

PDB(102) 22.64 0.300 15.85 0.198

DrugBank(77) 23.05 0.299 15.13 0.187

ChEMBL(62) 36.42 0.474 30.82 0.391

a
Numbers in parentheses are the numbers of targets assessed. For the DrugBank and ChEMBL components, some targets have no template ligands.
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Table 5.

Performance (EF0.01) of FRAGSITE for the 23 Target DEKOIS 2.0 Subset Using the Modeled Target 

Structure

target vScreenML
a FINDSITEcomb2.0 FRAGSITE

3hng 10.3 25.8 20

1hov 2.5 31 30

3ny9 0 0 22.5

3kk6 10.8 5.2 20

1nhz 5.4 28.4 27.5

1xp0 8.1 31 22.5

1z11 0 10.3 7.5

3tfq 8.6 0 0

2oo8 5.1 28.4 25

1b8o 7.5 28.4 27.5

2w3l 5.5 15.5 10

1hw8 24.6 5.2 30

2afx 0 0 0

3ewj 2.7 31 30

3v8s 18 15.5 22.5

3eml 7.7 0 10

2z94 0 0 0

1uze 21.4 10.3 5

3klm 5.4 5.2 5

2wcg 2.6 15.5 12.5

1w4r 0 20.7 0

1r4l 8.1 12.9 22.5

1uou 0 0 0

average 6.7 13.9 15.2

a
Taken from ref 44 Table S5.

J Chem Inf Model. Author manuscript; available in PMC 2022 February 26.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhou et al. Page 36

Table 6.

List of Experimentally Validated Top 20 True Binder Hits of E. coli DHFR and Human ACVR1 Ranked by 

Thermal Shift ΔTm Values Categorized as Either New Binders/Inhibitors or Known Binders/Inhibitors of the 

Corresponding Enzyme Family with an Expected Precision Cutoff of 0.5 as Predicted by FRAGSITE and 

Compared with FINDSITEcomb2.0

Drug NSC#
a

Maximal Tc to 
known 

inhibitors
b

Thermal shift 
ΔTm values (°C) 

(rank)
c

FRAGSITE 
predicted 

precision (rank)
d

FINDSITEcomb2.0 

predicted precision 

(rank)
d

Chemical structure of binders

New true binders of E. coli DHFR
e

715055* 0.59 8.0 (1) 0.86(4) 0.01(49)

760766* 0.59 6.7 (2) 0.82(8) 0.01(56)

369100 0.77 4.0 (3) 0.52(21) 0.52(7)

106570 0.68 1.7 (4) 0.73(10) 0.16(10)

280594 0.56 1.7 (5) 0.62(15) 0.01(51)

130801 0.60 1.7 (6) 0.60(17) 0.02(26)

274905 0.68 1.3 (7) 0.79(9) 0.11(11)
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Drug NSC#
a

Maximal Tc to 
known 

inhibitors
b

Thermal shift 
ΔTm values (°C) 

(rank)
c

FRAGSITE 
predicted 

precision (rank)
d

FINDSITEcomb2.0 

predicted precision 

(rank)
d

Chemical structure of binders

34488 0.70 1.3 (8) 0.60(16) 0.02(33)

Known inhibitors of the DHFR family
e

309401 21.0 (1) 0.90(3) 0.88(3)

740 19.0 (2) 0.85(5) 0.81(1)

339578 18.3 (3) 0.84(7) 0.84(2)

754230 18.0 (4) 0.90(1) 0.84(6)

698037 14.0 (5) 0.57(19) 0.89(5)

New true binders of human ACVR1
e

105827 0.54 9.7 (1) 0.66(36) 0.03(117)

63701 0.56 6.0 (2) 0.70(27) 0.05(75)

274905 0.65 4.7 (3) 0.70(29) 0.01(212)
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Drug NSC#
a

Maximal Tc to 
known 

inhibitors
b

Thermal shift 
ΔTm values (°C) 

(rank)
c

FRAGSITE 
predicted 

precision (rank)
d

FINDSITEcomb2.0 

predicted precision 

(rank)
d

Chemical structure of binders

19125 0.64 4.0 (4) 0.68(30) 0.28(21)

62609 0.58 4.0 (5) 0.57(43) 0.07(58)

71795 0.63 4.0 (6) 0.52(48) 0.02(159)

155703 0.59 4.0 (7) 0.52(49) 0.09(48)

128737 0.57 3.0 (8) 0.66(35) 0.04(79)

317605 0.61 3.0 (9) 0.52(47) 0.02(178)

11668 0.62 2.0 (10) 0.60(39) 0.17(29)

34488 0.58 2.0(11) 0.57(42) 0.04(85)

280594 0.56 2.0 (12) 0.55(44) 0.14(34)

Known inhibitors of ACVR1 and kinases
e
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Drug NSC#
a

Maximal Tc to 
known 

inhibitors
b

Thermal shift 
ΔTm values (°C) 

(rank)
c

FRAGSITE 
predicted 

precision (rank)
d

FINDSITEcomb2.0 

predicted precision 

(rank)
d

Chemical structure of binders

760766 8.0 (1) 0.90(1) 0.62(11)

749005 8.0 (2) 0.90(10) 0.86(7)

750690 5.0 (3) 0.64(37) 0.85(9)

732517 4.0 (4) 0.90(9) 0.86(3)

737754 3.0 (5) 0.90(6) 0.88(5)

715055 3.0 (6) 0.90(3) 0.50(13)

a
Bold NCI# indicates molecules with predicted precision ≥ 0.5 by FRAGSITE but not FINDSITEcomb2.0.

b
Used FP2 fingerprints generated by Open Babel.60

c
The ΔTm values of true binders (ΔTm > 1 °C at 500 μM concentration) indicated by bold numbers.

d
Ranks are among the 1812 NCI molecules by mTC score for FINDSITEcomb2.0 and by machine learning score Sfrg for FRAGSITE. Note that 

the rank is determined by mTC score in FINDSITEcomb2.0 and precision is fitted into an mTC window of ±0.05. Thus, sometimes, higher mTC 
might have slightly lower precision. This problem does not happen in FRAGSITE whose Sfrg score has a range of 0–1.

e
Among all tested drug predictions for DHFR and ACVR1, a few did not show a quantifiable melting curve. They either displayed a continuous 

decrease in the fluorescence signal of the protein sample or an artifact of significant increase in the fluorescence signal of the drug alone control 
along the curves. They are excluded from further consideration for plotting or analysis for true hit rates. See Methods for details.

*
Two of the new true binders of E. coli DHFR, which are top ranked by thermal shift ΔTm of 8.0 and 6.7 °C, respectively, are confirmed by 

functional assays to inhibit E. coli DHFR steady-state kinetics (Figure 8). They have not been previously reported to bind or inhibit the DHFR 
family, and their scaffolds do not belong to known inhibitors of the DHFR family or antifolates in general. Their proposed inhibitory poses are 
described in Figure 6.
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