
1. Introduction
Near real-time information of global atmospheric composition is invaluable for a wide range of applica-
tions, including academic research, airborne and satellite mission support, air quality forecasting, disaster 

Abstract The Goddard Earth Observing System composition forecast (GEOS-CF) system is a high-
resolution (0.25°) global constituent prediction system from NASA's Global Modeling and Assimilation 
Office (GMAO). GEOS-CF offers a new tool for atmospheric chemistry research, with the goal to 
supplement NASA's broad range of space-based and in-situ observations. GEOS-CF expands on the GEOS 
weather and aerosol modeling system by introducing the GEOS-Chem chemistry module to provide 
hindcasts and 5-days forecasts of atmospheric constituents including ozone (O3), carbon monoxide 
(CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and fine particulate matter (PM2.5). The chemistry 
module integrated in GEOS-CF is identical to the offline GEOS-Chem model and readily benefits from 
the innovations provided by the GEOS-Chem community. Evaluation of GEOS-CF against satellite, 
ozonesonde and surface observations for years 2018–2019 show realistic simulated concentrations of O3, 
NO2, and CO, with normalized mean biases of −0.1 to 0.3, normalized root mean square errors between 
0.1–0.4, and correlations between 0.3–0.8. Comparisons against surface observations highlight the 
successful representation of air pollutants in many regions of the world and during all seasons, yet also 
highlight current limitations, such as a global high bias in SO2 and an overprediction of summertime 
O3 over the Southeast United States. GEOS-CF v1.0 generally overestimates aerosols by 20%–50% due to 
known issues in GEOS-Chem v12.0.1 that have been addressed in later versions. The 5-days forecasts have 
skill scores comparable to the 1-day hindcast. Model skills can be improved significantly by applying a 
bias-correction to the surface model output using a machine-learning approach.

Plain Language Summary Accurate forecasting of the compostion of the atmosphere is 
important for a variety of applications, including air pollution mitigation, support of satellite and other 
remote-sensing observations, and research applications. Producing such forecasts is computationally 
expensive due to the complexity of atmospheric chemistry, which interacts with weather on all scales. 
Here we present the NASA Goddard Earth Observing System composition forecast (GEOS-CF) system, 
which produces global forecasts of major atmospheric constituents such as ozone (O3), nitrogen 
dioxide (NO2), and fine particulate matter (PM2.5). On a daily basis, the model tracks the atmospheric 
concentrations of more than 250 chemical species in more than 55 million model grid cells, computing 
the interactions between those species using the state-of-the-science GEOS-Chem chemistry model. 
We present an in-depth evaluation of the GEOS-CF model through comparison against independent 
observations. We show how the model captures many observed features of atmospheric composition, 
such as spatio-temporal variations in air pollution due to changes in pollutant emissions, weather, and 
chemistry. We also highlight some of the model deficiencies, for example, with respect to the simulation 
of aerosol particles. Finally, we demonstrate how surface observations and model data can be combined 
using machine learning to provide improved local air quality forecasts.
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management, and ecosystem monitoring. However, the numerical simulation of atmospheric chemistry is 
computationally expensive because it involves hundreds of species that interact with each other on time 
scales from milliseconds to years, and the species are also influenced by dynamics across a wide range of 
spatiotemporal scales. This precludes the inclusion of detailed aerosol and reactive trace gases in standard 
operational numerical weather prediction (NWP) systems. Instead, real-time simulation of atmospheric 
composition is typically done within a simplified system in order to reduce the computational burden, 
for example, by running the model at reduced horizontal resolution or over a regional domain only, us-
ing a simplified representation of atmospheric composition, or by coupling a weather model with an of-
fline chemical transport model (CTM) (e.g., Bhattacharjee et  al.,  2018; Emmons et  al.,  2020; Flemming 
et al., 2009; Marécal et al., 2015).

Here we present the NASA Goddard Earth Observing System (GEOS) composition forecast modeling 
system, GEOS-CF v1.0, which provides global near real-time estimates (“hindcasts”) and forecasts of at-
mospheric composition such as ozone (O3), carbon monoxide (CO), nitrogen dioxide (NO2), sulfur diox-
ide (SO2), and fine particulate matter (PM2.5) in near real-time at a horizontal resolution of approximate-
ly 25 × 25 km2. As summarized by the World Meteorological Organization (WMO) Global to Local Air 
Quality Forecast Inventory (https://community.wmo.int/activity-areas/gaw/science-for-services/gafis/
air-quality-forecast-inventory), GEOS-CF is one of only a few global forecasting systems conducting gaseous 
and aerosol composition simulations in near real-time. The European Center for Medium-Range Weather 
Forecasts (ECMWF) offers 5-days global forecasts of aerosols and trace gases at approximately 40 × 40 km2 
horizontal resolution through the Copernicus Atmosphere Monitoring Service (CAMS, https://atmosphere.
copernicus.eu/global-forecast-plots). The US National Center for Atmospheric Research (NCAR) conducts 
10-days global forecasts at approximately 100 × 100 km2 horizontal resolution based on offline simulations 
of the Model for Ozone and Related chemical Tracers (MOZART) Chemistry Mechanism in the Community 
Earth System Model Version 2 (CESM2) (Emmons et al., 2020) driven by GEOS meteorological forecasts 
(https://www2.acom.ucar.edu/acresp/forecasts-and-near-real-time-nrt-products). Finally, the Finnish Me-
teorological Institute provides daily 4-days global forecasts of atmospheric composition at approximately 
35 × 35 km2 resolution using the System for Integrated modeling of Atmospheric coMposition (SILAM v5.7, 
http://silam.fmi.fi/). The atmospheric composition forecasts from these models can vary considerably due 
to differences in the underlying meteorological fields, observational constraints, chemical mechanisms, or 
assumptions about pollutant emissions (see, e.g., Huijnen et al., 2019). The uncertainties associated with 
these processes can be difficult to quantify from a single model simulation alone, and the availability of 
multiple, independently developed models offers great potential to provide better air quality information 
through combination of a suite of models (Marécal et al., 2015). This is recognized by the Global Air Quality 
Forecasting and Information System (GAFIS) project, a new initiative by the WMO Global Atmospheric 
Watch (GAW) program with the aim to provide globally harmonized air quality forecasts tailored to the 
needs of end users. GEOS-CF can support such efforts by offering an independent but complementary com-
position forecast to the existing suite of global composition forecasting systems in the form of global 5-days 
forecasts of atmospheric composition based on the GEOS-Chem atmospheric chemistry module (http://
www.geos-chem.org) within the GEOS Earth System Model (ESM).

One of the key aspects of the GEOS-CF system is the full integration of the offline GEOS-Chem CTM in 
the GEOS system, which allows for the simulation of reactive gases and aerosols at the same temporal and 
spatial resolution as the meteorology (Hu et al., 2018; Long et al., 2015). GEOS-Chem is a global CTM driven 
by archived meteorological inputs produced by GEOS. It is actively evaluated and developed by a large inter-
national research community. The chemical components of GEOS-Chem (including emission, deposition, 
and aerosol-oxidant chemistry) can also be used online in an ESM such as GEOS, bypassing the need for 
the offline transport scheme used by the CTM. Instead, meteorology and species transport is calculated di-
rectly within the ESM. The scientific validity of the GEOS-Chem chemistry module within GEOS has been 
demonstrated by Hu et al. (2018), who show that a one-year global simulation of atmospheric composition 
at 12.5 km2 produces results consistent with the offline GEOS-Chem model. The online application has 
advantages over the CTM as it does not introduce transport errors related to temporal and spatial averaging 
of the archived meteorological input fields (Yu et al., 2018), but comes at the cost of increased complexity 
and computing requirements. GEOS-CF is an application of the online GEOS-Chem module embedded 
in GEOS, with a focus on daily operation and forecast capabilities. The GEOS-Chem chemistry module 
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incorporated in GEOS-CF uses the exact same codebase as the offline CTM. This enables seamless integra-
tion of scientific updates provided by the GEOS-Chem CTM community into GEOS-CF without the need to 
make any modifications to the source code.

The GEOS-CF modeling system is the latest in a series of research and applications products generated 
by the NASA Global Modeling and Assimilation Office (GMAO), including the GEOS forward process-
ing weather and aerosol system (GEOS FP; Lucchesi, 2017), GEOS FP for instrument teams (GEOS FP-IT; 
Lucchesi, 2015), the second Modern-Era Retrospective analysis for Research and Applications (MERRA-2; 
Gelaro et al., 2017), and the Seasonal to Subseasonal Forecasting System (GEOS-S2S; Borovikov et al., 2019; 
Molod et al., 2020). It leverages GMAO's model infrastructure and directly builds on a number of devel-
opment activities centered around the GEOS model, with the goal to extend these forecasting capabilities 
toward (short-lived) trace gases and aerosols.

