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Abstract

The androgen receptor (AR) is a target of interest for endocrine disruption research, as altered 

signaling can affect normal reproductive and neurological development for generations. In an 

effort to prioritize compounds with alternative methodologies, the U.S. Environmental Protection 

Agency (EPA) used in vitro data from 11 assays to construct models of AR agonist and antagonist 

signaling pathways. While these EPA ToxCast AR models require in vitro data to assign a 

bioactivity score, Bayesian machine learning methods can be used for prospective prediction from 

molecule structure alone. This approach was applied to multiple types of data corresponding to the 

EPA’s AR signaling pathway with proprietary software, Assay Central®. The training 

performance of all machine learning models, including six other algorithms, was evaluated by 

internal five-fold cross-validation statistics. Bayesian machine learning models were also 

evaluated with external predictions of reference chemicals to compare prediction accuracies to 

published results from the EPA. The machine learning model group selected for further studies of 

endocrine disruption consisted of continuous AC50 data from the February 2019 release of 

ToxCast/Tox21. These efforts demonstrate how machine learning can be used to predict AR-

mediated bioactivity and can also be applied to other targets of endocrine disruption.
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INTRODUCTION

Endocrine disruption research efforts are currently driven primarily by government 

regulatory initiatives like the Endocrine Disruptor Screening Program from the U.S. 

Environmental Protection Agency (EPA), which aims to evaluate any risks to the population 

from chemical exposures 1. This initiative started evaluating effects on the endocrine system 

by estrogen and androgen hormones, and intends to expand evaluation to thyroid receptor, 

aromatase, and general steroidogenesis alteration. The androgen receptor (AR) is of major 

interest to the program, as androgen hormone imbalances are implicated in rare diseases, 

bone diseases, metabolic dysfunction and cancers 2–4; altered AR signaling can also affect 

normal reproductive and neurological development for multiple generations 2, 5. 

Unsurprisingly, due to the high risks involved in altered signaling from environmental 

causes, in vitro and in vivo AR assays comprise half of the Endocrine Disruptor Screening 

Program Tier 1 battery 6.

Low-throughput screening and animal testing for regulatory purposes can take years, 

thousands of animals, and millions of dollars to complete – but the backlog of chemicals 

slated for environmental testing still needs to be managed 7. The EPA has periodically 

released high-throughput screening assay data through the ToxCast program 7–9 as well as 

the consortium program Toxicity Testing in the 21st Century (Tox21) 10. The ToxCast/Tox21 

screening efforts cover a width breadth of biological targets and processes related to 

endocrine disruption and offer a rich data source for computational modeling. 

Computational resources and screening offer a time-saving and cost-effective method of 

prioritizing the multitude of chemicals, and applying in silico tools is a goal of these EPA 

programs 1.

In 2016, the EPA published on their use of data from 11 in vitro ToxCast/Tox21 assays to 

construct models of AR-mediated endocrine disrupting signaling pathways, by agonism or 

antagonism (Table 1) 11. The primary objective of this study was to validate the ToxCast AR 

pathway models, and thus apply them with confidence to prioritize chemicals for additional 

testing with these models; a long-term goal is that these results are ultimately accepted as 

alternatives to Tier 1 assay data like similar studies of the estrogen receptor 1, 12, 13. 
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Predictive performances of the AR pathway models were validated with in vitro reference 

chemicals curated from literature sources. Later, the EPA published on the development of a 

Hershberger database 14 and subsequently used the set of in vivo reference chemicals 

derived from this work to further validate the AR pathway models 15. Another key 

publication described the generation and assignment of a burst-flag hit-call to these same 

ToxCast AR pathway model assays, where the authors aimed to eliminate false-positives 

resulting from loss-of-function assays: an active classification to a chemical was only 

assigned if the assay’s AC50 fell below the cytotoxicity measurement 16. Finally, similar to 

the Collaborative Estrogen Receptor Activity Prediction Project 17, the Collaborative 

Modeling Project for Androgen Receptor Activity (CoMPARA)18 recently used high-

throughput screening data and multiple modeling methods to prioritize chemicals for Tier 1 

testing 19, 20. Predictions of agonist and antagonist bioactivity through the CoMPARA 

consensus models are available online through the EPA’s Chemical Dashboard 21.

