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Rationale: Database search engines are the preferred method to identify peptides in

mass spectrometry data. However, valuable software is in this context not only

defined by a powerful algorithm to separate correct from false identifications, but

also by constant maintenance and continuous improvements.

Methods: In 2014, we presented our peptide identification algorithm MS Amanda,

showing its suitability for identifying peptides in high-resolution tandem mass

spectrometry data and its ability to outperform widely used tools to identify

peptides. Since then, we have continuously worked on improvements to enhance its

usability and to support new trends and developments in this fast-growing field,

while keeping the original scoring algorithm to assess the quality of a peptide

spectrum match unchanged.

Results: We present the outcome of these efforts, MS Amanda 2.0, a faster and

more flexible standalone version with the original scoring algorithm. The new

implementation has led to a 3–5× speedup, is able to handle new ion types and

supports standard data formats. We also show that MS Amanda 2.0 works best

when using only the most common ion types in a particular search instead of all

possible ion types.

Conclusions: MS Amanda is available free of charge from https://ms.imp.ac.at/index.

php?action=msamanda.

1 | INTRODUCTION

For decades, mass spectrometry has been known as the primary

method to analyze proteins in biological samples.1,2 A considerable

amount of effort has been spent on instruments, technology and also

on algorithm development.3–7 Different techniques have evolved to

identify peptides in mass spectra from bottom-up mass spectrometry

experiments, namely de novo identification, database search and

spectrum library search. A plethora of different algorithms exist for

each analysis category,8–10 but despite the increasing popularity of

spectrum library search in the last years,11–13 database search is still

often the method of choice when it comes to identifying peptides in

mass spectra.14

In a database search, each spectrum is compared with a list of

peptide candidates from a protein database where the peptide mass

matches the precursor mass with a certain tolerance. For each peptide

candidate a theoretical spectrum, i.e., all potential fragment ions that

could occur in a mass spectrum, is calculated, compared with the

experimental spectrum and a score is calculated. The peptide

candidate with the highest score is then reported.8

The score is an essential part of a search engine, one component

that distinguishes different algorithms from each other. In a good

search engine, the score for each peptide is constructed in a such a

way that false identifications can be discriminated from correct

identifications, i.e., the higher the score for a peptide spectrum match

(PSM), the more likely the PSM is correct.
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However, not only a good scoring scheme is essential for a good

search engine, but also ease of use and especially maintenance and

future development. The scoring scheme of a search engine can be

brilliant, but if the code is not maintained and regularly updated to

eradicate errors or improve user experience, the algorithm will at

some point no longer be used.

In 2014, we published the peptide identification algorithm MS

Amanda,15 which has been accepted and widely used by the

proteomics community.16–21 Since then, we have worked hard to

constantly maintain the software and incorporated user feedback and

feature requests, while retaining the original scoring algorithm. In

2018, we released an improved version of MS Amanda available in

Thermo Fisher Proteome Discoverer that is able to identify and

validate chimeric spectra.22

In this paper, we summarize our improvements for the standalone

version of MS Amanda, namely:

• Increase in search speed

• Support of multiple spectra and database files

• Support of standardized input and output formats

• Support of common ion types in UVPD spectra

• Improvements in usability

2 | METHODS

2.1 | Performance improvements

The first issue we tackled was search speed. In the original version of

MS Amanda, it was important to us that the algorithm could run on

any machine, independent of the available CPU cores and RAM. Two

parameters controlled how many spectra could be processed at once

and how many proteins could be searched at the same time, thus

defining the speed and – indirectly – the required memory. In

addition, already digested protein databases were re-used in

subsequent searches – provided that the digestion parameters,

i.e., digestion enzyme type or number of missed cleavages, matched.

While this is still true for the new version, we changed the way in

which digested FASTA files are stored on the hard disk. In contrast to

the first version where we used compressed plain text, we now work

with binary encodings. In the first version each protein was digested

and its peptides stored individually. Although this allowed for fast

database digestion, the subsequent file operations to read the

digested peptides were identified as a major bottleneck. We changed

this implementation and now peptides with the same sequence are

grouped and stored only once. Additional mapping files are generated

to keep track of the connection between peptides and proteins.