The GEOS ESM is a General Circulation Model (GCM) and Data Assimilation System (DAS) consisting 
of a suite of model components that can be connected in a modular manner through the Earth System 
Modeling Framework (ESMF, Hill et al., 2004) and Modeling Analysis and Prediction Layer (MAPL, Suarez 
et al., 2007) software interface. The model can be configured to run with fully interactive chemistry so that 
the chemical constituents feed back to the dynamics (“online”), or as an offline model where external mete-
orological fields are used as input. A hybrid approach is the “replay” feature, where the model dynamics are 
nudged toward pre-computed analysis fields (from a previous DAS simulation) in a way that is consistent 
with the internal physics of the model (Orbe et al., 2017). This approach is particularly useful for chem-
istry simulations as it sidesteps the need to conduct a computationally costly meteorological data assimi-
lation cycle. Several chemistry and aerosol modules of varying complexity are available in GEOS (Nielsen 
et al., 2017), enabling a wide range of applications including but not limited to near real-time simulation of 
aerosols using the GOCART module (Buchard et al., 2017; Colarco et al., 2010; Randles et al., 2017), compu-
tationally efficient analysis of stratospheric O3 using parameterized chemistry in combination with 3D-Var-
iational assimilation of satellite observations (Wargan et al., 2015); multi-decade simulation of tropospher-
ic and stratospheric chemistry using the Global Modeling Initiative (GMI) chemistry module (Douglass 
et al., 2004; Duncan et al., 2007; Strahan et al., 2007); and fully coupled simulation of gas-phase and aerosol 
chemistry using the chemistry module of the GEOS-Chem CTM embedded in GEOS (Long et al., 2015). The 
latter is used as the principal driver of chemistry in GEOS-CF.

In this paper we describe the configuration of GEOS-CF version 1.0 (Section 2) and demonstrate the validity 
of the produced hindcasts through comparison against independent observations for years 2018 and 2019 
(Sections 3 and 4). Model forecasts over the same time period are evaluated in Section 5 and we discuss how 
model skill scores can be improved by applying a bias-correction to the surface observations using a ma-
chine-learning approach. As described in detail below, the current version of GEOS-CF constitutes a hybrid 
model between an online weather and chemistry assimilation system and an offline CTM application, with 
a development pathway toward a fully coupled forecasting system with integrated trace gases and aerosols. 
Many of its design features were guided by practical considerations as well as computational limitations 
related to the simulation of atmospheric chemistry.

2. Model Description
2.1. General Description

A schematic of the GEOS-CF v1.0 modeling system is provided in Figure 1. Since 2018, GEOS-CF is operat-
ed in near real-time, producing a 5-days forecast once a day. The forecast initial conditions are provided by 
a 1-day replay simulation (referred to as “hindcast”) constrained by pre-computed meteorological analysis 
fields. In the v1.0 configuration, the meteorological forcings that GEOS-CF uses during the hindcast step 
are obtained from the GEOS FP-IT system. GEOS FP-IT is a “frozen” model system that is comparable to 
MERRA-2 but—unlike MERRA-2—is available in near real-time to support retrievals by satellite instru-
ment teams. The GEOS model in general, and the version of the GEOS GCM used by GEOS FP-IT (v5.12.4) 
in particular, has shown to be well suited for atmospheric chemistry applications as it realistically captures 
features critical to atmospheric composition, such as the seasonal climate of moisture and temperature and 
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large-scale transport of constituents (e.g., Douglass et al., 2014; Gelaro et al., 2017; Molod et al., 2015; Oman 
and Douglass, 2014; Pawson et al., 2007).

In GEOS FP-IT, the GOCART module provides aerosol feedback on meteorology. To ensure consistent 
model physics between GEOS FP-IT and GEOS-CF, the physics component in GEOS-CF is coupled to the 
GOCART module, with GOCART aerosol optical depth (AOD) constrained by satellite observations as fur-
ther described below. The GEOS-Chem chemistry module, which contains its own aerosol module coupled 
to the gas-phase chemistry, is run “passively” to provide coupled aerosol-oxidant chemistry in the tropo-
sphere and stratosphere (Hu et al., 2018). That is, the GEOS-Chem aerosols and trace gases are advected 
online (including turbulence), while emissions, dry and wet deposition, and chemistry are handled by the 
GEOS-Chem chemical module driven by instantaneous meteorological information from the GEOS phys-
ics modules. Deep convective transport of chemical species is performed by the GEOS-Chem convection 
scheme driven by instantaneous model diagnostics to capture scavenging in the updrafts. The GEOS-Chem 
aerosols and trace gases are currently integrated without observational constraints, with the exception of 
stratospheric ozone which is nudged to precomputed ozone fields from the GEOS FP system (described in 
more detail below).

A full snapshot of the model conditions at the end of the simulated hindcast day are saved and serve as 
input for the next day's hindcast step (“restart files”). This preserves the model chemical and meteorological 
state from one forecast cycle to the next, leading to a continuous atmospheric composition archive since 
January 2018.

GEOS-CF v1.0 uses a model physics package that is similar to MERRA-2 and GEOS FP-IT, consisting of 
the GEOS atmospheric model, version 5, described in Rienecker et al. (2008) with updates as described in 
Molod et al. (2012) and Molod et al. (2015). The model uses the finite-volume dynamical core of Lin (2004) 
with a cubed sphere grid discretization to avoid grid-cell singularities (Putman and Lin, 2007). It is run at 
cubed-sphere c360 horizontal resolution (roughly equivalent to 0.25° × 0.25°) and 72 hybrid-eta levels from 
the surface to 0.01 hPa. This results in 30–35 model levels in the troposphere and a surface model level depth 
of approximately 130 m. Model physics includes parameterizations for moist processes, radiation, turbulent 
mixing, land-surface processes, and gravity wave drag. The moist module contains parameterization of con-
vection using the Relaxed Arakawa-Schubert scheme (Moorthi & Suarez, 1992), and the single-moment pa-
rameterization for large-scale precipitation and cloud cover described in Bacmeister et al. (2006). Note that 
in GEOS-CF v1.0, the moist processes in GEOS are not directly applied to the GEOS-Chem species but pro-
vide the diagnostic variables needed by GEOS-Chem to perform these tasks (Hu et al., 2018; Yu et al., 2018). 
The radiation module includes parameterization for long-wave (Chou 1990, 1992) and short-wave radiation 
processes (Chou and Suarez 1994). Turbulence is parameterized using the gradient Richardson number 
in the free atmosphere and the Lock scheme (Lock et al., 2000) interfaced with the scheme of Louis and 
Geleyn (1982) in the boundary layer. Exchange of heat, moisture and momentum between land, atmos-
phere, and ocean or sea ice surfaces are parameterized using Monin-Obukhov similarity theory (Helfand 
and Schubert, 1995; Molod et al., 2013), and the gravity wave drag parameterization contains orographic 
(McFarlane, 1987) and non-orographic (Garcia & Boville, 1994) waves.
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Figure 1. Schematic of the GEOS-CF modeling system approach, consisting of 1 day hindcast and 5-days forecast. This combination of simulations is 
conducted on a daily basis.
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In the GEOS-CF system, the GEOS physics components are coupled to the GOCART aerosol component 
to provide consistent physics with the GEOS FP-IT meteorology. Specifically, the GEOS-Chem chemistry 
module is run alongside the GOCART module, with no feedbacks to model physics.The GOCART aerosols, 
constrained during the hindcast step by AOD observations from the Moderate Resolution Imaging Spec-
troradiometer (MODIS) aboard the Terra and Aqua satellites (Randles et al., 2017), are used to compute 
the feedback between aerosols and dynamic while the GEOS-Chem chemistry module, run alongside the 
GOCART module, does not feedback to model physics. Currently, there is no chemical coupling between 
GOCART and GEOS-Chem, and no observations are directly assimilated into GEOS-CF. However, strat-
ospheric O3 in GEOS-Chem is nudged toward O3 produced by GEOS FP, which is constrained by ozone 
measurements from the Microwave Limb Sounder (MLS), Ozone Monitoring Instrument (OMI), and NA-
SA's Ozone Mapping and Profiler Suite (OMPS) and produces a realistic analysis of O3 in the stratosphere 
(Wargan et al., 2015, 2020). In addition, near real-time MODIS observations of fire radiative power are used 
to constrain fire emissions, as produced by the Quick Fire Emissions Dataset (QFED) (Darmenov and Da 
Silva, 2015). For the forecasts, the latest available QFED estimates are assumed to persist over the entire 
forecasting period.