Despite the impressive performance of all of these in silico AR models spearheaded by the 

EPA, a major disadvantage to the ToxCast AR pathway modeling technique is that the in 
vitro data across the 11 high-throughput assays for each chemical are required to generate 

the bioactivity score. Hence, these pathway models lack the power of prospective prediction 

for a chemical with unknown in vitro activity. While the recent release of CoMPARA can 

generate predictions for external molecules, it is based on the k-nearest neighbors method 

and utilizes predicted AR activity (albeit with high concordance across consensus 

predictions). Alternatively, machine learning methods have shown their applicability to drug 

discovery and toxicology using molecule structure alone 22–24, and it is certainly not a novel 

idea to apply machine learning to endocrine disruption research. Within the CoMPARA 

project were participants 20 utilizing multiple individual machine learning methods (random 

forest, k-nearest neighbors, support vector machines, decision trees, etc.) as well as creating 

consensus models. Grisoni et al. 25 not only presented the advantages of each algorithm but 

also evaluate the structural features for AR binding, and Manganelli et al. 19evaluated 

misclassified binding chemicals. Gupta et al. 26 developed a multilevel ensemble model, 

which first applied a random forest model to classify compounds and then applied multiple 

activity scores using four methods (linear, decision trees, random forest, neural network) to a 

Tox21 AR agonism training dataset. Idakwo et al. 27 utilized both agonist and antagonist 

datasets from Tox21 for random forest and deep learning, and investigated chemical 

similarity between prediction classes to further analyze accuracy. Chen et al. 28 extracted an 

AR binding training set from publications and calculated seven molecular fingerprints to 

build machine learning models from four methods (k-nearest neighbors, decision tree, naïve 

Bayes, and support vector machine) to identify substructures of endocrine disrupting 

chemicals.

The application of Assay Central® Bayesian machine learning methods has previously 

demonstrated for drug discovery (Ebola, tuberculosis, rare disease) 29–31. The current study 

therefore describes multiple Bayesian machine learning model groups generated from the 

same 11 assays used in the EPA’s ToxCast AR agonist and antagonist pathway models. 

These groups are defined by their source and data type: in vitro ToxCast/Tox21 AR 

bioactivity and hit-call data 32, the area-under-the-curve (AUC) values output from the 

agonist and antagonist pathway models 11, or burst-flag hit-call data incorporating 

Zorn et al. Page 3

Environ Sci Technol. Author manuscript; available in PMC 2021 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cytotoxicity considerations 16. The performance of these groups was evaluated first by 

internal five-fold cross-validation metrics, then by the prediction accuracy of two external 

test sets utilized in previous EPA publications 11, 15. A further comparison of multiple 

machine learning algorithms was also conducted on the finalized AR datasets, building on 

previous work comparing performance with disease and toxicology datasets 24, 30, 33. The 

goal of this study was two-fold: 1) derive predictive models to prioritize chemicals for future 

in vitro and in vivo testing of endocrine disruption mediated by AR, and 2) to describe any 

differences between machine learning methods when using the same underlying descriptor 

with AR datasets of varying data type and total size.

EXPERIMENTAL SECTION

Datasets

Four data types for each of the 11 assays used in the AR signaling pathway models from the 

EPA (Table 1) were retrieved from three sources: 1) hit-call or AC50 data from 

invitroDBv3.1 summary files 32, referred to herein as “ToxCast2019”, 2) AUC output values 

from the agonist and antagonist pathway models 11, and 3) burst-flag hit-call data from a 

recent publication 16 referred to herein as “Nelms2018-BFHC”. Each data source-type pair 

was considered as one of eight model groups (including AUC models at two thresholds) and 

abbreviations for these groups are presented in Table 2.

The Nelms2018-BFHC datasets are similar to the cytotoxicity considerations taken by the 

EPA’s ToxCast AR model AUC or bioactivity score. When generating the ToxCast AR 

pathway models, the authors removed chemicals from the two Tox21 antagonist datasets 

(Table 1) that produced an AC50 below the parallel viability measurement. Nelms et al. 16 

applied the same methodology to all assays, but the Nelms2018-BFHC datasets retained 

these cytotoxic chemicals and considered then inactive.

Bayesian models require a classification of active and inactive chemicals prior to their 

generation by applying a bioactivity threshold to continuous data. Hit-call and burst-flag hit-

call classifications were set by Nelms et al. and the ToxCast pipeline. Models built with 

AC50 data utilized a calculated threshold that is unique to each dataset, as described in the 

next section. The EPA’s ToxCast AR model publication describes that an AUC score greater 

than 0.1 are defined as active, scores between 0.001 and 0.1 are inconclusive, and scores 

below 0.001 were truncated to zero and classified as inactive 11. The 0.1 threshold was used 

for models built from AUC values, as well as a lower threshold of 0.01; this is described as 

an acceptable means to limit false positives by a publication for the Collaborative Estrogen 

Receptor Activity Project 17.

