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Abstract

Exposure to wildfire smoke continues to be a growing threat to public health, yet the chemical 

components in wildfire smoke that primarily drive toxicity and associated disease are largely 

unknown. This study utilized a suite of computational approaches to identify groups of chemicals 

induced by variable biomass burn conditions that were associated with biological responses in the 
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mouse lung, including pulmonary immune response and injury markers. Smoke condensate 

samples were collected and characterized, resulting in chemical distribution information for 86 

constituents across ten different exposures. Mixtures-relevant statistical methods included (i) a 

chemical clustering and data-reduction method, weighted chemical co-expression network analysis 

(WCCNA), (ii) a quantile g-computation approach to address the joint effect of multiple chemicals 

in different groupings, and (iii) a correlation analysis to compare mixtures modeling results against 

individual chemical relationships. Seven chemical groups were identified using WCCNA based on 

co-occurrence showing both positive and negative relationships with biological responses. A group 

containing methoxyphenols (e.g., coniferyl aldehyde, eugenol, guaiacol, and vanillin) displayed 

highly significant, negative relationships with several biological esponses, including cytokines and 

lung injury markers. This group was further shown through quantile g-computation methods to 

associate with reduced biological responses. Specifically, mixtures modeling based on all 

chemicals excluding those in the methoxyphenol group demonstrated more significant, positive 

relationships with several biological responses; whereas mixtures modeling based on just those in 

the methoxyphenol group demonstrated significant negative relationships with several biological 

responses, suggesting potential protective effects. Mixtures-based analyses also identified other 

groups consisting of inorganic elements and ionic constituents showing positive relationships with 

several biological responses, including markers of inflammation. Many of the effects identified 

through mixtures modeling in this analysis were not captured through individual chemical 

analyses. Together, this study demonstrates the utility of mixtures-based approaches to identify 

potential drivers and inhibitors of toxicity relevant to wildfire exposures.
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1. Introduction

Wildfires are growing as a public health crisis, with recent events including the California 

wildfires and Australian bushfires in 2019–2020 elevating this issue to the forefront of 

concern worldwide (BBC, 2020; TIME, 2019). Wildfire occurrence, duration, and intensity 

have heightened globally in recent decades in response to an increasingly warm and dry 

climate (Westerling et al., 2006). This trend is predicted to continue with increasing numbers 

of wildfires and acreage burned; where in certain regions, wildfire emissions are projected to 

increase by up to 100% through 2100 (Hurteau et al., 2014). In addition to the destruction of 

property and land, the degradation of air quality as a result of intensified wildfires is of great 

public health concern. Exposure to smoke emitted from burning biomass has been associated 

with exacerbation of a wide variety of diseases (Liu et al., 2015). While it is established that 

wildfires are associated with increases in morbidity and mortality, the specific role that 

different components of smoke play towards causing disease remains unknown.

Wildfire smoke from the burning of biomass fuels results in a complex and variable mixture 

of particulate matter (PM) and toxic gases (Black et al., 2017). Consequently, there is 

immense variation in the biological responses and subsequent health outcomes that result 

from these exposures. Specific health effects related to wildfire inhalation exposure include 

respiratory illness, asthma exacerbations, more severe cardiovascular disease, and even death 

(Liu et al., 2015); however, the toxicity of specific smoke components remains largely 

unknown, although health outcomes are likely dependent on the type of biomass that is 

burned. Identifying which chemicals (or mixtures thereof) are the primary drivers of wildfire 

smoke-induced respiratory disease is a public health imperative. Once characterized, 

chemicals present within wildfire smoke that largely dictate toxicity responses can be used 

as common markers of exposure and measures of baseline risk across geographic regions 

impacted by wildfire smoke.

Elucidating which chemicals within wildfire smoke drive toxicity represents a challenging 

task and one that is heavily reliant upon the effective use of mixtures-based statistical 

approaches. Common to most mixtures-based analyses, some challenges must be addressed 

in order to adequately parse through such highly variable, high-dimensional datasets. 

Specific limitations that can occur in mixtures evaluations can include: imbalances between 

the number of samples vs. number of variables; difficulties differentiating between true 

predictor variables from correlated variables; difficulties distinguishing between individual 

vs. joint component effects; and potential compromises to interpretability in favor of 

identifying potential statistical signals within the noise of high-dimensional data (Agier et 

al., 2016; Bartel et al., 2013; Hamra and Buckley, 2018). Further, the majority of mixtures-

based statistical methods have been generated in the context of epidemiological study 

designs (Carlin et al., 2013; Hamra and Buckley, 2018; Keil et al., 2020; Niehoff et al., 

2020), with limited examples through toxicity designs (Ryan et al., 2019); leaving a current 

gap in established methodologies within the field of toxicology. Because of these potential 

limitations, we implemented a suite of statistical methods that each, in part, can address 

these issues to better understand potential relationships between chemicals, as well as the 

overall mixture effect of groups of chemicals in wildfire smoke and biological responses.

Rager et al. Page 3

Sci Total Environ. Author manuscript; available in PMC 2021 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This study set out to implement mixtures-relevant statistical approaches to characterize 

relationships between chemicals present in wildfire smoke and associated pulmonary 

responses. Pulmonary inflammation and injury were the focus of the current analysis, as 

these represent the most sensitive biological responses resulting from wildfire smoke 

exposures and play important roles in pulmonary disease outcomes (Reid et al., 2016). We 

leveraged data previously produced by our research team (Kim et al., 2018), where wildfire 

smoke exposures were simulated experimentally through the burning of various biomass 

fuels. Resulting biomass smoke condensate samples were used as exposures and associated 

pulmonary responses were evaluated in mice. Mixtures modeling methods were used here to 

further elucidate statistical relationships between these complex exposures and biological 

responses, to identify groups of inducers and repressors of wildfire-associated toxicity.

2. Materials and methods

2.1. Overview of experimental study design to simulate wildfire smoke exposures

To characterize the chemical components and resulting biological responses associated with 

wildfire smoke exposures, we have developed laboratory-based approaches to simulate 

various biomass burn conditions, collect resulting biomass smoke condensate samples from 

these conditions, and test biological responses to the various smoke condensate samples 

(Kim et al., 2018). While recognizing that wildfire exposure conditions are complex and 

comprise of a variety of burn scenarios, we focused on five different biomass fuels, namely 

eucalyptus, peat, pine, pine needles, and red oak. These fuels were selected for analysis 

based on previously detailed criteria (Kim et al., 2018), including the representative nature 

of biomes across different regions of the U.S. as well as the world. For example, eucalyptus, 

peat, pine, and red oak are significant contributors to wildland fires within the U.S. western 

coast (and other continent coastal regions); the U.S. midwestern and southeastern regions; 

the U.S. western regions; and the U.S. eastern and central regions, respectively. These 

biomasses were evaluated under two combustion conditions, flaming and smoldering, 

resulting in a total of 10 different biomass smoke conditions.