All computations are conducted on the Discover supercomputing cluster of the NASA Center for Climate 
Simulation (NCCS). Run on 3510 Intel Xeon Haswell processor cores, the 1-day hindcast and 5-days forecast 
takes approximately 8.5 wall-clock hours in total. GEOS-CF hindcast and forecast output includes chem-
istry and meteorology “surface” output every 15 min as well as hourly-average and instantaneous fields 
for surface, column-average, and 3-dimensional model output. The model output is publicly available at 
https://gmao.gsfc.nasa.gov/weather_prediction/GEOS-CF/data_access/in the form of on-demand figures 
or through access to the model output (in netCDF data format) via Hypertext Transfer Protocol (HTTP) 
file download or through the Open-source Project for a Network Data Access Protocol (OPeNDAP) remote 
access tool. The full 5-days model forecast output is publicly available for a duration of 14 days. Given the 
growing interest in air quality forecasting applications, the model forecasts for a selection of surface air pol-
lutants are made available on the public portal indefinitely. Full details on available output and data access 
are available in the GEOS-CF File Specification document (Knowland et al., 2020).

2.2. Chemistry

GEOS-CF v1.0 uses the continually updated standard version of the GEOS-Chem chemistry module to 
simulate coupled aerosol-oxidant chemistry in the troposphere and stratosphere. The results presented here 
use GEOS-Chem version 12.0.1 in order to have a two-year record for comparison to observations, while 
the latest version 13.0 has been implemented into GEOS for a future version of GEOS-CF. GEOS-Chem is 
ESMF-compliant and its chemistry module is implemented here as an ESMF gridded component of GEOS, 
as described in Long et al. (2015) and Hu et al. (2018).

The gas-phase chemistry scheme includes detailed tropospheric chemistry of HOx, NOx, BrOx, volatile or-
ganic compounds (VOC), and O3, as originally described by Bey et  al.  (2001), with addition of halogen 
chemistry by Parrella et al. (2012) and Sherwen et al. (2016) plus updates to isoprene oxidation as described 
by Mao et al.  (2013) and Miller et al.  (2017). Stratospheric chemistry is fully coupled with tropospheric 
chemistry through the Unified tropospheric-stratospheric Chemistry eXtension (UCX; Eastham et al., 2014) 
and extends to the top of the atmosphere. Photolysis rates are computed by GEOS-Chem using the Fast-JX 
code (Bian and Prather, 2002). The gas-phase mechanism comprises 250 chemical species and 725 reac-
tions and is solved using the Kinetic PreProcessor (KPP) Rosenbrock solver (Sandu and Sander, 2006). The 
aerosol simulation includes sulphate-nitrate-ammonia chemistry (Park et  al.,  2004), black carbon (Park 
et al., 2003; Wang et al., 2014), organic aerosols (Marais et al., 2016), mineral dust (Fairlie et al., 2007; Ridley 
et al., 2012), and sea salt aerosols (Jaeglé et al., 2011). Aerosol and gas-phase chemistry interact through 
gas-aerosol partitioning (Fountoukis and Nenes, 2007; Pye et al., 2009), heterogeneous chemistry on aerosol 
surface (Evans and Jacob, 2005; Mao et al., 2013), and aerosol impacts on photolysis (Martin et al., 2003). 
Methane concentrations are prescribed as monthly mean surface concentrations, spatially interpolated 
from NOAA GLOBALVIEW flask data (Dlugokencky et al., 1994).
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2.3. Emissions and Deposition

The dry deposition scheme in GEOS-Chem is based on the resistance-in-series model of Wesely (1989), as 
implemented by Wang et al. (1998). Wet deposition of aerosols and soluble gases includes scavenging in 
convective updrafts, in-cloud rainout, and below-cloud washout (Amos et al., 2012; Liu et al., 2001). While 
these processes are not fully coupled to GEOS, they are all driven by instantaneous GEOS model diagnostics 
and thus directly respond to changes in the model environment.

All emission calculations are done using the Harmonic Emissions Component HEMCO v2.1.009 (Keller 
et al., 2014). Table 1 summarizes the emission configuration used by GEOS-CF v1.0. The emission in-
puts used by GEOS-CF are either calculated online based on current conditions (e.g., lightning NOx, 
dust emissions, sea salt), or obtained from pre-computed emission inventories. For anthropogenic emis-
sions, the Hemispheric Transport of Air Pollution emissions inventory (HTAP v2.2; Janssens-Maenhout 
et al., 2015) is used as the primary source due to its high spatial resolution (0.1°) and the availability of 
monthly emissions data (as opposed to annual emission averages). HTAP v2.2 provides harmonized glob-
al emission maps combining global emissions data from the Emission Database for Global Atmospheric 
Research (EDGAR) (Crippa et al., 2018) with regional emission inventories over Europe, Asia, and the 
US. For Africa, HTAP v2.2 anthropogenic emissions are overwritten with the DICE emissions inventory 
(Marais and Wiedinmyer,  2016) to take full advantage of local information. Anthropogenic emissions 
are further broken down into hourly values using sector-specific day-of-week and diurnal scale factors 
(Denier van der Gon et al., 2011). For CO, the HTAP v2.2 base emissions, which are representative for 
year 2010, are adjusted to more recent conditions by applying an annual gridded scale factor based on the 
latest available Open-source Data Inventory for Anthropogenic CO2 (ODIAC; Oda & Maksyutov, 2017), 
assuming the same relative change in anthropogenic CO emissions as for CO2. This results in an increase 
in anthropogenic CO emissions by a factor of 1.2–1.4 over China, India, and South America and decreas-
es by 5%–10% over Europe and North America for year 2018 (relative to 2010). For other anthropogenic 
emissions, no attempts are currently made in GEOS-CF to adjust the HTAP v2.2 base emissions. This is 
an obvious simplification, especially for species and regions undergoing rapid emission changes, such 
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Description Reference Comments

Offline inventories

Anthropogenic NO, CO, black carbon (BC), organic carbon 
(OC), Ammonia (NH3)

HTAP v2.2 (Janssens-Maenhout et al., 2015) Global except Africa

Anthropogenic SO2 OMI-HTAP (Liu et al., 2018) Global except Africa

Anthropogenic VOCs RETRO (Schultz et al., 2008) Global except Africa

Anthropogenic NO, CO, SO2, BC, OC, NH3, VOCs DICE-Africa (Marais and Wiedinmyer, 2016) Africa

Arctic seabird NH3 Croft et al. (2016)

Volcanic SO2 Carn (2019) 5% of the sulfur emitted as SO4

Aircraft NOx (=NO + NO2), CO, SO2, VOCs, BC, OC AEIC (Stettler et al., 2011)

Emissions calculated online based on real-time environment

Biogenic VOCs MEGAN v2.1 (Guenther et al., 2012)

Biomass burning (wildfires) NOx, CO, SO2, VOCs, BC, OC QFED v2.5 (Darmenov and da Silva, 2015) 35% emitted between 3.5 and 5.5 km 
altitude (Fischer et al., 2014).

Lightning NOx Murray et al., 2012

Soil NOx Hudman et al., 2012

Soil dust Zender et al., 2003

Sea salt aerosols Gong, 2003; Jaeglé et al., 2011

Oceanic DMS, CH2O, C3H6O Johnson, 2010; Nightingale et al., 2000

Oceanic iodine Carpenter et al., 2013

Table 1 
Emissions Used by GEOS-CF



Journal of Advances in Modeling Earth Systems

as SO2 and NO2 over China or India over the last decade. Incorporation of real-time information into 
the emissions calculation is currently under development and slated to be included in future versions of 
GEOS-CF.

2.4. Observations Used for Model Evaluation

GEOS-CF is intended to supplement NASA's broad range of space-based and in-situ observations, provid-
ing a new tool for researchers, government scientists, and air quality managers. We therefore focus our 
evaluation on the species most pertinent to these applications, including O3, NO2, CO, SO2, and aerosols. 
These species are also constantly evaluated by the broader GEOS-Chem community using the standard 
CTM simulations (e.g., Hu et  al.,  2017,  2018; Travis & Jacob,  2019). However, it should be noted that 
GEOS-CF simulations can differ from standard GEOS-Chem simulations due to the higher horizontal 
resolution (Hu et al., 2018), the use of online meteorological information instead of time-averaged mete-
orological fields (Yu et al., 2018), and differences in the emission inputs, in particular wildfire emissions 
from QFED versus the Global Fire Emissions Database (GFED) typically used in the GEOS-Chem CTM 
(Carter et al., 2020).