Data from each source were curated into a single file using a proprietary application called 

Bleach (Molecular Materials Informatics, Montreal Canada). After downloading 

invitroDBv3.1 summary files 32, CAS identifiers were used to curate structures and quality 

control notes with the EPA’s Chemical Dashboard for all 9214 substances provided. 

Substances that lacked structures or had a valid quality control note (i.e. water samples, 

mixtures, ill-defined) were removed, as were similarly problematic chemicals (i.e. polymers) 

that included a structure. This central source of 8645 substances was combined with various 
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data by “code” identifiers from the same summary file into two central sources, one for 

ToxCast/Tox21 AC50 data 32 and the work done by Nelms et al. 16, and the other for AUC 

data from Kleinstreuer et al. 11. The final step prior to generating models was to standardize 

structures for machine learning (i.e. removing salts and balancing charges) within the 

proprietary software Assay Central®. Further curation included removal of compounds with 

a molecular weight greater than 750 after removing salts to exclude antibiotics and larger 

macromolecules that are not as pertinent to consumer product ingredients, with an exception 

for chemicals with less than 50 non-hydrogen atoms, so as to include chemotypes dominated 

by halogen atoms like dyes.

External predictions from chemical structure alone required creating new training models 

that excluded testing chemicals; these new training datasets were generated with a 

proprietary workflow. Two test sets of in vitro (Table S1A) or in vivo (Table S1B) 

classifications of AR agonist and antagonist activity were used in previous evaluations of the 

EPA’s ToxCast AR pathway models by Kleinstreuer et al. 11, 15, and are available for 

download from the NTP Interagency Center for the Evaluation of Alternative Toxicology 

Methods website 34. The machine learning model prediction accuracy for each test set was 

then compared to results published around the ToxCast AR models’ validation 11, 15. 

Furthermore the CoMPARA 18 consensus model predictions of agonism and antagonism 

were downloaded from the CompTox Chemistry Dashboard 21 and are also briefly compared 

to the work herein. The CoMPARA evaluation set of >4,800 chemicals with binding, agonist 

and antagonist classifications was considered for comparison, however, due to the inclusion 

of all possible data from ToxCast/Tox21 assays, removing testing chemicals from the 

training datasets would have resulted in heavily diminished models and would not yield a 

fruitful and accurate comparison.

It is important to note that the EPA did not evaluate in vitro reference chemicals that did not 

have data present in ToxCast October 2015 release, as they were unable to assign an AUC 

score 11. These eight chemicals (Table S1A) were removed from training models as a part of 

the test set, but were not considered for the performance comparison. In addition to the 54 in 
vitro reference chemicals, four other chemicals were removed from the machine learning 

training models due to identical skeletal structures (Table S1A). The number of in vivo 
reference chemicals in the original test set (n = 39) was also reduced herein, as the mixture 

abamectin was excluded due to incompatibility with machine learning methods. Test set 

chemicals were curated similarly to the training set (i.e. removing polymers and salts) to 

facilitate compatible predictions. The final test sets discussed in this study consist of 46 in 
vitro reference chemicals and 38 in vivo reference chemicals (Tables S1). These test sets 

were evaluated in-depth by the EPA with the analysis of an additional confirmatory assay as 

well as a confidence scoring system; herein this work only compares machine learning 

model predictions to the raw AUC outputs from the AR agonist and antagonist pathway 

models.

Assay Central®

The Assay Central® framework 35, 36, including metrics to evaluate model performance and 

its application to drug discovery and toxicology projects 30, 37, 38, as well as generation and 
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interpretation of prediction scores and applicability domain values 35 have been previously 

described. Briefly, a series of scripts employ standardized rules for the detection of 

problematic molecular structures that can be corrected by multiple means, and the output is a 

high-quality dataset and a Bayesian model that can be used to predict chemical activity. 

Machine learning models utilize only extended-connectivity fingerprints of maximum 

diameter 6, generated from the Chemistry Development Kit 39. Each model has a series of 

internal five-fold cross-validation metrics output by default: receiver operator characteristics, 

recall or sensitivity, specificity, F1-score, Cohen’s kappa 40, 41, and Matthews Correlation 

Coefficient; balanced accuracy has also been included in the analysis of models. An 

automated method to select the activity threshold was applied to optimize individual model 

performance 35, 36. While inconsistent across datasets, it was important for this study to 

evaluate if automatically chosen activity thresholds produced reasonable predictions. 