Biomass smoke was generated from a tube furnace, consisting of a quartz tube and a ring 

type electric heater that provided a sustained stable flame or smolder condition for 60 min. 

Biomass smoke samples, consisting of PM and condensable gas-phase semi-volatiles, were 

collected from a multistage cryotrap system where the biomass smoke samples were trapped 

in three impingers maintained at different cooling temperatures (−10, −50, −70 °C). This 

system represents an improvement upon traditional filter-based collection methods, as it 

allows for the collection of smoke particles, which are typically difficult to extract from filter 

matrices, and semi-volatile compounds, which typically pass through filters. Samples were 

extracted from the impingers with acetone, resulting in predominantly less-volatile solid PM 

samples, and samples were concentrated and dried under nitrogen gas. These samples 

represented the biomass smoke condensate used in the proceeding analyses. This experiment 

has been described in detail and previously published (Kim et al., 2018).
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2.2. Chemicals within biomass smoke condensate exposures

The current study was aimed at evaluating relationships between individual and/or co-

occurring chemicals within the collected biomass smoke condensate samples, that were then 

used to test pulmonary responses in mice. These substances were previously characterized 

using various instruments to cover a wide chemical domain. Instruments included, for the 

organic carbon analyses, a carbon analyzer (107A, Sunset Laboratory, Inc.) and a thermal 

desorption unit (TD; TDSA2/TDS, Gerstel, Inc.) coupled to a gas chromatograph-mass 

spectrometer (TD-GC-MS; 6890/5973, Agilent Technologies). For the inorganic elemental 

analyses, instruments included high-resolution-magnetic sector field inductively coupled 

plasma mass spectrometry (HR-ICP-MS; ELEMENT™ 2; Thermo Scientific).

All chemistry-based methods have been previously described and results made publicly 

available (Kim et al., 2018). Chemicals that were characterized included ionic constituents 

(N = 5), inorganic elements (N = 20), n-alkanes (N = 25), polycyclic aromatic hydrocarbons 

(PAHs) (N = 24), methoxyphenols (N = 11), and levoglucosan that were measured across the 

10 different biomass burn scenarios. The concentrations of these chemicals were specifically 

gathered from Kim et al. Supplemental Tables S3–S5 and converted into the final dissolved 

concentrations that were used during experimental treatments (Kim et al., 2018). In cases in 

which chemicals were measured at concentrations below the limits of detection (LOD), 

concentrations were imputed to reflect a LOD divided by the square root of two, paralleling 

previously published methods (Bailey et al., 2014; Hines et al., 2015; Rager et al., 2014).

2.3. Biological responses in the lung of mice exposed to biomass smoke condensate

Mice were exposed to the collected biomass smoke condensate samples and resulting 

biological responses within the pulmonary system were measured as previously described 

(Kim et al., 2018). These experiments were approved by the U.S. EPA Institutional Animal 

Care and Use Committee. In brief, adult pathogen-free female CD-1 mice were selected for 

use in this research to parallel experimental designs used in our previous air pollution 

studies, allowing for more direct comparisons between study findings (Cho et al., 2009; Kim 

et al., 2014; Kim et al., 2015b; Tong et al., 2010). Furthermore, use of these outbred female 

mice allows for effective group housing methods and does not promote one specific 

genotype over another (e.g., C3H/HeJ vs C57BL/6). A vehicle control group was included to 

acquire background response levels and a lipopolysaccharide (LPS)-treated group to acquire 

a positive response range to compare against.

Biomass smoke condensate samples underwent a gradual solvent exchange from acetone to 

saline. This process generated samples of dissolved biomass smoke particles in saline at a 

resulting concentration of 2 mg/mL while maximizing the maintenance of original chemical 

formulation. Resulting PM samples were then sonicated for 4 min using an ultrasonicator 

(Misonix Sonicator S-4000) and administered into the lungs of mice (100 μg of PM in 50 

μL) via oropharyngeal aspiration. This dose was selected based on criteria previously 

described (Kim et al., 2018), including the representation of a peak 24 h exposure condition 

for a wildfire event relevant to inhaled doses in the human lung. Specifically, PM 

concentrations near wildfires have been reported to reach peak concentrations between 2 and 

2.8 mg/m3 (Naeher et al., 2007). Thus the PM deposited in human lungs across 24 h from 
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these peak concentrations would be relevant to the PM dose in mice used in the current 

investigation. Additional mice were exposed to 2 μg of lipopolysaccharide in 50 μL saline as 

a positive control, as well as 50 μL saline as a negative control. Biological samples were 

collected at 4 and 24 h postexposure to evaluate resulting toxicity. Six mice were used per 

exposure condition, across 10 different biomass burn condensate samples and 2 control 

samples, with two recovery periods (4 and 24 h postexposure) tested, resulting in a total of 

24 groups of mice.

To evaluate pulmonary responses, bronchoalveolar lavage fluid (BALF) samples were 

collected from the treated mice either 4 or 24 h post-exposure, as previously described (Kim 

et al., 2018). Cells within the BALF samples were characterized and evaluated for 

macrophage and neutrophil counts. BALF supernatant samples were used to evaluate 

cytokine levels and markers of lung injury. Specific cytokines that were measured included 

interluekin-6 (IL-6), macrophage inhibitory protein-2 (MIP-2), and tumor necrosis factor-α 
(TNF-α). Lung injury markers were evaluated by measuring albumin, y-glutamyl transferase 

(GGT), lactate dehydrogenase (LDH), and total protein concentrations, as well as N-acetyl-

β-D-glycosaminidase (NAG) activity in BALF samples. In this study, we focus on 

pulmonary biological response data specifically presented in Kim et al. Supplemental Tables 

S6–S8 (Kim et al., 2018). Data were also filtered to include biological endpoints that 

showed at least one instance of significant change in association with an exposure condition, 

for each timepoint, resulting in the following biological responses as the focus of the current 

evaluation (noted as “Response Type _ Specific Marker _ Timepoint”): Cytokine_IL6_4h, 

Cytokine_IL6_24h, Cytokine_TNFa_4h, Cytokine_MIP2_4h, Injury_Protein_24h, 

Injury_Albumin_4h, Injury_Albumin_24h, Injury_NAG_24h, Injury_LDH_24h, 

Neutrophil_4h, Neutrophil_24h.

