Skip to main content
. 2021 Jun 30;152:568–582. doi: 10.1016/j.psep.2021.06.040

Table 3.

Treatment technologies for each drug.

Drugs Treatment technologies Operational conditions Efficiency of removal* Reference
Azithromycin Photocatalytic degradation 30 mg of Ag@Bi4O5I2/SPION/Calg 98.4% A. Kumar et al. (2021a, 2021b)
Xe lamp 300W
90 min of reaction
5 mg og ZrO2/Ag@TiO2 90% Naraginti et al. (2019)
Xe lamp 250W
8 hours of reaction
1000 mg of GO@Fe3O4/ZnO/SnO2 90.06% Sayadi et al. (2019)
UV-C lamp 6W
120 min
Membrane bioreactor Pilot plant (anaerobic MBR, 100 PE) 25% Göbel et al. (2007)
hydraulic retention time 13 hours
solid retention time 16 ± 2 d, 33 ± 3 d or 60 – 80 d
Adsorption Saponin-modified nano diatomite 99.8% Davoodi et al. (2019)
1 g L-1; pH 9; 25 °C; agitation 450 rpm
60 min
FAU-type zeolites 79% de Sousa et al. (2018)
10 mg L-1 of adsorbent; pH 6,5
30 min
Nanofiltration Composite polyamide membrane 99% Li et al. (2020)
pH 5; 25 °C; 8 bar
120 min
Ozonation Municipal sewage treatment plant 92.6% Nakada et al. (2007)
1.7 × 105 m3 of sewage per day
Concentration of ozone 3 mg L-1
Retention time 27 min
Chloroquine Hydroxychloroquine Photocatalysis-activated degradation 400 mg of PDINH/MIL-88A(Fe) composite 95.7% Yi et al. (2021)
irradiation of 300 ± 50 mW LED visible light
30 min
Electrochemical oxidation Boron doped diamond (BDD) anodes 100% Bensalah et al. (2020)
UV lamp mercury 15 W
Sonication (sono-assisted electrochemical)
300 min
Photodegradation Simulated solar radiation (Xe lamp) - Dabić et al. (2019)
Solutions of HCQ in spring, river and sea water
50 hours
Membrane bioreactor Membrane with melanized E. coli 98.2% Lindroos et al. (2019)
Permeate flow 0.02 L min-1
20 hours
Electron-Fenton oxidation Boron-doped diamond (BDD) anode 100% Midassi et al. (2020)
H2O2 = 60 mA cm-2; O2 = 80 mL min-1; pH = 3
300 min
Ivermectin Adsorption Kaolinite biochar composite 83.5% Olu-Owolabi et al. (2021)
100 mg of adsorbent; 30 °C
180 min
Graphene oxide-polyaniline (GO/PANI) - Rezazadeh et al. (2018)
pH = 7; 700 rpm; salt addition of 2.0 M
45 min
Photocatalytic degradation 2 g L-1 TiO2 92.1% Havlíková et al. (2016)
UV Camag lamp; pH = 5
5 hours
Ferrate (VI) treatment 3 mg L-1 of Fe in Jar test 25% Patibandla et al. (2018)
sample pH at 6
fast mixing 2 min + slow mixing 20 min
Dexamethasone Electrocoagulation Aluminum electrodes; NaCl as electrolyte 38% Arsand et al. (2013)
Sampling of hospital wastewater
45 min
Photocatalysis 0.75–2.5 g L−1 Ag/TiO2 and 10–20 mg L−1 H2O2 82.3% Pazoki et al. (2016)
UV and visible-light irradiation
DXM (5–30 mg L−1); pH (3-11); 30–80 °C
240 min
Adsorption 0.1 – 0.5 g/50 ml Clinoptilolite (CP) modified zeolite 78% Mohseni et al. (2016)
pH 4-7-9; 25 °C
120 min
Multi-wall carbon nanotube and activated carbon - Vadi et al. (2013)
0.005 g of adsorbent; 25 ± 2 °C
10 min
Remdesivir Photocatalytic degradation 1 – 10 mg of TiO2 - Woche et al. (2016)
Mercury vapor lamp (Hg-UV)
140 min
Catalytic ozonation 1.5 g L-1 of Titanium-doped mesoporous γ-Al2O3 (γ-Ti-Al2O3) - Bing et al. (2017)
30 mg L-1 of gaseous O3 (ozone); 20 °C
60 min
Favipiravir Ozonation followed by activated carbon and biological filters Pilot scale ozonation - Knopp et al. (2016)
0.87 ± 0.29 g O3
Hydraulic retention time 17 ± 3 min
HIV Antivirals Ozonation Analyte-ozone-rations (1:0, 10:1, 5:1, 2:1, 1:1, 1:2, 1:5, 1:10) - Funke et al. (2021)
Effluent from conventional WWTP was used with the addition of 5 mg L-1 of antiviral
Electrochemical degradation Ti/SnO2-Sb anode 97% Zhou et al. (2019)
10 min
Adsorption 10-30 g L-1 non-modified expanded perlite (E-perlite) 58.5% Babas et al. (2021)
pH 3 – 11; 25 °C
250 min
5 mg L-1 Carbon nanotubes (CNTs) 90% Wang et al. (2015)
pH 2 – 12; 25 °C
48 hours
*

Some data of efficiency removal was not provided specifically by the authors.