Prediction scores also include an applicability domain score, where higher values suggest 

more chemical property space is covered in the model, ensuring a given prediction is within 

the scope of the training data. The prediction accuracy of machine learning models was 

compared to the results described previously 11, 15. Predictions were evaluated using the 

standard probability cutoff, where a prediction score of 0.5 or greater designates a chemical 

as active 35. Sets of either nine agonist-pathway assays or seven antagonist-pathway assays 

were utilized for predictions: if more than half of the models in a group (i.e. at least five 

agonist assay models or four antagonist assay models) predicted the compound as active, it 

was considered to be an overall active designation. The exception to the majority-rule 

designation was stand-alone models created with AUC data from the AR agonist or 

antagonist pathways. Machine learning predictions were then compared to the reported 

activities of reference chemicals 34 without potency considerations (i.e. “yes” or “no” rather 

than “strong” or “weak”).

Comparison of machine learning algorithms

The complete (i.e., full training and testing) datasets output by Assay Central® were used 

for comparison of other machine learning algorithms (random forest, k-Nearest Neighbors, 

support vector classification, naïve Bayesian, AdaBoosted decision trees, and deep learning 

architecture with three hidden layers - all previously described 37). Deep learning models 

were generated with Keras (https://keras.io) and a Tensorflow (www.tensorflow.org, GPU 

for training) backend, and all other algorithms used Scikit-learn (http://scikit-learn.org/

stable/, CPU for training) machine learning python library. All algorithms utilize extended-

connectivity fingerprints of maximum diameter 6 generated from RDKit (http://

www.rdkit.org), and were also subjected to five-fold cross-validation. A single set of 

hyperparameters was utilized for deep learning, as determined in previous studies 30, 37.

This study compared the differences in the five-fold cross-validation scores between each of 

the machine learning algorithms with a rank normalized metric. This group 33, 38 and several 

others 42 have previously used this rank normalized score as a useful performance criterion. 

First, all metrics for each model were range-scaled to [0, 1] before designating the mean as 

the rank normalized score. When rank normalized scores for each machine learning 

algorithm were not normally distributed then nonparametric comparisons were used. Such 

rank normalized scores can be evaluated pairwise (machine learning comparison per training 
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set) or independently (to give a general machine learning comparison). An additional 

measure was recently devised to compare models called “difference from the top” (ΔRNS) 

metric, which gives a rank normalized score for each algorithm subtracted from the highest 

rank normalized score from a specific training set 33. This is useful because it maintains the 

pairwise results from each training set cross-validation score by algorithm, enabling a direct 

assessment of the performance of two machine learning algorithms whilst also maintaining 

information from the other machine learning algorithms.

RESULTS

Several groups of Bayesian machine learning models were created using Assay Central® 

software, and data from 11 in vitro ToxCast/Tox21 assays previously used by the EPA to 

construct pathways of AR-mediated endocrine disrupting signaling. Specifically, machine 

learning model groups consisted of hit-call and continuous AC50 data from invitroDB_v3.1, 

the AUC scores outputted from the EPA’s AR agonist and antagonist pathway models, as 

well as burst-flag hit-calls which address cytotoxicity. Five-fold cross-validation statistics of 

final and full Bayesian machine learning models (i.e. including test set chemicals) are 

summarized in Table S2.

Models built with AC50 data applied inconsistent activity thresholds across individual assays 

in an automated fashion which optimizes performance metrics, but generally these 

thresholds produced a reasonable ratio of active to inactive chemicals. The Nelms-BFHC 

group was most sparse in active chemicals across assays, understandable due to the 

cytotoxicity considerations of the hit-call. However, this imbalance generated extremely 

high-performance metrics (Table S2D) that did not translate into external prediction 

accuracy, as described below. While balanced accuracy, and other metrics varied across 

individual datasets, averages over groups were fairly consistent with the Nelms-BFHC group 

being slightly higher overall. We also noted that the ToxCast AUC score models (Table S2E) 

have performance metrics that were not as good as many of the individual models (Table 

S2A-D).

Five-fold cross-validation metrics generated by six additional machine learning algorithms 

(Figure S1) were also evaluated. Generally, Assay Central® Bayesian models had similar 

performance metrics to other methods, but AdaBoosted decision trees and naïve Bayesian 

algorithms were consistently outperformed by the other methods (Figure 1). In addition, two 

of the three comparisons (ΔRNS and rank normalized score with pairwise-comparison) show 

Assay Central® outperformed both deep learning architecture and k-nearest neighbors in a 

statistically significant manner (Table S4).