2.4. Identifying chemical groups based on co-occurrence and their relationships to 
biological responses

Chemicals were first grouped in an unsupervised manner to identify those that co-occurred 

across biomass smoke condensate samples, and resulting chemical groups were then related 

to biological response profiles. When determining which chemical grouping statistic should 

be applied, we evaluated whether the underlying chemical distribution profiles were 

dependent upon fuel type. Specifically, each chemical distribution profile was tested for 

degree of correlation, and it was determined that the type of fuel used in burning scenarios 

did not drive sample correlations, and thus a paired statistical approach was not appropriate 

(Supplementary Material Table S1). This analysis was specifically carried out using an 

approach originally termed weighted gene co-expression network analysis (WGCNA) and 

employs data-reduction methods coupled with correlation statistics to describe patterns 

among high-dimensional datasets (Langfelder and Horvath, 2008). Historically, WGCNA 

has been used to evaluate co-modulated gene sets across expression signatures derived 

through microarray technologies (Langfelder and Horvath, 2008), and has since expanded to 

other applications, including the comparison of cross-platform performances for 

transcriptomics-based assessments (Wang et al., 2014) and the integration of genomic and 

epigenomic data to derive benchmark doses that elicit exposure-induced toxicity in humans 

(Rager et al., 2017). Additional efforts have applied this approach towards chemistry-based 
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measures, including metabolite profiling datasets (Zhang et al., 2013) and, more recently, 

chemical distribution profiles within ambient atmospheres (Eaves et al., 2020). Here, we 

similarly tailored these methods towards high-dimensional chemistry data, and thus refer to 

the approach as weighted chemical co-expression network analysis (WCCNA).

WCCNA was used in the current study to identify clusters (modules) of highly 

interconnected chemicals across biomass smoke condensate samples, all correlated with 

each other, and thus considered cooccurring. The steps involved in this approach have been 

summarized elsewhere (Langfelder and Horvath, 2008). In brief, Pearson correlation 

coefficients were first calculated for all pairwise comparisons of chemicals, and the resulting 

correlation matrix was transformed into an adjacency matrix resulting in a weighted network 

describing connection strengths between chemical distributions. A signed network was 

implemented, such that chemicals with positive correlations were grouped together. 

Correlation values within the adjacency matrix were raised to a power of 9 to maximize the 

scale-free topology model fit, as suggested (Langfelder and Horvath, 2017). With this, a co-

expression network was constructed that was weighted, emphasizing high correlations and 

de-emphasizing low correlations between chemicals. Modules were then identified as groups 

of densely interconnected chemicals in the weighted network analysis with high topological 

overlap, measured using an average linkage hierarchical clustering with a dynamic tree-

cutting algorithm. Altogether, resulting modules represented clusters of highly 

interconnected chemicals with positive correlations. These defined modules were used to 

calculate module eigenvalues, representing the first principal component of each module.

In the current analysis, all chemicals that were measured in the biomass smoke condensate 

samples were analyzed collectively using the WGCNA package in R (v1.68) (Langfelder 

and Horvath, 2008). This first set of analyses included all chemicals, including those that 

were below detection limits in many samples, in order to identify collective groupings such 

that if chemicals were present in a portion of the samples together, they were grouped 

together. The statistical analyses below further filtered the chemicals to prioritize those that 

were commonly above detection limits across samples. This WCCNA analysis resulted in 

the derivation of module eigenvalues, representing the collective distribution of chemicals 

that are co-occurring in biomass smoke. These module eigenvalues were correlated against 

the biological response data (ln-transformed) using Spearman Rank correlation tests using 

the Hmisc (v4.4–0) package in R and visualized using the corrplot (v0.84) package (Harrell 

and Dupont, 2014; Wei and Simko, 2017).

2.5. Integrating chemical mixture effects in relation to biological responses through 
quantile g-computation

A statistical approach termed quantile-based g-computation was implemented to take into 

account potential joint effects of chemicals within these complex mixtures. Considering the 

joint impact is important because, within wildfire-relevant conditions, exposures do not 

occur to isolated chemical constituents and individual chemicals are often correlated in 

concentration. Therefore, even if individual chemicals have a small effect, their overall 

collective impact may be meaningful. This recently developed approach is a generalized-

linear-model based implementation of g-computation that provides estimates of the effect of 
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simultaneously increasing all exposures within a mixture by one quantile, which we refer to 

as the overall mixture effect (Keil et al., 2020). A strength of this method is that it allows 

chemicals to have associations with the outcome under evaluation in either direction.

Quantile-based g-computation was implemented here using the R package qgcomp (v2.0.0) 

(Keil, 2020). Data were preprocessed by scaling all of the chemical variables (mean = 0; SD 

= 1) and transforming the biological response data by the natural log. All biological 

replicates were included to capture variation in biological responses. When grouping the 

individual chemical exposures into quintiles, some chemicals had concentrations that were 

the same (i.e., tied) between groups, particularly for chemicals that had concentrations below 

the detection limit in multiple of the biomass smoke condensate samples. In these instances, 

chemicals were removed from the final statistical model in order to adequately derive 

exposure quintiles across the mixture. For the remaining chemicals, the qgcomp.noboot 
function was used to estimate exposure effects by categorizing all chemicals into quintiles, 

giving each chemical a positive or negative weight as defined above, and fitting a linear 

model for continuous outcomes, while incorporating Bayesian variable penalization. If 

chemicals have different directions of effect, the positive or negative weights are interpreted 

as the proportion of the total effect of the exposures that have a positive (or negative) effect 

on the outcome, and the positive and negative weights together sum to two. Each biological 

endpoint was evaluated separately in relation to the chemical mixtures, and resulting models 

were used to derive variable-specific coefficients, scaled effect sizes (i.e., the positive weight 

or negative weight of each variable contribution to the model), and overall model fit p-

values. False discovery rate (FDR)-adjusted p-values were additionally calculated using the 

p.adjust function in R. Nine chemical groups were specifically evaluated, including: all 

chemicals (1 group); chemical modules identified through WCCNA (7 groups); all 

chemicals except for those contained within one module of high interest, identified as a 

likely repressor of toxicity (1 group).