Although the grouping and generation of mapping files takes

additional time, the decreased number of files that have to be read

still significantly reduces the runtime (see section 3).

While these changes have significantly improved search speed,

there was still room for improvement on operating systems other

than Windows. For us it was essential that MS Amanda runs on all

commonly used operating systems. As MS Amanda is implemented in

C#, this was only possible using the mono framework by the time of

publication in 2014. While the mono framework was a great way to

start, we could still see that the algorithm could not use the full

potential of its parallelized implementation on Linux and macOS

systems.

In 2016, Microsoft released a new framework, .NET Core, able to

run on any operating system. We therefore ported MS Amanda from

.NET Framework to .NET Core (which works cross-platform) to make

it available on Windows, macOS and Linux without requiring parallel

development. We have tested these performance improvements by

using three replicates of HeLa cell lysates measured on a Thermo

Fisher QExactive+ (PXD007750, Dataset A22).

In addition, users have reported great results achieved using MS

Amanda on phosphorylated data sets and it has frequently been used

to identify modified peptides.23–25 We therefore analyzed four

phospho-enriched HeLa cell lysates from the Chorus Project26

(https://chorusproject.org/, identifier 1,374, DDA files only) and

compared results from MS Amanda 2.0 with a search engine

thoroughly accepted by the community: X!Tandem27 (version 5.0.1).

Analyses were performed using SearchGUI28 (version 4.0.18), using a

Human Swiss-Prot database (2020-12) including common

contaminants. Searches were performed using the following

parameters: 10 ppm precursor mass tolerance, 0.02 Da fragment mass

tolerance, carbamidomethyl (C) as fixed, oxidation (M) and

phosphorylation (S,T,Y) as variable modifications, refinement set to

false for X!Tandem. All other parameters were left at defaults.

Calculation of the false discovery rate (FDR) was performed within

PeptideShaker29 (version 1.16.13).

In addition, we executed comparative performance tests using

the HeLa cell lysates also utilized for the runtime analysis

(PXD007750, Dataset A22), applying the same parameters and using

the same modification settings except for phosphorylation.

2.2 | Support of multiple spectra and database files

When trying to identify peptides in mass spectra using database

search, it is essential to include common contaminants in the list

of potential peptide candidates. In the original version of MS

Amanda, the algorithm could only handle a single FASTA file.

However, these contaminants are normally stored in a separate

file, making it necessary to combine the protein database that will

be used for the search and the contaminations database prior to

starting the search. As this is impractical for users and a possible

source of errors, MS Amanda now also accepts a folder containing

all FASTA files the spectra should be compared with. The same

holds for spectra files. Nowadays, mass spectrometry experiments

do not consist of single result files but rather comprise multiple

biological and technical replicates or different instrument settings

that are compared. We therefore also changed the implementation

such that now multiple spectra files can be queued for search

at once.
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2.3 | Support of standardized input and output
formats

Considerable effort has been put in by the HUPO PSI standardization

community to guarantee and enhance communication between tools

and algorithms by providing standard data formats for mass spectra

and its (peptide) identification results, namely .mzML30 and

.mzIdentML.31,32 We strongly support these efforts as this increases

the usability and versatility of algorithms. Providing support for

standardized data formats can easily support dissemination of tools

and boost utilization of developed tools. We thus enabled MS

Amanda to read and write these standard data formats in addition to

the file formats supported by the original publication, i.e., .mgf as

input file format and .csv as output file format.

2.4 | Support of common ion types in UVPD
spectra

The first version of the MS Amanda algorithm supported ions

occurring when using CID,33 HCD,34 ETD,35 and EThcD36

fragmentation. A fragmentation technique that has gained increasing

attraction in recent years is ultraviolet photodissociation (UVPD).37,38

In addition to the common ions such as a, b, x, y, or z fragments,

UVPD also often generates additional fragment ions such as a + 1, c,

x + 1, or y − 1 ions.39,40 Consideration of these ion types for scoring

is now also supported by MS Amanda. The Thermo Fisher Proteome

Discoverer version of MS Amanda also features these ion types.

2.5 | Improvements in usability

To enhance usability, we changed the way how to call MS Amanda

from the command line by introducing new command line arguments

to be able to handle all new features. In addition, the order of input

parameters is no longer essential as it was the case for the previous

version of MS Amanda. While search parameters are still read from

the settings .xml file, parameters such as the file or folder containing

spectra, the FASTA file(s) or the desired output format are read as

command line parameters (see Table 1 for all available options).