Two external test sets, which included both agonist and antagonist reference chemicals, were 

utilized to evaluate the predictive performance of Bayesian machine learning model groups. 

New training models were generated by removing reference chemicals from each of the 11 

assays in each group with a proprietary script. Each test set chemical was assigned a 

probability-like prediction score from either nine agonist or seven antagonist assays 11, and a 

majority-rule method was used to assign a binary classification to each chemical. These 

classifications were then compared to the results of EPA’s ToxCast AR agonist and 
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antagonist pathway model validation studies reported by Kleinstreuer et al. 11, 15 as well as 

the CoMPARA 18 agonist and antagonist consensus predictions available through the EPA 

Chemistry Dashboard 21.

The test set of in vitro agonist reference chemicals totaled 29 (Figure 2A), with eight being 

active and 21 inactive (Table S1A). All Bayesian machine learning models produced zero 

false negatives, and were able to correctly predict all eight active agonist chemicals with 

varying frequency of false positives. Particularly, these false positive designations were 

consistently observed for 17α-estradiol, finasteride, and fulvestrant (Tables 4 and Table 

S3A); these substances are steroids, a chemical class common to androgenic compounds 43. 

The CoMPARA 18 consensus agonist model also had false positive designations for these 

same three chemicals, which may indicate these types of inaccuracies persist across 

methods. None of the machine learning model groups were able to match the predictive 

power of EPA’s ToxCast AR agonist pathway model as it was able to predict 8/8 active 

chemicals and 19/21 inactive chemicals accurately or 27/29 chemicals overall 11. This 

ToxCast AR model did not produce any false negatives but was associated with one false 

positive, 17α-estradiol, and assigned an inconclusive score to tamoxifen. The Nelms2018-

BFHC group performed best of the machine learning model groups for this test set: it 

correctly predicted the most chemicals overall (26/29), the most inactive chemicals (18/21), 

and also produced the fewest false positive predictions.

The in vitro antagonist reference chemicals consisted of 20 active and eight inactive 

chemicals (Table S1A). At the cost of false positive predictions, 4/6 machine learning model 

groups were able to correctly predict more active antagonists than the EPA’s ToxCast AR 

antagonist pathway model (Figure 2B and Table S3B). However, none of the machine 

learning model groups were able to accurately predict inactive chemicals from the antagonist 

reference list as well as Kleinstreuer et al. 11. The Nelms2018-BFHC and ToxCast2019-

AC50active groups were especially poor predictors of inactive chemicals, as each produced 

over ten false negative classifications. False positive predictions were prominent in machine 

learning model groups for testosterone propionate, methyl testosterone, daidzein, and 4-

androstenedione (Table 4, Table S3B); all but daidzein are steroid structures, a similar trend 

to what was seen for in vitro agonist reference chemicals. The EPA’s ToxCast AR antagonist 

pathway model accurately predicted 17/20 active chemicals as well as all inactive chemicals, 

with only one false negative (zearalenone), but two active antagonists, methoxyclor and 

fenarimol, were scored as inconclusive 11. The CoMPARA 18 consensus antagonist model 

produced two false positive designations for daidzein and 4-androstenedione, but 

zearalenone was not assigned as consensus score (Table S3B).

The in vivo agonist reference chemicals consisted of three active and 15 inactive chemicals 

(Table S1B). The ToxCast2019-AC50full, ToxCast2019-HC, and Nelms2018-BFHC groups 

were able to accurately predict all in vivo reference agonists accurately, similar to what was 

seen in the previous estrogen receptor predictions 44 (Figure 3A). Total accuracy for this test 

set was produced by both the ToxCast AR agonist pathway model 15 as well as the 

CoMPARA 18 consensus agonist model (Table S3C). This test set was the most unbalanced 

(i.e. lacking a similar number of active and inactive compounds) of the four and was the 

least informative for evaluating predictive performances of model groups in this study.
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The in vivo antagonist reference chemicals consisted of 20 active and 15 inactive chemicals 

(Table S1B). As observed for in vitro antagonist chemicals the Nelms2018-BFHC and 

ToxCast2019-AC50active groups classified the greatest number of false negatives; however, 

in this case the EPA’s ToxCast AR antagonist model produced 12 false negatives as well 

(Figure 3B). The ToxCast-AC50full, AUC-0.1, and ToxCast2019-HC groups yielded the 

highest overall accuracy with 27/35 antagonist chemicals correctly predicted (Figure 3B). 

