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Summary

Obesity is an evolutionary, chronic, and relapsing disease that consists of a pathologi-

cal accumulation of adipose tissue able to increase morbidity for high blood pressure,

type 2 diabetes, metabolic syndrome, and obstructive sleep apnea in adults, children,

and adolescents. Despite intense research over the last 20 years, obesity remains

today a disease with a complex and multifactorial etiology. Recently, long non-coding

RNAs (lncRNAs) are emerging as interesting new regulators as different lncRNAs

have been found to play a role in early and late phases of adipogenesis and to be

implicated in obesity-associated complications onset. In this review, we discuss the

most recent advances on the role of lncRNAs in adipocyte biology and in

obesity-associated complications. Indeed, more and more researchers are focusing

on investigating the underlying roles that these molecular modulators could play.

Even if a significant number of evidence is correlation-based, with lncRNAs being dif-

ferentially expressed in a specific disease, recent works are now focused on deeply

analyzing how lncRNAs can effectively modulate the disease pathogenesis onset and

progression. LncRNAs possibly represent new molecular markers useful in the future

for both the early diagnosis and a prompt clinical management of patients with

obesity.
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1 | INTRODUCTION TO OBESITY: CAUSES
AND CONSEQUENCES

Obesity is defined by the World Health Organization (WHO) as a

condition of abnormal or excessive accumulation of body fat that

presents a health risk, increasing both morbidity (for many chronic

diseases such as type 2 diabetes [T2D], hypertension, coronary

artery disease, dyslipidemia, stroke, osteoarthritis (OA), and even

certain forms of cancer)1–5 and mortality.3 The most recent report

of the WHO shows how the worldwide prevalence of obesity

nearly tripled between 1975 and 2016, as over 650 million adults

clinically were affected by obesity and 41 million children below

the age of 5 and over 340 million children and adolescents

between 5 and 19 years of age were either overweight or affected

by obesity.3,6 Indeed, studies show that 70% of adolescents with

obesity will maintain their obese condition as adults, with a

significant impact on their physical and physiological health.3,7–9

Specifically, an adult is affected by obesity when his/her body

mass index (BMI) is greater than or equal to 30.3 In the pediatric

age, according to the WHO, obesity in children under 5 years of

age is defined as weight-for-height 3 standard deviations

(SD) above the WHO Child Growth Standards reference

median. For children aged 5–19 years, obesity is defined as BMI-

for-age 2 SD above the WHO Growth Standards reference

median.6

Conventional therapies for patients with obesity, such as life-

style modifications (diet and exercise) and also pharmacotherapy in

adults, remain important but are limited by their results in terms of

weight loss and weight loss maintenance at long term, and in the

next future the development of new combinatory clinical

approaches is needed.10–13 From a cellular perspective, obesity is

caused by the excessive accumulation of adipose cells in different

anatomical parts of the body. This is due to an increase in adipo-

cytes' size (hypertrophy), number (hyperplasia) both and even in an

imbalance of the adipogenesis process.14,15 At present, it remains

thus necessary to continue research on the biological basis of this

complex pathology starting from genetic, epigenetic, and molecular

pathways as it is not possible to conclude what the relative

contribution of genetics and environment are in obesity onset.

Indeed, behavior and genes are different levels of the same causal

framework, and epigenetics through RNA biology might play a cen-

tral role in elucidating new targetable pathways. “Classic” epige-

netic mechanisms and epigenetic mosaicism, a widespread

phenomenon documented in many organisms, that may account for

differences in body weight and fat accumulation among people

remain to be better investigated,16–18 taking into account of the

role of non-coding RNAs as possible epigenetic modulator of obe-

sity and secondary co-morbidities onset. In this review, we aim to

discuss the functional roles of long non-coding RNAs (lncRNAs),

focusing on the state of the art and the future clinical implications

of lncRNAs in adipogenesis, obesity, and obesity complications

onset.

2 | LNCRNAS: DEFINITION AND
PRINCIPAL FUNCTIONS

In recent years, the role of RNA is changed, and indeed it is now

established knowledge that only 1–2% of the human genome codes

for protein.19–21 For this reason, RNAs can be classified for their cod-

ing potential in coding RNAs (transcripts that will subsequently be

translated into proteins) and non-coding RNAs that do not code for a

polypeptide and whose function is still to be fully understood espe-

cially in modulating gene expression.19–21 Among the non-coding

RNAs, it is possible to distinguish two subclasses: small non-coding

RNAs, molecules smaller than 200 bp, and lncRNAs, defined as non-

coding RNA molecules longer than 200 bp.22 LncRNAs are poorly

conserved, frequently unstable, and/or sometimes present in few cop-

ies, and new biological roles have emerged for some lncRNAs.23–25 In

order to facilitate the reader through this mounting evidence in differ-

ent models, the lncRNAs reported in this work are listed for their

homology as summarized in Table S1.