Although these named parameters are in contrast to unix command

line parameter conventions, where only optional parameters should

use option names, we favor this approach due to its higher user-

friendliness. To adhere to the Unix conventions we still support the

previous command line call.

3 | RESULTS

3.1 | Performance comparison

We compared the search speed of the initial implementation of MS

Amanda and of the currently available algorithm on all three operating

systems. We used three replicates of HeLa cell lysates measured on a

Thermo Fisher QExactive+ (see section 2), and compared runtimes of

MS Amanda 1.0 and MS Amanda 2.0 on operating systems Windows,

Linux and macOS. We used MS Amanda 1.0 (version 1.0.0.4484) and

MS Amanda 2.0 (version 2.0.0.17442) on Windows and MS Amanda

1.0 (version 1.0.0.4485) using the mono framework (version 6.12.)

and MS Amanda 2.0 (version 2.0.0.17442) on Linux and macOS,

running them on systems with the following specifications:

• Windows 10 Pro, Intel® Xeon E3-1231v3, 3.4 GHz, 8 GB RAM,

Samsung SSD 850 EVO

• Ubuntu 20.04, Intel® Xeon E3-1231v3, 3.4 GHz, 8 GB RAM,

Samsung SSD 850 EVO

• macOS Big Sur, v. 11.2.1, Quad-Core Intel® Core i7, 2.8 GHz,

16 GB RAM, Apple SSD AP1024M

Linux and Windows were set up as virtual machines and

benchmarks were performed on the same server, using libvirt version

5.10.0, pinned to 2 cores and 8 GB RAM each. For the first replicate a

new digestion of the protein database was generated; the subsequent

two replicates re-used the pre-digested database.

Figure 1 shows that, compared with the original version of MS

Amanda, MS Amanda 2.0 runs on average more than three times

faster on Windows and macOS systems and almost five times faster

on Linux. Runtime comparison between operating systems is

however only applicable for Linux and Windows, as they were run

on the same machine. Data shown in Figure 1 are average runtimes

of each replicate including the database digestion for the first file,

i.e., a comparison of a fresh installation of both MS Amanda versions.

On average, database digestion accounted for 8% of the total runtime

for the old version (60, 63, and 13 seconds on Windows, Linux and

Mac, respectively) but increased to on average 42% of the total

runtime for the latest version (95, 97, 73 seconds for Windows, Linux,

and Mac, respectively). Still, the performance gain through the

adapted digestion handling outweighed these losses.

We also investigated the impact of porting MS Amanda from

the .NET Framework to .NET Core, which makes the mono

framework obsolete. We compared runtimes of the last version of

MS Amanda prior to the .NET version change (MS Amanda 2.0 vs

2.0.0.14828) to the current version of MS Amanda. While this leads

to a slight increase in runtime on the Windows operating system,

TABLE 1 All currently available command line parameters for the
standalone version. Required parameters are given in bold

Parameter Description

-s Spectrum file or spectrum folder (.mgfj.mzML)

-d Proteinjpeptide database file or folder (.fasta)

-e MS Amanda settings file including all search

settings (.xml)

-f Output file format (1j2), 1: .csv (default), 2: .mzIdentML

-o Output file name or folder (default: location of

spectrum file)
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the .NET Core versions running on Linux and macOS were 2 to 2.5

times faster than those versions using the mono framework. This

fact and the advantage of just a single implementation for all

operating systems further convinces us that .NET Core was a good

choice.

When comparing the number of identified PSMs at 1% FDR of

non-phosphorylated and phosphorylated HeLa data sets, we found

that for the non-phosphorylated HeLa data set results from MS

Amanda and X!Tandem are comparable (12,092 vs 12,179 PSMs at

1% FDR). However, MS Amanda outperforms X!Tandem on the

phosphorylated data, as MS Amanda is able to identify on average

13% more PSMs at 1% FDR as compared with X!Tandem (13,175 vs

11,704 PSMs at 1% FDR).