While Nelm2018-BFHC technically predicted the fewest false positives it also had the 

fewest active designations, similar to for AUC-0.01 for false negatives. When considering 

both the number of false positives and negatives in addition to the number of correct 

predictions overall, both ToxCast2019-AC50full and AUC-0.1 models are the optimal 

performers. All machine learning model groups consistently assigned false negative 

designations to diethylhexyl phthalate, dibutyl phthalate, and ethoprop. Additionally, 2,4-

dinitrophenol was consistently assigned a false positive classification by these groups, but 

interestingly was assigned the correct inactive classification by the agonist counterparts 

(Table 4 and Table S3D). The EPA’s ToxCast AR antagonist pathway model assigned false 

negative AUC values to the following active antagonists 15: finasteride, benfluralin, 

permethrin, diethylhexyl phthalate, noflurazon, ethoprop, cyfluthrin, iprodione, pronamide, 

triflualin, dibutyl phthalate, and metolachlor. This model also assigned false positive scores 

to folpet and chlorothalonil; inconclusive scores were assigned to active antagonist 

fenarimol and inactive chemicals tetrachlorvinfos and mgk-264 15 (Table S3D). Overall, the 

ToxCast AR model correctly predicted 18/25 in vivo antagonist reference chemicals. The 

CoMPARA 18 consensus antagonist model assigned false negative AUC values to the 

following active antagonists: diethylhexyl phthalate and dibutyl pthalate, cyfluthrin, 

ethoprop, finasteride, iprodione, noflurazon, permethrin, and propargite, and assigned false 

positive classifications to folpet and tetrachlorvinfos (Table S3D).

DISCUSSION

Endocrine disruption prediction has become a major area of research with the rising 

availability of data associated with chemical exposure 45, 46. Decades of quantitative 

structure-activity relationship research have been undertaken by various research groups 

globally 25, 47–50, but the most reliable data are generated by governmental organizations 

pursuing new methods to evaluate endocrine disruption. While the EPA’s ToxCast AR 

pathway modeling efforts are extensive, they require the generation of substantial in vitro 
data to assign AUC values for potential bioactivity prediction, while Bayesian machine 

learning methods do not.

Bayesian machine learning model groups produced higher overall accuracies when 

predicting external in vitro reference chemicals relative to in vivo reference chemicals. In the 

former test set, all false positive predictions were steroid structures with the exception of the 

isoflavone daidzein; in the latter, issues with false negative predictions are prominent 

regardless of the models utilized. The Bayesian machine learning models generated with 

Assay Central® were more accurate at predicting AR-mediated agonism than antagonism 

overall. In contrast to publications by the EPA 11, 15, inaccurate classifications were not 

resolved as the EPA did with their confidence scores and a confirmation assay (i.e. 

zearalenone), and only the raw AUC scores were analyzed. Despite this simplification, it is 
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apparent that machine learning models can limit the prevalence of false negatives for in vivo 
antagonist reference chemicals without the additional confirmatory testing or literature 

evaluation done by Kleinstreuer et al. 11.

The lack of accuracy, particularly for the in vivo antagonist test set, by multiple in silico 
methods (i.e. Assay Central®, EPA’s ToxCast AR pathway and CoMPARA models) 

suggests that improvements can be made in order to extrapolate in vivo results from in vitro 
data. Evaluation of other test sets shows that machine learning models can be as, or more 

effective at accurate prediction of potential AR-mediated endocrine disruption. Overall, the 

ToxCast2019-AC50full group performed well and are the ideal primary prediction set for 

further validation studies. Interestingly, these model groups were not those with the highest 

five-fold cross-validation metrics (Table S2), demonstrating the necessity for examining 

dataset balance and model validation with external test sets.

An important limitation of this study was the consistent prediction of steroid chemicals as 

active regardless of the test set, but this trend was quite prominent for the in vitro test set and 

spanned both agonist and antagonist chemicals (Table 4). This is a common limitation of 

models that use fingerprints as molecular descriptors and can be addressed by analyzing 

other descriptors in future studies. Similar limitations were observed in a recent study for the 

estrogen receptor 44. Training set chemical space coverage does not appear to be the source 

of these limitation, as shown by high average applicability values for incorrectly predicted 

chemicals (Table S5). Rather, steroids are often active chemicals across these assays and are 

a well-established class of compound that disrupt the endocrine system 44; Kleinstreuer et al. 
11 notes classifying 17α-estradiol as inactive may need to be revised, for example. Both 

phthalates present in the in vivo test set are classified as active antagonists and predicted as 

inactive. Kleinstreuer et al. 11 describes that the metabolite of phthalates is the anti-

androgenic component rather than the parent compound. Consequently, inaccurate 

predictions could result from an alternative mechanism. Other explanations of inaccurate 

predictions include in vitro experimental inconsistencies between the ToxCast/Tox21 

training data and the reference data (i.e. concentrations tested and solubility constraints) as 

well as intrinsic variation of in vivo data 11, 13–15, 18. This is a general limitation of machine 

learning and other in silico prediction methods that can potentially be addressed with more 

advanced experimental techniques 29–3137, 38.