An additional analysis was also carried out based on randomly permuted chemical 

distributions, to further evaluate whether observations were based on chance. Specifically, a 

random module was generated to include five chemical distribution measures, using the 

Sample function in R (RDocumentation, 2020), randomly selecting values from five 

measured chemicals. The same quantile-based g-computation statistics were carried out 

here, comparing the following three chemical groupings: all chemicals plus those from the 

randomly permuted module; all chemicals except those from the randomly permuted 

module; and just the randomly permuted module.

2.6. Individual chemical correlation analyses

Chemicals were evaluated individually in order to compare results identified through more 

global mixtures-based approaches vs. evaluations based on single chemicals assumed to act 

independently. Here, the concentrations of each individual chemical were correlated against 

each biological response profile (ln-transformed), averaged across biological replicates. 

Calculations were carried out using the Spearman Rank correlation test enabled though the 

Hmisc (v4.4–0) package in R, with false discovery rate (FDR)-adjusted p-values additionally 
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calculated using the p.adjust function, and results visualized using the corrplot (v0.84) 

package (Harrell and Dupont, 2014; Wei and Simko, 2017).

3. Results

3.1. Experimental study overview

This study set out to evaluate relationships between chemicals found in wildfire smoke, as 

captured through experimental biomass burns, and resulting pulmonary responses in mice. A 

total of 86 chemicals were detected and characterized across 10 different biomass smoke 

condensate samples, including n-alkanes, PAHs, methoxyphenols, levoglucosan, inorganic 

elements, and ionic constituents (Table 1, Supplementary Material Table S2). It is notable 

that although these individual chemical concentrations varied, the overall mixture dose was 

constant throughout the evaluations (100 μg of PM in 50 μL saline). Overall, the biomass 

burn conditions with the greatest concentrations of chemicals in each class included the 

following: the peat flaming condition produced the greatest overall concentration of 

inorganics and ionic constituents (followed by the pine needles flaming condition); the 

eucalyptus smoldering condition produced the greatest concentration of levoglucosan; the 

pine needles smoldering condition produced the greatest concentration of methoxyphenols 

and PAHs, and the peat smoldering condition produced the greatest concentration of n-

alkanes. These results show that variable biomass burn conditions impart variable 

chemistries within the resulting condensate samples.

3.2. Chemical groups identified based on co-occurrence across biomass burns

We first set out to define groups of chemicals using an unsupervised approach aimed at 

identifying which chemicals co-occurred across biomass burn condensate samples. An 

approach based on WCCNA was employed, allowing for the identification of chemicals that 

increased and/or decreased in concentration together across exposures. This analysis resulted 

in the identification of seven different chemical groups (Table 1). These groups are 

designated as ‘modules’ assigned to different colors, with the following numbers of 

chemicals: black module (4 chemicals), blue module (17 chemicals), brown module (12 

chemicals), green module (8 chemicals), red module (5 chemicals), turquoise module (28 

chemicals), and yellow module (12 chemicals). Of note, the green module contained 

methoxyphenols, which showed the highest relative concentrations emitted from smoldering 

pine. The brown and yellow modules, which contained inorganic elements and ionic 

constituents, showed the highest relative concentrations emitted from flaming conditions, 

including flaming peat, flaming pine needles, and flaming red oak (Fig. 1).

In some instances, chemical modules showed groupings that were largely in-line with 

chemical structure classes; for example, 24 of the 25 n-alkanes were all grouped together in 

the turquoise module, and all inorganic elements and ionic constituents were grouped within 

either the brown or yellow modules. Other chemical structure classes showed assignments 

that were mixed; for example, the 24 PAHs were grouped to four different modules, namely 

black, blue, red, and turquoise. For a complete listing of chemicals grouped according to 

module, see Table 1. These data demonstrate that chemicals may increase or decrease in 

concentration in concert with other chemicals that may or may not share similar structural 
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attributes, thus supporting the use of a chemical grouping approach that is not based on a 

priori classifications.

3.3. Chemical groups showed both positive and negative associations to biological 
responses

Chemical groups were first related to biological responses in the mouse lung using a data-

reduction method followed by correlation analyses. Specifically, the first principal 

component of each module was calculated (i.e., module eigenvalue) and correlated against 

each of the biological responses. The brown and yellow modules were identified as the 

chemical groups showing the most significant, positive association across the largest number 

of biological responses (Fig. 2, Supplementary Material Table S3). These modules consisted 

of inorganic elements and ionic constituents, which were positively correlated to cytokine 

concentrations (i.e., IL-6, MIP2, and TNFα) as well as lung injury markers. Conversely, the 

green module was identified as the chemical group showing the largest number of negative 

associations with several biological responses. The green module consisted of 

methoxyphenols, which were negatively correlated to cytokines (i.e., IL-6, MIP2, and 

TNFα), lung injury markers, and neutrophil influx, suggesting a potential protective effect 

or reduction in toxicity associated with these methoxyphenols, either individually or as a 

group (Fig. 2, Supplementary Material Table S3).

3.4. Mixtures modeling supports chemical groups of inducers vs. repressors of smoke-
induced biological responses

A mixture effects modeling approach was implemented to further evaluate whether certain 

chemical groups showed associated induction vs. repression of biological responses 

resulting from biomass burn exposures. Specifically, quantile g-computation was used to 

consider the potential joint effects of chemicals in a group and capture mixture effects-based 

estimates of chemical contributions to biological responses. This method estimates the 

expected change in an outcome given that all chemical exposures within a mixture 

simultaneously increase by one quantile (in this case, one quintile) (Keil et al., 2020). Given 

that chemicals had to be grouped according to exposure concentration, a portion of the 

chemicals showed concentration distributions that caused ties to occur between quintiles, 

impeding adequate model development. These ties occurred for chemicals that had 

concentrations below the detection limit in multiple biomass smoke condensate samples, 

which largely included n-alkanes and PAHs. A total of 28 chemicals were able to be 

effectively grouped into exposure quantiles and were thus included in the final quantile g-

computation models (Supplementary Material Table S2). Models were developed in relation 

to each of the biological responses, separately.

Mixture effect models were developed using the following nine combinations of chemicals: 

(i) all chemicals (N = 28 chemicals available for quantile groupings), (ii) individual 

chemical groups (i.e., 7 modules) (N = 1 to 10 chemicals), and (iii) all chemicals except for 

those contained within the green module (N = 26 chemicals). The last combination of 

chemicals was included with the goal of assessing the relationships after excluding 

chemicals that potentially reduce biological responses, as identified through WCCNA. 