3.2 | Identification results for UVPD spectra

Several groups have reported the common occurrence of a + 1, x + 1,

and y − 1 ions in UVPD spectra.39,40 We wanted to investigate the

applicability of these ion types to be used for scoring and tested

various ion settings on HeLa samples measured on a Thermo Fisher

QExactive using UVPD peptide fragmentation (PXD00310939). In

their manuscript, Fort and co-workers39 compared UVPD and HCD

fragmentation techniques and claimed that both techniques

generated a comparable number of reliable identifications. Our results

support these findings. In addition, the overlap of identified unique

peptides between these two techniques matches the outcome of Fort

and colleagues39 (see Figure 2). However, we see that the

identification quality strongly depends on the ion types considered to

compare peptides to spectra. As we have seen during our research of

the original MS Amanda publication, the MS Amanda algorithm works

best when the most frequently seen ion types are used for scoring, in

contrast to all potential ion types that might occur. For HCD, e.g., the

highest number of identifications can be achieved when using b and y

ions only. This is due to the probability score applied in MS Amanda.

The more ion types are considered the more potential ion candidates

are available – this holds also for random peptides that may lead to

false identifications – and therefore the higher the probability to

match random peaks by chance.

For UVPD spectra, we see a similar effect. Despite the fact that

x + 1, a + 1, and y − 1 ions occur regularly in these spectra, they are

still less common than a, b, or y ions. As depicted in Figure 3, using all

these ion types that might occur in UVPD spectra decreases the

number of identified PSMs at 1% FDR by 15%. Leaving out common

F IGURE 1 Search speed improvements of MS Amanda 2.0 ported to .NET Core (red) compared with the original implementation MS Amanda
1.0 (green) and MS Amanda 2.0 implemented on the .NET Framework (purple) on the operating systems Windows, Linux and macOS. MS
Amanda 1.0 and MS Amanda 2.0.NET Framework were run with the help of mono (version 6.12) on Linux and macOS

F IGURE 2 Overlap of unique peptides at 1% FDR for UVPD and
HCD results of a single replicate
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ion types, however, is even worse, as this yields 23% less

identifications. Therefore, for MS Amanda 2.0 it is best to search only

for the most common ion types also in UVPD spectra. We assume

this might be similar for other search engines using probability-based

scores. In addition, we also compared the identified PSMs at 1% FDR

when a and a + 1 ions were included or excluded as ion type.

The comparison has been made on a spectrum-by-spectrum basis

as proposed by Agten and co-workers.41 Figure 4 reveals that

the difference in identifications for these settings is negligible,

indicating that solely b and y ions could be used here as ion types in

the search.

4 | CONCLUSIONS

Valuable software in general is not only defined by powerful

algorithms but also by continuous maintenance and development.

This is of course also true for mass spectrometry software. Several

years ago, we published our peptide identification algorithm MS

Amanda, showing that we are able to outperform algorithms very

frequently used by the community. In this manuscript we show that

the MS Amanda implementation has advanced, reacting to user

needs and feature requests. The latest standalone version of MS

Amanda, MS Amanda 2.0, has numerous improvements compared

with the first published version, including increase in search speed,

support of multiple FASTA and spectra files, support of

standardized formats (.mzML and .mzIdentML), new ion types

occurring in UVPD spectra, and usability improvements. In addition,

MS Amanda 2.0 has been ported from the .NET Framework to .NET

Core 3.1, being able to run on all operation systems without the

usage of the mono framework. With that change and other

improvements, we have shown that the latest version of MS

Amanda is now 3.2–4.3 times faster than the initial version,

depending on the operating system used. MS Amanda is now even

more flexible and widely applicable to all sorts of mass

spectrometry data. The standalone version of MS Amanda can also

be used within SearchGUI28 and results can be analyzed using

PeptideShaker.29

Of course, the further development of MS Amanda is an ongoing

endeavor. We are currently working on supporting chimeric spectra

identification published as the CharmeRT workflow also in the

standalone version. In addition, we are working on an automated pin

file generation to be able to validate MS Amanda results with

Percolator.42

F IGURE 3 Impact of rare ion types: Considering ion types in the score that are rather rare has a huge impact on identification results

F IGURE 4 Overlap of PSMs at 1% FDR for different ion type
settings when searching UVPD spectra. Including or excluding a/a + 1
ions has no significant impact on the search results
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