We first evaluate the ability of the GEOS-CF hindcast to provide a realistic representation of atmospheric 
composition based on the hourly-average hindcast fields (Section 4). The validation covers the two-year 
time period from the start of the GEOS-CF record on 1 Jan 2018 to 31 Dec 2019. Differences between the 
5-days model forecasts and the model hindcast are discussed in Section 5. All aerosol comparisons are for 
the aerosol fields calculated by the GEOS-Chem module, thus providing aerosol information that is consist-
ent with the gas-phase chemistry. A detailed comparison of GOCART AOD and PM2.5 is given in Buchard 
et al. (2017).

The data sets used for model validation are summarized in Table 2. Briefly, we evaluate the global tropo-
spheric distribution of O3 against ozonesonde observations obtained from the World Ozone and Ultraviolet 
Data Center (WOUDC, http://www.woudc.org) and the NOAA Earth System Research Laboratory—Glob-
al Monitoring Division (ftp://ftp.cmdl.noaa.gov/ozww/Ozonesonde/), NO2 against the OMI NASA stand-
ard tropospheric column NO2 product v4.0 (Lamsal et al., 2021) and CO total columns against satellite 
retrievals from the Measurements Of Pollution In The Troposphere (MOPITT) V8 (Deeter et al., 2019). 
All satellite comparisons use model output sampled at satellite overpass time and with averaging ker-
nels applied to it. For AOD, we compare the model simulation against the Aqua MODIS combined dark 
target and deep blue aerosol level 2.0 product (https://modaps.modaps.eosdis.nasa.gov/services/about/
products/c6/MYD04_L2.html; Remer et al., 2005; Levy et al., 2010, 2015) as well as Aerosol Robotic Net-
work (AERONET) level 2.0 daily average data from the version three data product (https://aeronet.gsfc.
nasa.gov/; Giles et al., 2019). Simulated surface concentrations are compared against in-situ observations 
from the Global Atmospheric Watch (GAW) World Data Center for Greenhouse Gases (WDCGG, https://
gaw.kishou.go.jp/) and World Data Center for Reactive Gases (WDCRG, https://www.gaw-wdcrg.org/), as 
well as observations from the OpenAQ database (https://openaq.org). We only include OpenAQ sites with 
at least 80% of data coverage during the analyzed 2-year period. The analysis of surface concentrations is 
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Description Species # Sites Reference

Ozonesonde O3 24 Tilmes et al., 2012; Thompson et al., 2017

NASA OMI NO2 v4.0 Tropospheric column NO2 global Lamsal et al., 2021

MOPITT v8 Total column CO global Deeter et al., 2019

MODIS AOD at 550 nm Global Remer et al., 2005; Levy et al., 2010, 2015

AERONET AOD at 550 nm 195 Giles et al., 2019

GAW WDCGG CO 54 https://gaw.kishou.go.jp/

GAW WDCRG O3, NO2, SO2 48 (O3), 6 (NO2), 9 (SO2) https://www.gaw-wdcrg.org/

OpenAQ O3, NO2, SO2, PM2.5 3151 (O3), 2789 (NO2), 1221 (SO2), 2667 (PM2.5) https://openaq.org

Table 2 
Overview of Observation Data Sets Used for GEOS-CF Model Validation

http://www.woudc.org/
ftp://ftp.cmdl.noaa.gov/ozww/Ozonesonde/
https://modaps.modaps.eosdis.nasa.gov/services/about/products/c6/MYD04_L2.html
https://modaps.modaps.eosdis.nasa.gov/services/about/products/c6/MYD04_L2.html
https://aeronet.gsfc.nasa.gov/
https://aeronet.gsfc.nasa.gov/
https://gaw.kishou.go.jp/
https://gaw.kishou.go.jp/
https://www.gaw-wdcrg.org/
https://openaq.org/
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based on daily mean values. For NO2, we omit mountainous GAW sites given that the model resolution 
of 25 × 25 km2 is not high enough to resolve the fine-scale vertical gradients around mountain slopes. On 
average, the depth of the GEOS-CF model surface layer is 130 meters and we use this value without at-
tempting to adjust for sub-grid vertical gradients. Accounting for the subgrid vertical gradient can improve 
model-observation comparisons for ozone (Travis & Jacob, 2019) but is more challenging to implement 
for species with both sources and sinks, such as NO2 or PM2.5. All aerosol evaluation is based on the GE-
OS-Chem aerosols, and model PM2.5 is calculated for a relative humidity (RH) of 35%, following standard 
practice in GEOS-Chem.

Figure 2 shows the global distribution of all in-situ observations used in the evaluation. The GAW ob-
servation sites (WDCGG and WDCRG) are located away from the major pollution sources, representing 
the global background concentrations. In contrast, most observations available on the OpenAQ platform 
are located in densely populated areas, providing information about local air pollution. With a model 
grid size of 25 × 25 km2, GEOS-CF is not expected to resolve many of the local features observed at 
monitoring sites available on OpenAQ. However, the use of model forecasts for local air quality ap-
plications is a popular request and the OpenAQ comparisons shown here are intended to serve as a 
benchmark for such types of applications. We discuss in Section 5 how bias correction methods can be 
used to overcome some of the model representativeness errors. It should also be emphasized that the 
observations provided on OpenAQ are reported in near real-time and thus do not undergo the same 
level of quality control as the GAW observations. While this makes OpenAQ an excellent platform to 
monitor a system in near real-time, it can introduce analysis errors related to observation errors that 
can be difficult to quantify. In an ad-hoc attempt to exclude obviously errorenous observations (such 
as ozone concentrations of several 1000 ppbv), we remove all OpenAQ observations that are 3 standard 
deviations beyond the mean monthly value of that site. This results in a removal of less than 0.1% of all 
OpenAQ observations.

The OpenAQ and AERONET observations are further grouped into six geographical regions, as shown in 
Figure 2. This subset of observations provides good coverage for North America, Europe, and Eastern Asia 
(especially China) but a limited view of other regions such as South America or Africa. For those under-rep-
resented regions, our analysis relies heavily on the global daily satellite observations.
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Figure 2. Overview of observation sites used for model validation. Black boxes show the six regions used for aggregation of OpenAQ and Aeronet observations.
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3. Evaluation of Model Hindcast
3.1. Model Skill Scores

We first highlight the model skill scores against all surface observations before discussing the individual 
species in more detail below. Figure 3 shows monthly model skill scores for O3, NO2, SO2, CO, and PM2.5 
and/or AOD, aggregated by observation type across all measurement sites. The skill scores used are the 
normalized mean bias (NMB), normalized root mean square error (NRMSE), and Pearson correlation co-
efficient (R):
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where yn denotes an indidivual model estimate, y  is the model average, on is the observation associated with 
yn, and o  is the observation average; o0.05 and o0.95 are the 5th and 95th percentile, respectively, of the obser-
vations sample, and N is the total number of observation-model pairs. All skill scores are calculated using 
daily average concentrations. This removes the impact of the diurnal cycle, which otherwise can dominate 
the correlation signal. Differences between night-time and day-time skill scores are small on average (not 
shown).

For daily average surface O3, the model shows a normalized mean annual bias of 0.011 compared to the GAW 
sites, with little seasonal variability (Figure 3, first column). The GAW sites are typically located in remote 
locations and the small model bias indicates that the model adequately captures atmospheric background 
O3 throughout the year. This is confirmed by the low NRMSE of 0.13 and the correlation coefficient of 0.71, 
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Figure 3. Overview of NMB, NRMSE and R for daily mean O3, NO2, SO2, CO, and PM2.5 (OpenAQ only) and AOD (Aeronet only). Shown are the monthly skill 
score means, as calculated from daily mean concentrations, aggregated by observation type. Note. the different scale for SO2, PM2.5 and AOD.
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again with small seasonal variability. Compared to the GAW sites, the simulated O3 shows weaker skill 
scores relative to the OpenAQ observations with an NMB of 0.14, an NRMSE of 0.61 and R of 0.45. A lower 
model skill against the observations from the OpenAQ data portal is not surprising given that OpenAQ sites 
are typically located close to polluted sites, and the model representativeness error is therefore expected to 
be higher. As further discussed below, the OpenAQ comparisons also highlight a pronounced model over-
estimation of surface O3 during the summer months.