Specifically, the green module was identified through WCCNA to contain chemicals with 
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collective distributions that were negatively correlated to several biological responses. This 

module contained two chemicals that could be grouped into exposure quantiles and thus 

included in the quantile g-computation models: namely, coniferyl alcohol and vanillin. Of 

the total 88 models tested, 29 models showed significant (FDR q < 0.05) relationships 

between chemical mixtures and a biological response (Supplementary Material Table S4).

Quantile g-computation model results demonstrated the potential for chemicals in the green 

module to reduce biological responses associated with biomass burn condensate exposures. 

To detail, in comparison to models using all chemicals, relationships between chemical 

exposures and biological responses became heightened and increased in significance when 

the chemicals in the green module were excluded (Fig. 3A). These relationships are 

quantified through the use of β coefficients, representing quantile g-computation estimates 

for the change in biological endpoint (ln-scaled) for a one quintile increase in chemical 

concentration (z-score normalized) in biomass burn condensate samples, alongside 

associated 95% confidence intervals (CIs). As an example, IL-6 levels collected 4 h post-

exposure demonstrated a β coefficient of 0.19 (95% CI: −0.29, 0.66) in association with all 

chemicals, which then increased to a β coefficient of 0.75 (95% CI: 0.20, 1.30) when 

chemicals in the green module were excluded. Furthermore, the green module alone 

demonstrated a decreased β coefficient of −0.36 (95% CI: −0.60, −0.13) in relation to IL-6 

levels. Similar trends were apparent for additional cytokine measures (e.g., IL-6 at 24 h, 

MIP2 at 4 h, TNFα at 4 h), lung injury markers (e.g., albumin at 4 h and 24 h, LDH at 24 h), 

as well as neutrophil levels at 4 h (Fig. 3). Furthermore, models that just included chemicals 

in the green module showed an overall average negative relationship averaged across all 

biological responses in comparison to models excluding the green module (Table 2), 

suggestive of a potential reduction in toxicity associated with coniferyl alcohol and vanillin.

It is notable that the green module’s associated reduction in biological responses was 

unlikely to be an artifact of potential dilution effects, where chemicals in the green module 

may simply be inert and exhibiting an associated reduced toxicity when analyzed in 

combination with toxic chemicals. This was not the case, as the β coefficient largely 

increased when analyzing all chemicals together in comparison to just those in the green 

module (Fig. 3A). Analysis of a randomly permuted module additionally supported the 

likely protective role of chemicals in the green module. Specifically, unlike the green 

module, the random module was not associated with a reduction in biological responses 

across multiple endpoints, nor was it associated with a reduction in biological responses 

across multiple endpoints when analyzed in combination with all chemicals (Fig. 3B, 

Supplementary Material Table S5). These data further demonstrate that the green module’s 

associated reduction in biological responses was unlikely due to chance or potential dilution 

effects.

A relationship identified here in the quantile g-computation analysis, but not in the previous 

group correlation-based analysis, was between the brown and yellow modules and 

neutrophil responses. This is of particular importance, as the previous analysis identified 

neutrophil count increases as the most sensitive response to biomass burn condensate 

exposures, with the greatest increase occurring 24 h postexposure (Kim et al., 2018). Here, 

the brown module showed the most significant (FDR q = 0.04) association with neutrophil 
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increase at 24 h, followed by the yellow module (FDR q = 0.07). These modules also 

showed potential associations with neutrophil increase at 4 h, though were less significant at 

this timepoint. Individual chemicals within these mixture models were found to contribute 

both positive and negative partial effects (Fig. 4). For example, within the brown module, 

Antimony (Sb), Sulfate (SO4), and Zinc (Zn) were positively weighted and Calcium (Ca), 

Iron (Fe), Magnesium (Mg), Manganese (Mn), and Strontium (Sr) were negatively related in 

relation to neutrophil count at both 4 and 24 h post-exposure, demonstrating the importance 

of evaluating the overall mixture exposure effect. Within the yellow module, Copper (Cu), 

Hexavalent Chromium (Cr), and Phosphorus (P) demonstrated positive effects and Nickel 

(Ni), Sodium (Na), and Titanium (Ti) demonstrated negative effects in relation to neutrophil 

count at both 4 and 24 h post-exposure.

3.5. Individual chemical analyses do not capture mixture effects

To evaluate whether similar trends are apparent using individual chemical-based approaches 

in comparison to the aforementioned mixtures-based approaches, each chemical was 

correlated separately against each biological response (Fig. 5, Supplementary Material Table 

S6). These results showed some consistency to the mixtures-based results; though many 

trends identified through mixture analyses were not captured through individual chemical 

correlations. For example, many significant correlations were identified between individual 

inorganic elements and ionic constituents and increased cytokine concentrations and lung 

injury markers. However, the quantile g-computation models were able to identify 

relationships with neutrophil influx, and better evaluate the overall effect (including partial 

positive vs. negative effects) associated with the collective mixtures. Individual correlation 

analyses also identified negative relationships between chemicals in the green module, 

including coniferyl aldehyde and vanillin, and several biological responses. However, these 

correlation-based findings did not demonstrate the effects estimated to occur with versus 

without these chemicals within the collective mixture. These individual correlation results 

therefore serve as important points of comparison, demonstrating the utility in implementing 

mixtures modeling approaches to elucidate joint effects of chemicals with respect to 

biological outcomes associated with wildfire smoke exposure.

4. Discussion

This study aimed to implement mixtures-relevant statistical approaches to evaluate 

relationships between chemicals present in wildfire smoke, captured as biomass smoke 

condensate samples, and associated biological responses in the mouse lung. Chemical 

clustering identified seven different groups of chemicals based on co-occurrence across 

exposure samples. One chemical group containing methoxyphenols was highlighted as 

demonstrating negative relationships to several biological responses, suggesting potential 

protective effects. The overall mixture effect of the chemicals in the identified groups was 

evaluated through quantile g-computation, and the collective toxicity of chemicals was 

further identified as reduced when this chemical group, consisting of coniferyl aldehyde and 

vanillin, was included in the model. Other groups of chemicals such as those containing 

inorganic elements and ionic constituents showed collective positive relationships with 

biological responses indicative of toxicity induction. Many of these joint relationships 

Rager et al. Page 12

Sci Total Environ. Author manuscript; available in PMC 2021 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



identified through mixtures modeling were not captured through individual chemical 

analyses, demonstrating the utility of mixtures-based statistical approaches.