Other limitations to this study are similar to those discussed in the recent estrogen receptor 

work 44, namely the overall system of activity designation from Bayesian models with 

probability-like scores and lack of an “inconclusive” designation. However, the majority-rule 

method utilized herein to classify chemicals for potential AR-mediated endocrine disruption 

appears be effective for external predictions. Additionally, while the EPA’s ToxCast AR 

pathway models utilized the same 1855 compounds to cover the same chemical space across 

assays, all chemicals tested in each assay at the time were included in the model. The Assay 

Central® software applied inconsistent activity thresholds to AC50 models, which could lead 

to disagreement between individual assay models of which chemical features translate to 

bioactivity across a group and hence may skew the resulting predictions. Finally, the EPA’s 

ToxCast AR pathway models allow for speculation on mechanisms of endocrine disruption 

or technology-specific assay interference. Despite these limitations, Assay Central® model 
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groups performed similarly to or better than the corresponding ToxCast AR pathway model 

(Figures 1 and 2).

This study predominantly focused on using Assay Central® to develop Bayesian models, but 

there is continuing interest in how other machine learning approaches perform. It has 

compared six additional machine learning algorithms to Assay Central®, adding to the 

earlier work 30, 37, 38 showing the different algorithms perform similarly: the performance 

five-fold cross-validation metrics do vary but appear comparable for most algorithms (Figure 

S2, Table S4). Based on this comparison the focus was on using the Bayesian machine 

learning models generated with the Assay Central® framework for external test set 

validation. This study provides further evidence that Bayesian methods may be most suitable 

for bioactivity prediction 30, 37, 38, especially considering the computational cost of more 

advanced methods. It is important to note that all these machine learning models only 

utilized a single molecular descriptor (extended-connectivity fingerprints), and future studies 

will expand this evaluation with the use of different descriptor classes. Additional goals 

include evaluating alternative machine learning algorithms with external predictions as well 

as five-fold cross-validation, and generating consensus predictions across multiple methods 

for a more accurate comparison to CoMPARA 18 and other consensus models 19, 25.

This study has demonstrated that prospective prediction of external reference chemicals with 

Bayesian machine learning models has accuracies that rival the EPA’s published ToxCast 

models for AR-mediated signaling pathways 11, 15 without requiring in vitro data. Without 

this testing requirement, there are significant savings of time and resources by using 

machine learning models in place of the ToxCast AR pathway models. We have also 

demonstrated that the ToxCast AR model AUC score may not be optimal for training 

machine learning models as we have shown herein. While the CoMPARA consensus model 

is capable of external predictions, the use of all of the assay data in the Assay Central® 

models offers an important advantage in the transparency of the training data. This study 

therefore represents an approach for evaluating machine learning techniques for predicting 

endocrine disrupting bioactivity potential on the basis of molecular structure alone. Future 

experiments could include more in-depth comparisons of molecular descriptors and 

additional machine learning algorithms, and as new AR-related data is published there will 

be further opportunities for evaluating predictions and testing models.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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AC50 50% maximal response

AUC Area under the curve

AR androgen receptor
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Figure 1. 
Machine learning algorithm comparisons across multiple five-fold cross-validation metrics. 

A) Rank normalized scores and B) ΔRNS. Box and whisker plots show individual points for 

those values that fall outside of the 5–95 percentile. Abbreviations: AC = Assay Central® 