For NO2 (second column of Figure  3), the normalized model bias is 0.11 compared against the GAW 
sites, and −0.32 against the OpenAQ sites. As for O3, the larger differences between GEOS-CF and Open-
AQ observations (compared to GEOS-CF vs. GAW) can likely be attributed to the spatial representation 
mismatch between the 25 × 25 km2 model output and the OpenAQ observations. The NMB at the GAW 
sites varies strongly from month-to-month, reflecting the small sample size (6 stations). The OpenAQ bias 
shows the strongest negative bias between November through January, with a reduction of the negative 
bias from −0.4 to −0.25 during June–August. Given that the OpenAQ sites are predominantly located in 
the NH (Figure 2), this reflects a stronger model underestimation during winter. The NRMSE is 0.15 at 
the GAW sites and 0.64 at the OpenAQ sites, similar to O3. The R values for NO2 are 0.6 and 0.34 at the 
GAW and OpenAQ sites, respectively. Analysis of NO2 is complicated by the potential NO2 observation 
interference with other nitrogen compounds (Grosjean and Harrison, 1985; Steinbacher et al., 2007; Winer 
et al., 1974), as well as the short atmospheric lifetime of NO2, which makes it challenging for the model to 
capture the spatiotemporal variability in surface NO2 in full detail. This explains some of the low model 
bias for NO2 relative to OpenAQ observations, which are commonly located in urban locations close to 
combustion sources.

For SO2, the model—observation comparison shows a large model bias of up to a factor of 4, with an annual 
mean bias of 2.1 at GAW sites and 1.5 at OpenAQ locations. The NRMSE is 0.47 for the GAW observations 
and 0.37 for OpenAQ data, and the correlations are similar with 0.29 and 0.25 for GAW and OpenAQ, 
respectively. An important factor for the model overestimation is the use of outdated anthropogenic SO2 
emissions data, as further discussed below.

The simulated CO compares well against the 54 GAW sites, with an NMB of −0.042, an NRMSE of 0.096 
and R of 0.73. The model error is largest during the NH summer months, with a decrease in NMB to −0.14, 
an increase in NRMSE to 0.2, and a reduction of R to 0.5.

The model comparisons against AERONET AOD and OpenAQ PM2.5 observations reveal a systematic mod-
el overestimation of aerosol concentrations in GEOS-CF, with an average NMB of 0.48 for AOD and 1.5 
for surface PM2.5. Excessive sulphate aerosol as well as known model issues in the treatment of model 
emissions and wet scavenging contribute to these biases, as will be discussed in more detail below. In addi-
tion, some PM2.5 observations on the OpenAQ platform represent dry particulate matter while model PM2.5 
assumes 35% RH, which also contributes to the mismatch. At the AERONET sites, the model shows a good 
correlation score of 0.71 and the NMRSE of 0.15 is comparable to that of other species at background sites, 
indicating that the model captures the relative changes in AOD well despite the high model bias. For surface 
PM2.5, the average model NRMSE is 1.65 and R skill score is 0.46.

3.2. Ozone

Comparisons of GEOS-CF against ozonesondes and GAW surface observations demonstrate that GEOS-CF 
reproduces well-known features of background surface O3, such as the local maxima in the NH during 
spring.

Figure 4 shows annual mean (2018–2019) vertical O3 profiles as observed by ozonesondes at 24 locations 
across the world (purple crosses in Figure 2), compared against corresponding GEOS-CF model concentra-
tions. While GEOS-CF generally captures the observed vertical structure of O3, the model tends to underes-
timate free tropospheric O3 (approx. 800–300 hPa) over the NH midlatitudes. For these profiles (e.g., De Bilt, 
Payerne, Madrid, Tateno), the simulated vertical gradient is much less pronounced than observed and the 
model consistently underestimates O3 concentrations. This pattern is consistent with previous comparisons 
of the online GEOS-Chem module against observations (Hu et al., 2018) and implies two potential model er-
rors: (1) excessive vertical mixing resulting in an overestimation in the lower altitudes and underestimation 
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at higher altitudes, as evident over Payerne, Trinidad Head, and Madrid (Figure 4); and (2) an underestima-
tion of lightning NOx over the NH midlatitudes, resulting in an underestimation of O3 production in the up-
per troposphere. The global lightning NOx source in GEOS-CF is 5.9 Tg N yr-1, in good agreement with other 
studies (Schumann and Huntrieser, 2007) and the 6.0 Tg N yr-1 reported for the GEOS-Chem CTM (Murray 
et al., 2012). However, due to the real-time nature of the system, the GEOS-CF lightning parameterization 
uses the unconstrained cloud top height parameterization (Price and Rind, 1992, 1993, 1994) and does not 
apply time-dependent, regional redistribution factors based on Lightning Imaging Sensor (LIS) and the Op-
tical Transient Detector (OTD) satellite observations as is standard in GEOS-Chem. As described in Murray 
et al. (2012), this results in an underestimation of simulated lightning flash rates over the NH extratropics, 
which is likely one of the main reasons for the model underestimation of O3 in the NH upper troposphere. 
We also note that the model vertical resolution is approximately 500 m (20 hPa) in the mid-to upper tropo-
sphere, which might be insufficient to resolve the strong vertical gradients across the tropopause boundary 
and contribute to the model-observation mismatches in the upper troposphere. Over the Southern Hemi-
sphere (SH), the simulated O3 profiles are in good agreement with the ozonesonde observations and show 
an improved O3 distribution compared to the offline GEOS-Chem model (Hu et al., 2018).

The GAW observations show a pronounced seasonal cycle for surface O3 with a maximum of 30–50 ppbv 
during spring and summer and a low of 10–30 ppbv in winter, a feature that is well reproduced by GEOS-CF 
(Figure 5). At remote locations such as the high-latitude NH GAW sites (Figure 5 top row), the seasonal cy-
cle is more distinct with a peak in early spring. The O3 maximum develops more slowly at locations that are 
more heavily influenced by anthropogenic emissions. As already observed in the ozonesondes, the model 
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Figure 4. Vertical profile of annual average O3 (2018–2019) at 24 sites as observed by ozonesondes (black) and simulated by GEOS-CF (magenta). The gray 
shaded area indicates sonde observation standard deviation.
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underestimates O3 over the Southern Ocean by up to 10 ppbv. This is likely due to excessive O3 deposition 
over seawater (Pound et al., 2020), a problem since corrected in newer versions of GEOS-Chem.

Figure 6 shows monthly average surface O3 by region, as captured by observations in the OpenAQ data-
base and simulated by GEOS-CF. The model generally overestimates surface O3 over Europe, North and 
South America and Australia by 5–10 ppbv and underestimates it over Africa and Asia by up to 20 ppbv. 
The model-observation mismatch is larger than for the remote GAW sites, suggesting that sub-grid factors 
such as vertical and horizontal model representation errors and nighttime loss of O3 by reaction with NO 
contribute to this difference (Dacic et al., 2020; Travis & Jacob, 2019). Global models tend to underestimate 
O3 nighttime depletion due to difficulties to resolve small-scale horizontal NO2 gradients, and evaluation 
of surface O3 is thus often restricted to daytime or afternoon O3 (Millet et al., 2015; Hu et al., 2018; Travis 
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Figure 5. Monthly average surface O3 as observed at 48 GAW sites (black) and simulated by GEOS-CF (magenta). Vertical bars represent the standard 
deviation of hourly variability. Y-axis ranges vary by station.
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& Jacob, 2019). As shown in Figure 7, restricting the analysis to daytime O3 (12:00–16:00 local time) does 
indeed improve the comparison and reduce the bias by up to 5 ppbv, in particular over Europe, South Amer-
ica and Australia. The model still shows a systematic positive bias over the US during summer and fall, a 
known issue in GEOS-Chem (Hu et al., 2018; Travis et al., 2016; Travis & Jacob, 2019 ). Results for the mean 
values of the daily maximum 8 h average (MDA8) instead of afternoon O3 yield the same qualitative result 
(not shown).

Factors that likely contribute to the high NH surface O3 in GEOS-CF are uncertainties in the production of 
O3 from the oxidation of isoprene (Bates & Jacob, 2019; Travis et al., 2016) and errors in O3 deposition to wet 
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Figure 6. Monthly average surface O3 grouped into six regions (see Figure 2) as obtained from the OpenAQ database (black) and simulated by GEOS-CF 
(magenta). Vertical bars represent the standard deviation of hourly variability across all sites. Number of sites is given in the inset. Y-axis ranges vary by region.

Figure 7. As Figure 6 but using afternoon O3 only (12:00-16:00 local time).
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surfaces (Travis & Jacob, 2019). In addition, most OpenAQ observation sites are located near densely popu-
lated areas, and the 25 × 25 km2 model simulation cannot fully capture the fine-scale features characteristic 
for these environments (Keller et al., 2020).