The mixtures-based modeling approaches employed in this study represent advancements 

towards evaluating exposure-toxicity relationships within complex exposures. For example, 

the evaluated exposure conditions included variable atmospheres, with 86 specific chemical 

constituents measured at variable concentrations. When evaluating these types of complex 

exposures, most studies define chemical groups using a priori classifications based on 

chemical structure or class. These a priori classifications may miss additional chemistries 

and related toxicities that co-occur in combination across different chemical classes. For this 

reason, we identified chemical groups in an unsupervised manner to potentially elucidate 

understudied relationships between chemicals in wildfire emissions and their related 

biological responses. An additional advancement was the implementation of quantile g-

computation to better evaluate and quantify the joint impact of chemical groups. 

Understanding the joint impact is important because chemicals may have small effects that 

are missed when studied individually but may have a meaningful combined impact (Niehoff 

et al., 2020; White et al., 2020). Methods to estimate the joint impact of exposure to multiple 

chemicals may help identify the effects of interventions that affect multiple chemicals. 

Quantile g-computation builds upon previous mixtures-based regression models and 

addresses inherent complexities of high-dimensional mixture data. For example, unlike 

weighted quantile sum, another approach to estimate the overall mixture effect of a weighted 

exposure index of quantized exposures (Carrico et al., 2015), quantile g-computation does 

not require a directional homogeneity assumption that all exposures have an effect in the 

same direction (Keil et al., 2020). Some additional advantages of this approach include that 

it has a simple implementation and interpretation, it can maintain precision despite strong 

correlations among the exposures, and it is somewhat insensitive to outliers due to the 

quantization of exposures. In general, evaluating mixtures in the environment remains 

difficult, as individual components may always act differently in the presence of additional 

chemicals, and determining the effects of individual components in every possible mixture 

combination is not feasible. It is therefore important to continue expanding these types of 

mixtures-based modeling approaches.

Both the data-reduction and mixtures effect analyses highlighted chemicals within the green 

module, containing methoxyphenols, as associated with reduced biological responses 

resulting from biomass smoke exposure. Methoxyphenols such as coniferyl aldehyde, 

eugenol, guaiacol, and vanillin have previously been shown to have anti-inflammatory and 

protective effects in the lung, commonly detected during conditions of co-exposures (Houser 

et al., 2012; Huang et al., 2015; Magalhaes et al., 2010; Murakami et al., 2007; Zin et al., 

2012). For example, coniferyl aldehyde has been shown to reduce radiation damage in 

normal lung tissue by increasing stability of heat shock transcriptional factor 1 (HSF1) (Kim 

et al., 2015a). Eugenol has been shown to reduce pulmonary inflammation resulting from 

both diesel exhaust particles exposure and LPS exposure (Huang et al., 2015; Magalhaes et 

al., 2010; Zin et al., 2012). Guaiacol and vanillin were found to inhibit lipopolysaccharide 

(LPS)-stimulated nuclear factor kappa B (NF-κB) activation and cyclooxygenase-2 (COX-2) 

gene expression in macrophages (Murakami et al., 2007). Pre-treatment of mice with 

vanillin has specifically been shown to protect against LPS-induced acute lung injury by 
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inhibiting macrophage activation and lung inflammation (Guo et al., 2019). Vanillin also has 

demonstrated general protection against exposure-induced DNA damage and resulting 

mutagenicity throughout several model systems (Anand et al., 2019). There is currently a 

lack of data on the potential synergistic effects of co-occurring methoxyphenols, in which 

effects may be increased in the presence of other chemicals. Future in vivo or in vitro studies 

could be designed, for instance evaluating a biomass burn sample with individual and co-

occurring methoxyphenols added in titration, resulting in a direct evaluation of their impact 

on biological responses. Still, our findings in combination with existing data support the 

potential reduction in toxicity that may occur in wildfire smoke exposures mediated through 

the presence of certain co-occurring chemicals, such as methoxyphenols, that warrant further 

investigation.

Mixtures modeling also identified inorganic elements and ionic constituents as associated 

with increased pulmonary neutrophil count. Specific compounds that demonstrated positive 

relationships with neutrophil influx included copper and hexavalent chromium, which have 

also been shown to cause increased neutrophil count in the lung (Beaver et al., 2009a; 

Beaver et al., 2009b; Kim et al., 2011). For example, copper nanoparticle exposure increased 

neutrophil recruitment to the lungs in mice in response to bacterial infection (Kim et al., 

2011). Hexavalent chromium exposure has also been shown to directly induce an airway 

neutrophilic inflammatory response 24 h after exposure in mice (Beaver et al., 2009a; 

Beaver et al., 2009b). Ionic constituents are known to play important endogenous roles in 

neutrophil inflammatory processes (Da Silva-Santos et al., 2002; Gallin and Seligmann, 

1984; Northover, 1977; Suri et al., 2008), though studies are limited evaluating the impact of 

changes in ionic profiles specifically from exogenous sources on neutrophil regulation. 

These data demonstrate the potential influence of inorganic elements and ionic constituents 

acting in concert to promote neutrophilic responses associated with wildfire smoke 

exposures.

This study represents a novel application of mixtures modeling to elucidate potential roles of 

chemicals in wildfire smoke on biological responses; though this study is not without 

limitations. For example, this study focused on biological responses resulting from the PM 

fraction and condensable gas-phase semivolatiles of biomass burn emissions. Future studies 

could be designed to capture the chemical composition and resulting effects from exposure 

to more gas-phase constituents (e.g., volatile organic compounds and nitrogen oxides). Our 

study is also based on mice exposed via oropharyngeal aspiration; where additional studies 

could evaluate biological responses using different models across different exposure routes, 

particularly inhalation. Indeed, we recently evaluated a subset of biomass fuels (i.e., peat, 

eucalyptus and red oak smoke) through inhalation exposures in mice and found some 

similarities in associated biological responses, including the finding that neutrophil count 

shows the greatest increase significantly associated with exposures to inorganic elements 

and ionic components of inhaled PM (Kim et al., 2019).