Interestingly, lncRNAs can mediate transcriptional regulation in

different ways. Indeed, these molecules can modulate gene expression

at multiple levels, ranging from chromatin re-arrangements to tran-

scriptional regulation or even translational modulation.26–28 Multiple

pieces of evidence suggest that they can operate through distinct

modes, including working as signals, scaffolds for protein–protein

interactions, molecular decoys, and guides to target elements in the

genome or transcriptome.29 This high degree of complexity in gene

expression regulation, and the number of still unknown mechanisms

through which lncRNAs could act, indicates a clear need to further

investigate these molecules, both in health and disease, as they could

provide crucial new insights in cell biology representing promising tar-

gets for the development of innovative therapeutic strategies for mul-

tiple diseases, with a specific relevance for their epigenetic regulation

of metabolic diseases. Indeed, the non-coding transcriptome is

becoming more and more relevant also in the field of adipogenesis, fat

mass expansion, and obesity, and in this context lncRNAs represent

new potential candidate targets for the development of

therapies.23–25

3 | LNCRNAS IN ADIPOGENESIS AND
OBESITY

Noncoding RNAs are known to play a regulatory role in many devel-

opmental contexts, including adipogenesis. Indeed, lncRNAs have

been demonstrated to be involved in adipogenesis with subsequent

implications for obesity and obesity-related complications in adults

and children.30–32 As more and more studies in this field arise every

year, there is a need to distinguish between the multiple functions

that the lncRNAs could have. Indeed, results are variable, and a full

characterization of the role that lncRNAs play in obesity is far from

being present. Numerous lncRNAs have been correlated with

adipogenesis, and the aim of this section is thus to classify them
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accordingly to their role in different stages of adipocytes differentia-

tion, subsequently focusing on their role in obesity.