3.3. Nitrogen Dioxide

As shown in Figure 8, GEOS-CF captures major features of the global distribution of tropospheric NO2. The 
model simulated NO2 columns (Figure 8a) show distinct hot spots over urban areas (e.g., Eastern China, 
Europe, and Eastern US), reflecting the dominant contribution of fossil fuel combustion coupled with the 
short atmospheric lifetime of NO2 (Duncan et al., 2016; Streets et al., 2013;). Additional hot spots resulting 
from biomass burning are found over Africa and the boreal region of Canada (Figure 8a). The spatial pat-
tern simulated by GEOS-CF agrees well with the NO2 columns observed by OMI. Over Eastern China, the 
model simulated NO2 columns are up to 3.0 × 1015 molecules cm-2 (or approx. 40%) higher than the OMI 
observations (Figure 8b), suggesting a potential overestimation of NOx emissions or a longer NOx lifetime 
in the model (Shah et al., 2020). However, the OMI retrieval algorithm v4.0 tends to underestimate tropo-
spheric NO2 over polluted areas (Lamsal et al., 2021), which complicates the analysis. As further discussed 
in the next section, the comparison against surface observations does not support the view of a broad-based 
overestimation of surface NO2 over Asia.

As shown in Figure 8c, the simulated seasonality of tropospheric NO2 columns is in good agreement with 
OMI observations. Over areas dominated by anthropogenic activities, such as the US, Europe, and China, 
the simulated NO2 columns show a distinct seasonal cycle with the minimum during summer and peak 
during winter, driven by the seasonal variation in NOx lifetime against oxidation (Shah et al., 2020). The 
seasonal cycle observed over China is well captured by GEOS-CF, while the simulated wintertime peak 
over the US and Europe is higher than observed by OMI. Chemical loss of NOx during winter is dominated 
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Figure 8. Comparison of GEOS-CF against OMI tropospheric column NO2. (a) the 2018–2019 average tropospheric NO2 column (1–2 pm local time) as 
simulated by GEOS-CF. (b) The difference between model simulated tropospheric column and NASA OMI NO2 (v4.0) observations. (c) Right panel shows the 
tropospheric NO2 time series averaged for six regions, as shown in (a) and (b) (n.b., y-axis intervals are not the same for each time-series).
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by N2O5 hydrolysis, which is sensitive to NOx emissions and O3 concentrations (Jaeglé et al., 2018; Shah 
et al., 2020). Over Africa, the seasonal cycle is dominated by summer biomass burning, which is well cap-
tured by the model.

Figure 9 shows comparisons of monthly mean surface NO2 at six GAW sites (n.b., all located in Europe) 
against model simulated concentrations. These comparisons show that GEOS-CF is in good agreement 
with the (non-mountainous) GAW sites, suggesting that it provides a realistic simulation of background 
surface NO2 over Europe. Figure 10 further evaluates the simulated distribution of global surface NO2 in 
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Figure 9. Monthly average surface NO2 as observed at six GAW sites (black) and simulated by GEOS-CF (green). Vertical bars represent the standard deviation 
of hourly variability. Y-axis ranges vary by station.

Figure 10. Monthly average surface NO2 grouped into six regions (see Figure 2) as obtained from the OpenAQ database (black) and simulated by GEOS-CF 
(green). Vertical bars represent the standard deviation of hourly variability across all sites. Number of sites is given in the inset. Y-axis ranges vary by region.



Journal of Advances in Modeling Earth Systems

comparison to observations in OpenAQ. The model is in excellent agreement with observations over North 
America and Africa, and Asia during the summertime, but underestimates concentrations over Europe and 
South America, as well as Asia during the wintertime. The apparent low bias over Europe and Asia is incon-
sistent with the tropospheric column comparisons shown in Figure 8 and also the comparison against the 
GAW observations (Figure 9), which do not show such a systematic underestimation of NO2 by GEOS-CF.

The comparison of surface concentrations of NO2 is complicated by the fact that most surface observations 
are based on chemiluminescence using a molybdenum converter, which can result in an overestimation of 
reported NO2 concentrations due to interference with other oxidized nitrogen compounds (Grosjean and 
Harrison, 1985; Steinbacher et al., 2007; Winer et al., 1974). This might explain some of the model underes-
timation of NO2 relative to the OpenAQ observations. In addition, since the OpenAQ observations tend to 
be located in relative proximity to urban areas they often do not represent the regional average NO2 concen-
trations captured by GEOS-CF, which can introduce a systematic bias. While this is an issue for all analyzed 
species, the problem is particularly pronounced for NO2 given its large spatial and temporal variability.

3.4. Sulfur Dioxide

GEOS-CF overestimates surface SO2 concentrations compared against observations from the GAW network 
(Figure 11) as well as the OpenAQ database (Figure 12). The GAW sites are all located in Europe, and the 
model has a mean bias of 0.9 ppbv across the nine stations. Against the low average background concentra-
tion of 0.5 ppbv observed at the GAW sites, this indicates an overestimation by the model by a factor of more 
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Figure 11. Monthly average surface SO2 as observed at nine GAW sites (black) and simulated by GEOS-CF (blue). Vertical bars represent the standard 
deviation of hourly variability. Y-axis ranges vary by station.
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than two. A similar bias is found at the OpenAQ sites. We attribute the high model bias in SO2 to a large 
extent the use of outdated emissions from the OMI-HTAP emission inventory. Anthropogenic emissions 
in OMI-HTAP are based on HTAP v2.2, which is representative for year 2010 (Liu et al., 2018). Since then, 
anthropogenic emissions of SO2 have declined significantly in most parts of the world (Feng et al., 2020; 
Fioletov et al., 2016; Li et al., 2020; Qu et al., 2019). The model overestimation is particularly severe during 
wintertime, when the atmospheric lifetime of SO2 is longest (Lee et al., 2011) and the majority of anthro-
pogenic SO2 is emitted (according to OMI-HTAP). Another likely explanation is that the model may be 
under-accounting for non-photochemical SO2 oxidants in winter (Shao et al., 2019).

3.5. Carbon Monoxide

Our analysis of simulated CO shows that the model has no significant global CO bias compared against sat-
ellite and surface observations. Figure 13 shows the global distribution and seasonal cycle of total column 
CO retrieved from MOPITT and derived from GEOS-CF. Local MOPITT averaging kernels were applied to 
the GEOS-CF CO profiles to obtain the column values. The model simulated CO pattern is in good agree-
ment with MOPITT, with local maxima over major polluted areas (e.g., East China and India) and over bio-
mass burning regions (South America and Central Africa). Similar to NO2, the simulated CO columns over 
China are larger than the observations, possibly due to an overestimation of CO emissions over that region. 
The baseline anthropogenic CO emissions in GEOS-CF are scaled based on ODIAC emission trends, with 
strongest increases over China and India (Oda et al., 2018). Our scaling methodology assumes a constant 
CO/CO2 emissions ratio, and any decrease in the CO/CO2 emission ratio, for example, due to a technology 
shift, would result in an overestimation of CO emissions.

The seasonal cycle of CO is determined by its shorter chemical lifetime during summer due to increased 
photochemical activity, which is reflected in lower NH concentrations during July and August where the 
model underestimates the MOPITT concentrations in the NH middle and high latitudes by 10%–20% (Fig-
ure 13c). This underestimation is driven by a stronger than observed decrease of simulated total column 
CO during summertime, a pattern that is confirmed by comparisons against the GAW surface observations 
(Figure 14). While the model underestimates summertime surface CO in the NH, the opposite is true for the 
SH where model simulated concentrations during summer are higher than the observations. A low bias in 
CO is a long-standing issue in atmospheric chemistry models, commonly attributed to an underestimation 
of direct emissions, differences in the CO yield from VOC oxidation, and inconsistencies in the simulated 
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Figure 12. Monthly average surface SO2 grouped into six regions (see Figure 2) as obtained from the OpenAQ database (black) and simulated by GEOS-CF 
(blue). Vertical bars represent the standard deviation of hourly variability across all sites. Number of sites is given in the inset. Y-axis ranges vary by region.
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distribution of the hydroxyl radical OH, the main atmospheric oxidant (Flemming et al., 2015; Gaubert 
et  al.,  2016; Monks et  al.,  2015; Shindell et  al.,  2006; Strode et  al.,  2015). The air mass-weighted mean 
tropospheric OH in GEOS-CF is 11.9 × 105 molecules cm˗3, in good agreement with other models as well 
as estimates derived from methyl chloroform observations (Montzka et al., 2000; Naik et al., 2013; Spivak-
ovsky et al., 2000). The inter-hemispheric (NH/SH) ratio is 1.33, again in good agreement with other model 
estimates (Naik et al., 2013) but higher than observation-derived values of 0.8–1.0 (Krol and Lelieveld 2003; 
Montzka et al., 2000; Patra et al., 2014; Prinn et al., 2001). This is consistent with an underestimation of 
summertime CO in the northern high-latitudes—as shown by the comparisons against MOPITT and the 
GAW surface observations (Figures 13 and 14)—and an overestimation of SH CO (Figure 14). An overesti-
mation of NH OH in GEOS-CF is also supported by inversion studies using the GEOS-Chem CTM, which 
find that a similar OH correction is needed to match methane observations (Zhang et al., 2020).