Future studies could also be designed to evaluate potential sex-related differences in 

susceptibility to toxicity from chemicals groups within biomass smoke, as there is evidence 

to support varying inflammatory responses dependent upon sex resulting from wood smoke 

exposures (Rebuli et al., 2019). It would also be advantageous to investigate impacts in other 
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target tissues as well as endpoints that are indicative of longer-term health consequences, in 

addition to the highlighted acute toxicity responses from in vivo BALF samples. Though 

whole-body systems can provide important findings that demonstrate physiological 

relevancy, in vitro methods could also be employed, for instance through air-liquid exposure 

interfaces, to capture biological responses across a wider domain of exposure conditions 

(Zavala et al., 2020), including additional biomass fuels and potential co-exposures 

occurring alongside biomass burns in wildfire events. These expanded efforts would reduce 

reliance upon animal testing while providing critical information needed to more rapidly 

elucidate chemical drivers (particle and gas phase components) of toxicity in wildfire smoke 

and ultimately lead to improved safety decision making to protect public health.

In the context of global health, the findings presented here increase our understanding of 

wildfire exposure conditions that induce the greatest health risks. For example, fuels and 

burn conditions that emit higher amounts of methoxyphenols in combination with other 

combustion products may cause less toxicity than those that emit lower amounts of 

methoxyphenols. Indeed, this was apparent in the conditions evaluated here, where 

smoldering pine produced the highest relative concentrations of methoxyphenols in 

combination with other harmful compounds, yet smoldering pine was associated with some 

of the smallest changes in pulmonary toxicity (Kim et al., 2018). Our data also demonstrate 

that these trends may become exacerbated when inorganics and ionic constituents are 

emitted. Here, flaming peat, flaming pine needles, and flaming red oak emitted the highest 

concentrations of inorganics and ionic constituents, which consistently induced many of the 

greatest increases in pulmonary toxicity (Kim et al., 2018). We therefore show that coupling 

mixtures computational modeling with chemical and in vivo biological response profiles 

extracts meaningful information towards identifying exposure scenarios that pose the highest 

risk associated with wildfire exposure conditions.

In conclusion, this study employed mixtures modeling approaches to elucidate novel 

relationships between chemical groups in wildfire smoke and associated biological 

responses in the mouse lung. Both inducers and repressors of biological responses were 

identified to likely act collectively within the greater mixture across multiple biological 

response endpoints, representing relationships that would not have been captured through 

analyses based on individual chemicals. Additionally, these relationships would not have 

been captured by analyzing mixtures as one unit, without considering the underlying 

distribution profiles of chemicals. Inducers of biological responses largely included 

inorganic elements and ionic constituents, while potential repressors of biological responses 

included methoxyphenols. This project serves as an important case study on strategies that 

can be implemented to better understand complex mixture effects. Results such as these can 

yield information towards the prioritization of harmful chemicals in complex co-exposure 

conditions and ultimate protection of wildfire smoke-induced health outcomes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations:

BALF bronchoalveolar lavage fluid

Ca Calcium

COX-2 cyclooxygenase-2

Cu Copper

Cr Hexavalent Chromium

Fe Iron

FDR false discovery rate

GGT y-glutamyl transferase

HSF1 heat shock transcriptional factor 1

IL-6 interluekin-6

LDH lactate dehydrogenase

LOD limits of detection

LPS lipopolysaccharide

P Phosphorus

Mg Magnesium

MIP-2 macrophage inhibitory protein-2

Mn Manganese

Na Sodium

NAG N-acetyl-β-D-glycosaminidase
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NF-κB nuclear factor kappa B

Ni Nickel

PAHs polycyclic aromatic hydrocarbons

PM particulate matter

Sb Antimony

SO4 Sulfate

Sr Strontium

Ti Titanium

TNF-α tumor necrosis factor-α

WCCNA weighted chemical co-expression network analysis

WGCNA weighted gene co-expression network analysis

WGS weighted quantile sum

Zn Zinc
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HIGHLIGHTS

• Mice exposed to biomass burn samples representing different wildfire 

scenarios

• Biological responses were evaluated including pulmonary immune and injury 

markers.

• Clustering, data reduction, and quantile g-computational methods addressed 

mixtures.

• Methoxyphenols suggested to reduce responses in presence of other 

chemicals

• Inorganics and ionic constituents suggested to induce biological responses
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Fig. 1. 
Heat map of the chemical concentrations measured in biomass smoke condensate samples, 

with chemicals organized into modules based on co-occurrence. For specific chemicals 

organized per module, alongside chemical class, see Table 1. Chemical concentrations are z-

score normalized across biomass burn samples. Note that module groups are indicated by 

color and appear in the same order within the heat map as in the legend.
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Fig. 2. 
Correlations between chemical groups (i.e., module eigenvalues) and biological responses in 

the mouse lung. Significant (p < 0.05) correlations are shown as colored squares, and white 

squares reflect insignificant correlations.
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Fig. 3. 
Mixtures-based associations between chemical groups and biological responses within the 

mouse lung, highlighting the impacts of (A) modeling with vs. without chemicals in the 

green module, and (B) modeling with vs. without random noise, generated as a module of 

chemical distributions based on random permutations. These values represent quantile g-

computation estimates for the change in biological endpoint (ln-scaled) for a one quintile 

increase in chemical concentration (z-score normalized) in biomass burn condensate 

samples, summarized as beta coefficients and 95% confidence intervals. Note that significant 

changes in biological responses are estimated for chemical groups in (A) but not in (B), 

further supporting the observation of mixtures-based relationships that are unlikely due to 

chance or dilution effects.
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Fig. 4. 
Weights representing the proportion of the positive or negative partial effect in the quantile 

g-computation models for chemicals in the brown module associated with neutrophil count 

increases (A) 4 h post-exposure and (B) 24 h post-exposure, and chemicals in the yellow 

module associated with neutrophil count increases (C) 4 h post-exposure and (D) 24 h post-

exposure in the mouse lung. Note that chemical concentrations were z-score normalized and 

biological endpoints were ln-transformed prior to model evaluation.

Rager et al. Page 25

Sci Total Environ. Author manuscript; available in PMC 2021 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Correlations between individual chemicals and biological endpoints, arranged according to 

the following chemical classes: (A) inorganic elements, (B) ionic constituents, (C) PAHs, 

(D) n-alkanes, and (E) methoxyphenols and levoglucosan. Significant (p < 0.05) correlations 

are shown as colored squares, and white squares reflect insignificant correlations.
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Table 1

Chemicals (N = 86) that were measured in biomass smoke condensate samples. Chemical concentrations are 

summarized alongside chemical grouping results, designated as module assignments assigned to different 

colors. Associated CASRN are provided in Supplementary Material Table S2.