(Bayesian), rf = Random Forest, knn = k-Nearest Neighbors, svc = Support Vector 

Classification, bnb = Naïve Bayesian, ada = AdaBoosted Decision Trees, DL = Deep 

Learning Architecture.
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Figure 2: 
Results for the in vitro agonist (A) and antagonist (B) test set across all machine learning 

model groups, in comparison to Kleinstreuer et al. 11 and CoMPARA consensus 

classifications 18. Navy bars indicate number of chemicals classified as active by the model 

group, blue bars indicate the number of correctly classified active chemicals, red bars 

indicate the number of chemicals classified as inactive by the model group, orange bars 

indicate the number of correctly classified inactive chemicals, and green bar represents 

inconclusive scores.
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Figure 3: 
Results for the in vivo agonist (A) and antagonist (B) test set across all machine learning 

model groups, in comparison to Kleinstreuer et al. 15 and CoMPARA consensus 

classifications 18. Navy bars indicate number of chemicals classified as active by the model 

group, blue bars indicate the number of correctly classified active chemicals, red bars 

indicate the number of chemicals classified as inactive by the model group, orange bars 

indicate the number of correctly classified inactive chemicals, and green bar represents 

inconclusive scores.
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Table 1:

List of assays used for machine learning models, available in ToxCast/Tox21; equivalent to those listed in 

Table 1 of Kleinstreuer et al, 2017 11.

Assay Abbreviation Assay ToxCast Name Brief Description

A1 NVS_NR_hAR Cell-free radioligand binding assay with human
AR

A2 NVS_NR_cAR Cell-free radioligand binding assay with chimpanzee AR

A3 NVS_NR_rAR Cell-free b radioligand binding assay with rat AR

A4 OT_AR_ARSRC1_0480 Recruitment assay of coregulator c-Src tyrosine
kinase at 8 h

A5 OT_AR_ARSRC1_0960 Recruitment assay of coregulator c-Src tyrosine kinase at 16 h

A6 ATG_AR_TRANS_up Reporter gene assay measuring mRNA induction after 24 h

A7 OT_AR_ARELUC_AG_1440 Reporter gene assay measuring luciferase induction

A8 TOX21_AR_BLA_Agonist_ratio Reporter gene assay measuring ratio of
cleaved to uncleaved substrate

A9 TOX21_AR_LUC_MDAKB2_Agonist Reporter gene assay measuring luciferase induction

A10 TOX21_AR_BLA_Antagonist_ratio Reporter gene assay measuring ratio of
cleaved to uncleaved substrate

A11 TOX21_AR_LUC_MDAKB2_Antagonist Reporter gene assay measuring luciferase induction
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Table 2:

Summary of AR machine learning model groups created in this study. Binary data was assigned by sources.

Action No. Assays Data Source Data Type Group Alias Reference Threshold

Agonist 9
ToxCast/Tox21 2019 release hit-call ToxCast2019-HC - binary

Antagonist 7

Agonist 9
ToxCast/Tox21 2019 release AC50 ToxCast2019AC50full - automated

Antagonist 7

Agonist 9
ToxCast/Tox21 2019 release (AC50 < 1e6μM) ToxCast2019AC50active - automated

Antagonist 7

Agonist 9 ToxCast/Tox21 modified 2014 
release

burstflag hit-call
Nelms2018BFHC 16 binary

Antagonist 7

Agonist 1
EPA AR pathway model AUC

AUC-0.1 11 0.1

Agonist 1 AUC-0.01 11 0.01

Antagonist 1 EPA AR AUC AUC-0.1 11 0.1

Antagonist 1 pathway model AUC-0.01 11 0.01
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Table 4:

Chemicals that were frequently predicted inaccurately by machine learning model groups.

Structure Name (CASRN) Test Set Reference Classification (List) Prediction (Mode of Action)

17a-estradiol (57-91-0) in vitro Inactive (agonist) Active (agonist)

Androstenedione (63-05-8) in vitro Moderate (agonist) Inactive 
(antagonist)

Active (agonist) Active 
(antagonist)

Daidzein (486-66-8) in vitro Inactive (antagonist) Active (antagonist)

Finasteride (98319-26-7) in vitro Inactive (agonist) Active (agonist)

Fulvestrant (129453-61-8) in vitro Inactive (agonist) Active (agonist)

Methyl testosterone (58-18-4) in vitro Active - Strong (agonist) 
Inactive (antagonist)

Active (agonist) Active 
(antagonist)

Testosterone propionate 
(57-85-2) in vitro Active -Strong (agonist) Inactive 

(antagonist)
Active (agonist) Active 

(antagonist)

2,4-dinitrophenol (51-28-5) in vivo Negative Inactive (agonist) Active 
(antagonist)

Dibutyl phthalate (84-74-2) in vivo Anti- androgenic Inactive (antagonist)
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Structure Name (CASRN) Test Set Reference Classification (List) Prediction (Mode of Action)

Diethylhexyl phthalate 
(117-81-7) in vivo Anti- androgenic Inactive (antagonist)

Ethoprop (13194-48-4) in vivo Anti- androgenic Inactive (antagonist)
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