3.6. Aerosols

The evaluation of model simulated O3, NO2 and CO has shown that GEOS-CF reproduces many of the 
features of the tropospheric distribution of these trace gases. With respect to aerosols simulated by GE-
OS-Chem, our validation shows that GEOS-CF has a high bias but still captures many of the observed 
spatial and temporal patterns. Some of the high aerosol bias can be attributed to the high SO2 in GEOS-CF 
(Section 4.4), resulting in excessive formation of sulphate. In addition, a high bias in aerosols is a known 
issue in GEOS-Chem v12.0.1 used in GEOS-CF v1.0, and recent versions of GEOS-Chem show improved 
simulation of aerosols including surface PM2.5 (Carter et al., 2020; Luo et al, 2019, 2020).

Figure 15 shows the global distribution and seasonality of simulated AOD at 550 nm against Aqua MODIS 
satellite observations. GEOS-CF captures the seasonal cycle of AOD well but tends to overestimate the 
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Figure 13. Comparison of GEOS-CF against MOPITT V8 total column CO. Top left panel shows the 2018–2019 average total CO column as simulated by 
GEOS-CF. Bottom left panel shows the difference between model simulated total column and MOPITT observations. Right panel shows the total CO time series 
averaged for six regions, as shown on the left.
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aerosol burden, especially over the US, Europe, and China. These regions have seen large declines in SO2 
emissions since 2010 that are not captured by GEOS-CF and we attribute the high model AOD at least partly 
to the excessive formation of sulphate aerosols. Further, inadequate treatment of wet scavenging processes 
is a known issue in GEOS-Chem v12.0.1, resulting in an overprediction of aerosol nitrate and ammonium, 
especially over Asia (Luo et al., 2019, 2020).
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Figure 14. Monthly average surface CO as observed at 54 GAW sites (black) and simulated by GEOS-CF (red). Vertical bars represent the standard deviation of 
hourly variability. Y-axis ranges vary by station.
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GEOS-CF tends to underestimate AOD related to strong wildfires events, such as over Canada during the 
summers of 2018 and 2019, the US in 2018, or Indonesia in 2019 (Figure 15). This points to a potential un-
derestimation of severe wildfire emissions by QFED, possibly due to the thick smoke obscuring fires from 
satellite detection (Eck et al., 2019; Liu et al.,  2020). However, the QFED emissions inventory has been 
shown to lead to an overall high aerosol bias when used in GEOS-Chem as the enhancement factors used in 
QFED (to match MODIS-observed AOD) are based on the GOCART model (Darmenov and Da Silva, 2015), 
which can result in an overestimation of biomass burning emissions if the differences between the GE-
OS-Chem and GOCART aerosol parameterizations are not accounted for (Carter et al., 2020). This factor 
likely contributes to the overestimation of AOD over Africa and South America.

Figure 16 compares model simulated AOD at 550 nm against AERONET observations, confirming the sys-
tematic model overprediction of AOD. The model bias is highest over Europe and North America, consist-
ent with an overprediction of sulphate aerosols due to excessive SO2 emissions in GEOS-CF. To provide 
an upper bound on the contribution of the SO2 error to total AOD, we analyzed GEOS-CF AOD excluding 
sulphate. As shown by the dashed orange line in Figure 16, this indicates that sulphate indeed constitutes 
up to 50% of total AOD over Europe, North America, and Asia, while its contribution to total aerosol is 
smaller in other regions.

Figure 17 shows model-observation comparisons for surface PM2.5. As for AOD, GEOS-CF generally over-
estimates surface PM2.5. On a relative basis, the overprediction is most pronounced for Europe and North 
America, and the largest absolute bias of surface PM2.5 is found over Asia.

While we conclude that the main reasons for the high aerosol bias in GEOS-CF is related to three main 
factors—excessive sulphate aerosols, an underestimation of aerosol wet scavenging, and overestimated bi-
omass burning emissions outside of high-intensity wildfire episodes—there are other factors that could 
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Figure 15. Comparison of GEOS-CF against MODIS Aerosol Optical Depth (AOD). Top left panel shows the 2018–2019 average total AOD as simulated by 
GEOS-CF. Bottom left panel shows the difference between model simulated total column and MODIS observations. Right panel shows the total AOD time 
series averaged for six regions, as shown on the left.
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contribute to the observed model-observation mismatches. For instance, a general overestimation of wild-
fire emissions could directly affect modeled organic aerosol as well as the formation of secondary organic 
aerosol (SOA). Organic aerosol constitutes an important fraction of total aerosol mass—also in GEOS-Chem 
(Kim et al., 2015)—but its sources and atmospheric processes are complex and poorly constrained (e.g., 
Bates et al., 2019; De Gouw and Jimenez, 2009; Marais et al., 2016). Biases in dust emissions could be an-
other contributor to model biases, especially over Africa. The dust emissions calculated by GEOS-CF total 
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Figure 16. Monthly average Aerosol optical depth (AOD) at 550 nm grouped into six regions (see Figure 2) as observed at AERONET sites (black) and 
simulated by GEOS-CF (orange). Vertical bars represent the standard deviation of daily variability. Dashed line indicates GEOS-CF AOD when excluding 
sulphate aerosols. Number of sites is given in the inset. Y-axis ranges vary by region.

Figure 17. Monthly average surface PM2.5 grouped into six regions (see Figure 2) as obtained from the OpenAQ database (black) and simulated by GEOS-CF 
(orange). Vertical bars represent the standard deviation of hourly variability. Number of sites is given in the inset. Y-axis ranges vary by region.
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770 Tg/yr and 630 Tg/yr for 2018 and 2019, respectively, which is at the lower range of current estimates of 
426–2726 Tg/yr (Huneeus et al., 2011) and thus unlikely a major contributor to the high aerosol bias.

4. Evaluation of Model Forecasts
4.1. Comparison of Model Forecasts Against Observations

GEOS-CF v1.0 does not directly assimilate trace gas observations and differences between the 1-day hind-
cast and the model forecasts are thus mainly driven by variations between the forecasted and analyzed me-
teorological state. The meteorology not only impacts the flow of the constituents but also affects deposition 
and dynamically calculated emissions, including lightning NOx, biogenic VOCs, sea salt aerosols, and dust 
(see Table 1). Further, the model forecasts assume persistence in the biomass burning emissions, meaning 
the fires observed during the hindcast are assumed to continue burning and emitting the same amount for 
the next five days. The model thus does not capture changes in occurrence or intensity of wildfires, both of 
which can lead to significant changes in surface air pollution close to and downwind from the fires.

Figure 18 shows model-observation skill scores for the model hindcast (forecast day −1) and the 5-days 
forecasts (forecast days +1 to +5) for O3, NO2, and PM2.5 relative to OpenAQ and GAW surface observations. 
Skill scores were calculated at each observation site individually using daily mean concentrations. Similar 
to the results discussed in Section 4.1 (Figure 3), the skill scores were computed for each month separately 
before aggregating them in the form of boxplots (as shown in Figure 18) in order to remove the impact of 
seasonality. For all three evaluated species, the model hindcast shows the best agreement with the observa-
tions. The median NMB of the model hindcast is 0.1 for O3, -0.31 for NO2, and 1.56 for PM2.5, with almost no 
difference between the hindcast and the model forecasts. Similarly, the forecasted NRMSE are little changed 
relative to the hindcast; the median NRMSE for the hindcast is 0.61 for O3, 0.63 for NO2 and 1.61 for PM2.5, 
and the NRMSE only slightly deteriorates with increasing forecast lead time, resulting in NRMSE's for the 
5-days forecast of 0.62 for O3, 0.65 for NO2 and 1.65 for PM2.5.

The largest change in skill score between hindcast and forecasts is found for R, which drops from 0.49 for 
the hindcast to 0.38 for the 5-days forecast for O3, 0.39 to 0.26 for NO2, and 0.52 to 0.36 for PM2.5. This indi-
cates that errors in the meteorological forecasts (and biomass burning emissions) indeed impact the quality 
of the surface air quality forecasts. Of the three analyzed skill scores, R is most sensitive to errors in the tem-
poral pattern and we attribute a large fraction in the deterioration in R to transport errors in the forecasts, 
such as the evolution of frontal systems or the dispersion of smoke plumes. PM2.5 is particularly sensitive to 
these factors given its large spatiotemporal gradients, comparatively long atmospheric lifetime, and strong 
sensitivity to changes in biomass burning emissions.