Chemical Average (Min - Max) Module assignment

n-Alkanes (ng/μL)

2-Methylnonadecane 0.19 (<LOD - 1.36) Turquoise

3-Methylnonadecane 0.42 (<LOD - 1.13) Turquoise

Docosane 1.22 (0.16–9.46) Turquoise

Dodecylcyclohexane 0.07 (<LOD - 0.25) Turquoise

Eicosane 0.99 (<LOD - 7.55) Turquoise

Heneicosane 0.93 (<LOD - 6.77) Turquoise

Hentriacontane 1.13 (<LOD - 8.3) Turquoise

Heptacosane 1.15 (<LOD - 8.53) Turquoise

Heptadecane 0.71 (<LOD - 5.05) Turquoise

Hexacosane 0.84 (<LOD - 5.51) Turquoise

Hexadecane 0.63 (<LOD - 4.36) Turquoise

Nonacosane 1.69 (<LOD - 14.14) Turquoise

Nonadecane 0.78 (<LOD - 5.89) Turquoise

Nonadecylcyclohexane 0.12 (<LOD - 1) Turquoise

Octacosane 1.03 (<LOD - 7.75) Turquoise

Octadecane 0.86 (<LOD - 5.76) Turquoise

Pentacosane 0.88 (<LOD - 5.57) Turquoise

Pentadecane 0.64 (<LOD - 3.78) Turquoise

Phytane 0.11 (<LOD - 0.83) Turquoise

Squalane 0.12 (<LOD - 0.49) Black

Tetracosane 1.22 (<LOD - 8.27) Turquoise

Tetradecane 0.32 (<LOD - 1.6) Turquoise

Triacontane 1.23 (<LOD - 9.27) Turquoise

Tricosane 1.16 (<LOD - 7.91) Turquoise

Tridecane 0.12 (<LOD - 0.38) Turquoise

PAHs (ng/μL)

1-Methylchysene 0.02 (<LOD - 0.05) Blue

1-Methylnaphthalene 0.19 (<LOD - 0.45) Black

2-Methylnaphthalene 0.13 (<LOD - 0.36) Black

2,6-Dimethylnaphthalene 0.17 (<LOD - 0.64) Turquoise

9-Methylanthracene 0.11 (<LOD - 0.15) Turquoise

Acenaphthylene 0.32 (<LOD - 1.13) Blue

Anthracene 0.26 (<LOD - 0.59) Blue

Benz(a)anthracene 0.12 (<LOD - 0.39) Blue

Benzo(a)pyrene 0.05 (<LOD - 0.3) Blue

Benzo(b)fluoranthene 0.08 (<LOD - 0.32) Blue
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Chemical Average (Min - Max) Module assignment

Benzo(e)pyrene 0.06 (<LOD - 0.15) Blue

Benzo(k)fluoranthene 0.07 (<LOD - 0.33) Blue

Benzo[ghi]perylene 0.1 (<LOD - 0.18) Blue

Chrysene 0.12 (<LOD - 0.39) Blue

Dibenzofuran 0.13 (<LOD - 0.94) Red

Fluoranthene 0.96 (0.08–3.54) Blue

Fluorene 0.39 (<LOD - 1.29) Turquoise

Indeno[1,2,3-cd]pyrene 0.06 (<LOD - 0.12) Blue

Methylfluorene 0.18 (<LOD - 0.81) Turquoise

Naphthalene 0.21 (<LOD - 0.81) Blue

Perylene 0.01 (<LOD - 0.04) Blue

Phenanthrene 1.02 (0.07–2.23) Blue

Pyrene 0.33 (<LOD - 1.21) Blue

Retene 3.42 (<LOD - 17.13) Black

Methoxyphenols (ng/μL)

3,5-Dimethoxyphenol 0.67 (<LOD - 2.54) Red

Acetosyringone 7.26 (<LOD - 28.45) Red

Coniferyl aldehyde 53.47 (<LOD - 367.36) Green

Ethylguaiacol 5.99 (<LOD - 26.48) Green

Eugenol 4.76 (<LOD - 32.46) Green

Guaiacol 12.38 (<LOD - 45.73) Green

Isoeugenol 174.27 (<LOD - 1294.16) Green

Methoxymethyl phenol 14.92 (<LOD - 88.49) Green

Propylguaiacol 1.42 (<LOD - 7.13) Green

Syringealdehyde 44.04 (<LOD - 229.37) Red

Vanillin 27.87 (0.5–188.86) Green

Levoglucosan (ng/μL)

Levoglucosan 189.92 (24.22–503.76) Red

Inorganic elements (ng/mL)

Al 34.13 (<LOD - 151.07) Brown

Ba 5.53 (0.25–14.52) Yellow

Ca 533.78 (53.62–2359.41) Brown

Cd 0.11 (<LOD - 0.44) Yellow

Cr 2.07 (0.18–5.46) Yellow

Cu 21.53 (5.08–49.41) Yellow

Fe 24.44 (2.13–78.15) Brown

K 66.89 (1.25–248.75) Yellow

Mg 50.32 (8.62–195.44) Brown

Mn 1.02 (0.16–3.49) Brown

Na 577.74 (31.24–1547.36) Yellow

Ni 2.48 (0.18–8.51) Yellow

P 18.44 (3–40.05) Yellow
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Chemical Average (Min - Max) Module assignment

Pb 0.14 (<LOD - 0.45) Brown

S 885.98 (<LOD - 3651.04) Brown

Sb 1.4 (0.23–4.31) Brown

Si 590.13 (47.61–1988.07) Yellow

Sr 3.37 (0.38–15.75) Brown

Ti 1.21 (<LOD - 2.36) Yellow

Zn 102.84 (9.51–408.96) Brown

Ions (μg/mL)

Cl 0.28 (<LOD - 0.78) Yellow

NH4 0.04 (0–0.18) Brown

NO3 0.04 (<LOD - 0.1) Blue

PO4 4.69 (0–16.31) Yellow

SO4 1.31 (<LOD - 7.95) Brown
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Table 2

Quantile g-computation estimates for the change in biological response (ln-scaled) for a one quintile increase 

in chemical concentration (z-score normalized) in biomass burn condensate samples. Results from select 

chemical groups are shown, highlighting the impacts of modeling with vs. without chemicals in the green 

module. The β coefficient value summarizes the average across the models evaluating all biological responses. 

For individual model results, see Fig. 3 and Supplemental Material Table S3.

Wildfire chemical group Average β coefficient

All chemicals 0.165

All chemicals except green module 0.343

Green module −0.071
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