4.2. Bias-Corrected Local Forecasts

As discussed above, model-predicted concentrations of O3, NO2 and PM2.5 can differ from the observations 
for a number of reasons, including model representation errors, uncertainties in the meteorology, or model 
biases arising from errors in the model treatment of emissions, deposition, or atmospheric chemistry. One 
approach to deal with these issues is to quantify and correct these systematic model errors in a post-process-
ing step. Such bias correction methods can be applied to near real-time model forecasts and have been found 
to be an effective tool to significantly improve local model predictions, for example, by using mean subtrac-
tion (McKeen et al., 2005; Wilczak et al., 2006), historical analogs (Hamill and Whitaker, 2006), Kalman-fil-
tering (Delle Monache et al., 2006; Djalalova et al., 2015), or kriging (Honoré et al., 2008). More recently, 
machine learning (ML) approaches have become popular to relate model output to air quality observations 
(e.g., Grange et al., 2018; Grange and Carslaw, 2019; Ivatt and Evans, 2020; Petetin et al., 2020). As discussed 
in Keller et al. (2020), bias-correction using ML can significantly reduce GEOS-CF model biases compared 
to surface observations. This is illustrated in Figure 19, which shows the GEOS-CF model skill scores for the 
same surface observations analyzed above (GAW and OpenAQ) but using bias-corrected model concentra-
tions instead of the original model output. The bias correction methodology is described in detail in Keller 
et al. (2020). It uses the XGBoost algorithm (Chen and Guestrin, 2016) to correct the original hourly-average 
model predictions of O3, NO2, and PM2.5 based on local meteorology and atmospheric composition, as pre-
dicted by the GEOS-CF model. The input features fed into the ML algorithm include 9 meteorological pa-
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rameters, 51 chemical species, 21 modeled emissions, and calendar information including hour of the day, 
weekday, and month of the year. The latter allow the ML model to identify systematic observation-model 
mismatches related to the diurnal, weekly, and seasonal cycle of the pollutants. Since model biases are often 
site-specific—especially the representation error—a separate ML model is trained for each site. Using the 
hourly model hindcast—observation pairs of year 2018, the ML models are trained to predict the systematic 
bias between model predicted pollutant concentrations and the actual observation. We then apply the ML 
algorithm to the 2019 model output and compare the resulting bias-corrected model concentrations against 
observations (Figure 19). It is important to emphasize that the ML correction is site-specific and varies as 
a function of local meteorological and chemical conditions, as well as time of the year, weekday, and hour 
of day. As such, it it designed to provide a “localized” model prediction only representative for the given 
observation site, not the 25 × 25 km2 grid cell as a whole.

Compared to the uncorrected model output (indicated by the diamonds in Figure 19), the bias-corrected 
model values agree better with the observations for all species, skill scores, and lead times. For all three 
species, the NMB of the bias-corrected values is close to zero for both the hindcast and the 5-days forecasts. 
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Figure 18. GEOS-CF model skill scores for the hindcast (forecast day −1) and the 5-days forecasts (forecast day +1 to +5) relative to surface observations 
(GAW and OpenAQ). Boxplots show the variation in the NMB, NRMSE, and R across all surface sites for daily mean O3, NO2, and PM2.5.
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This result is not unexpected given that the ML algorithm is designed to minimize the mean model bias. 
The NRMSE and R scores are also significantly improved compared to the original data, with median RMSE 
values of approximately 0.2 and R values of 0.9 for the hindcast. Relative to the hindcast, the NRMSE and R 
become incrementally worse for the 1-day to 5-days lead forecasts relative to the actually observed values. 
Also, the skill scores of the bias-corrected forecasts deteriorate more rapidly than is the case for the uncor-
rected output but still outperform the original forecasts for all five lead days. Since the ML algorithm was 
only trained on the hindcast data, model errors in the meteorology forecasts will also negatively impact the 
quality of the bias correction applied to the (forecast) baseline, which explains the steady decline in the skill 
scores for the bias-corrected forecasts.
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Figure 19. Similar to Figure 18, however the boxplots indicate the GEOS-CF model skill scores for the bias-corrected hindcast (forecast day −1) and the 
bias-corrected 5-days forecasts (forecast day +1 to +5) relative to surface observations. The median statistics of the non-corrected model values from Figure 18 
shown as diamonds.
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5. Conclusions
The GEOS-CF system provides global, near real-time estimates of current conditions (“hindcast”) and 
5-days forecast simulations of atmospheric composition and meteorology at the global resolution of 0.25° 
based on the GEOS-Chem chemistry module run within the GEOS GCM. Comparisons against a suite of 
satellite, ozonesonde and surface observations demonstrate that the model realistically captures the glob-
al distribution of O3, NO2, and CO. For these three species, the model shows little biases at background 
locations, with NMB values ranging between −0.1 to +0.1. Like other atmospheric chemistry models, the 
model overestimates surface O3 in the NH during summer, especially over the south eastern US (Emmons 
et al., 2020; Flemming et al., 2015; Travis et al., 2016). While the horizontal resolution of 0.25° is one of the 
highest for a global atmospheric chemistry forecast model, it is still not fine enough to capture local-scale 
features of urban air pollution, which can lead to substantial model-observation mismatches when com-
pared against urban air quality observations. This is reflected in the poorer model skill against the OpenAQ 
observations, which are typically located in the proximity of urban areas. The model representation error is 
an important limitation of global composition models such as GEOS-CF and needs to be taken into account 
for air quality applications. One possible solution to this problem is to apply a bias-correction algorithm to 
the gridded model output, based on ML and historical observation-model comparisons. This can lead to 
significant improvements of the model predictions. This procedure, which can be automated as a post-pro-
cessing step, offers the option to provide highly localized forecasts anywhere in the world where surface 
observations are available. However, it should be emphasized that such localized forecasts are only valid for 
the given observation site and do not represent a model grid cell average (25 × 25 km2) anymore.

The 5-days forecasts produced by the GEOS-CF system have comparable NMB and NRMSE as the 1-day 
hindcast (compared to hourly observations), but show a deterioration in temporal correlation with increas-
ing forecast lead time. The current version of GEOS-CF (v1.0) does not directly assimilate trace gas obser-
vations, and the reduction in correlation skill score is thus directly related to errors in meteorological fore-
casts—which feed back on chemistry, deposition, and dynamically updated emissions—as well as errors in 
the wildfire emission forecasts which are assumed to persist over the entire 5-days forecast window.

GEOS-CF v1.0 systematically overpredicts SO2 due to the use of outdated emissions data, highlighting the 
critical need of timely emission information. In it's current form, GEOS-CF does not account for real-time 
changes in anthropogenic emissions, for example, due to reduced human activities in the wake of the COV-
ID-19 pandemic. GEOS-CF v1.0 thus represents a business-as-usual estimate of the atmosphere (Keller 
et al., 2020). The inclusion of near real-time information for dynamic emission adjustment, for example, 
based on traffic data or satellite observations, is a focus of future model development for GEOS-CF.

The GEOS-CF modeling system leverages components developed by the GEOS and the GEOS-Chem mod-
eling communities and directly benefits from the continuous advancements provided by these groups. The 
current version of GEOS-CF (v1.0) incorporates GEOS-Chem v12.0.1. Several important updates have been 
added to GEOS-Chem since, including updates to the chemistry of isoprene (Bates and Jacob, 2019) and 
halogens (Wang et al., 2019), improved wet scavenging of aerosols (Luo et al., 2019, 2020), and updated O3 
deposition over seawater (Pound et al., 2020). When implemented in future versions of GEOS-CF, these 
updates are expected to reduce the high bias observed in PM2.5 and AOD as well as the high bias in surface 
O3 over the SH.

Another model development focus will center around the assimilation of satellite observations of atmos-
pheric constituents, which has been shown to lead to improved representation of atmospheric composition, 
in particular for longer-lived species such as O3 and CO (Benedetti et al., 2009; Inness et al., 2015). In its 
current form, GEOS-CF does not directly assimilate tropospheric trace gas observations, and the variability 
in constituent distribution is thus driven by the anthropogenic emission inventories, real-time biomass 
burning information, and the current meteorological state and its impact on dynamic emission sources such 
as biogenic emissions or sea salt aerosols.

GEOS-CF offers a new tool for academic researchers, air quality managers, and the public. Applications 
include flight campaign planning, support of satellite and other remote-sensing observations, interpretation 
of field campaign data (Dacic et al., 2020; Johnson et al., 2021), and air quality research (Keller et al., 2020).
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Data Availability Statement
All model output is centrally stored at the NASA Center for Climate Simulation (NCCS). Public access 
to these archives is provided by the GMAO at https://gmao.gsfc.nasa.gov/weather_prediction/GEOS-CF/
data_access/in the form of weather maps and through model output access tools, including OPeNDAP and 
Hypertext Transfer Protocol (HTTP).
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