3.1 | Role of lncRNAs in the regulation of early
adipogenesis master regulators

Adipogenesis is the process of adipocytes formation into fat-

containing cells from stem cells or adipocyte precursors. It involves

two phases: determination (considered an early stage) and terminal

differentiation (late adipogenesis).14,33,34

Early stages of adipogenesis are represented by a mitotic clonal

expansion phase (MCE) and by the expression of early regulators such

as C/EBPβ and C/EBPδ.34–36 Among the lncRNAs able to influence

this stage of adipogenesis, the lncRNA steroid receptor RNA activator

(SRA) was one of the first to be described.37 Its expression resulted

twofolds higher in differentiated murine 3T3-L1 adipocytes than pre-

adipocytes, but the lncRNA seems to also act in early phases of

adipogenesis.38 Indeed, it can promote S-phase entry during the MCE

of adipogenesis controlling cell cycle genes' expression.37 Moreover,

in the mouse ST2 mesenchymal cell line, SRA is implicated in the regu-

lation of p38/JNK0 phosphorylation inhibition, a crucial step in the

early stages of adipogenesis, as well as in stimulating insulin receptor

gene expression and downstream signaling.39,40 The obesity-related

lncRNA (lnc-ORA), whose expression levels increases during

adipogenesis in obese mice, also regulates the cell cycle through

induction of expression of crucial marker genes such as PCNA,

cyclin B, cyclin D1, and cyclin E.41 Modulation of the cell cycle and

thus early stages of adipogenesis can also occur through epigenetic

modulation, and indeed the lncRNA slincRAD was found to interact

with the DNA methyl transferase 1 (DNMT1) in the S phase of the cell

cycle in mouse, facilitating the cell's entry into the MCE phase.42

Through microarray study a novel lncRNA, the lncRNA-Adi, has been

identified and found to be highly expressed in the MCE phase in rat

adipocytes. It exerts its effect through the interaction with miR-449a,

enhancing the expression of the miRNA's target CDK6, a cyclin-

dependent kinase sensitive to high-fat diet (HFD) and involved in the

regulation of cell beige tissue formation.43,44

The genetic location of lncRNAs could be of crucial relevance in

identifying their target genes. Three recently discovered lncRNAs,

Gm15051, Tmem189, and Cebpd genomically, locate respectively

next to Hoxa1, C/EBPβ, and C/EBPδ in mouse, and their expression

levels correlate, suggesting that each of them can positively influence

the neighboring gene's expression having the role of transcriptional

regulators.45

3.2 | Role of lncRNAs in the regulation of late
adipogenesis master regulators

As pre-adipocytes mature into adipocytes, C/EBPβ and δ target the

promoters of C/EBPα and PPARγ, master regulators of adipocytes

terminal differentiation as they activate genes that are involved in

insulin sensitivity, lipogenesis, and lipolysis, with subsequent impli-

cations for diseases involving lipid metabolism such as dyslipidemia.

This step is critical for late adipocyte differentiation, and indeed

numerous lncRNAs have been found to modulate specifically PPARγ

(Figure 1), along with other late-adipogenesis regulators. SRA also

plays a role in this context, as it exerts its function via direct associa-

tion with the PPARγ protein in murine cells, promoting its transcrip-

tional activity.37,38 Another mode of action through which lncRNAs

can modulate PPARγ is through miRNA sponging. This is the case of

lncRNA IMFNCR (intramuscular fat-associated lncRNA), which has

been found to promote intramuscular adipocyte differentiation in

chicken sponging miR-128-3p and miR-27b-3p, which directly target

PPARγ.46 There can also be an indirect lncRNA-miRNA modulation of

PPARγ, through other epigenetic modulators. The adipocyte

differentiation-associated lncRNA (ADNCR) can sponge miR-204,

whose target gene, SIRT1, is known to form a complex with modula-

tors such as NCoR and SMART to repress PPARγ activity in bovine

adipocytes.47 An epigenetic modulation can happen at PPARγ's pro-

moter, in sites known as CpG islands that when methylated decrease

the expression of the respective downstream genes. Indeed, the

lncRNA Plnc1, transcribed 25,000 bp upstream of PPARγ2, can atten-

uate the methylation status of its promoter increasing subsequent

transcription in mouse.48 PPARγ can also be targeted at the end of

specific signal transduction pathways, as demonstrated for STAT3

gene expression regulation.49 Specifically, adipogenesis is induced by

the activation of STAT3, acting as a molecular switch. This effect was

counteracted by PPARγ's activation with the agonist troglitazone,

suggesting that STAT3 can modulated adipogenic differentiation

through a PPARγ upstream regulation.49 The nuclear lncRNA PVT1

has been found to associate with STAT3 in 3T3-L1 pre-adipocytes,

and indeed PVT1 has been found to correlate with increased expres-

sion of PPARγ, but also C/EBPα, FABP4, and genes related to fatty

acid synthesis.50 Well-renowned lncRNAs, such as NEAT1, widely

implicated in numerous cancers, can also have a function in

adipogenesis, and indeed NEAT1 has been found to modulate the

splicing of PPARγ, increasing the expression of the isoform 2 through

SRp40 association in 3T3-L1 pre-adipocyte.51 PPARγ can itself regu-

late lncRNA's expression, such as AK079912, which presents three

conserved PPARγ binding sites in its promoter region52 or lnc-BATE

in mouse.53

PPARγ is not the only player in late adipogenesis, and indeed,

lncRNAs can modulate other key targets. Specifically, knockdown

of the lncRNA HOXA11-AS1 can result in the inhibition of

adipocyte differentiation through a decrease of C/EBPα,

diacylgycerolacyltransferase (DGAT) 2, cell death-inducing

DFF45-like effector (CIDEC), and perilipin.54 On the other hand,

the tissue differentiation-inducing non-protein coding RNA (TINCR)

can form a feedback loop with miR-31 and C/EBPα, promoting

adipogenesis in human adipose-derived stem cells (hADSCs).55 The

adipogenic differentiation-induced ncRNA (ADINR) can activate

MLL3/4, epigenetically modulating transcription of C/EBPα in

hADSCs.57,58 LncRNAs can also bind epigenetic regulators and

upregulate expression of late-adipogenesis genes, as does miR-31
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host gene (MIR31HG), which is able to promote the binding of

H3K4me3 to FABP4's promoter, increasing its expression in

hADSCs.56 The Wnt/β-catenin signaling is also influenced by a

novel nuclear lncRNA, AC092834.1 in hADSCs. This lncRNA

directly promoted an increase in the expression of DKK1, which

competitively binds to LRP5 to degrade cytosolic β-catenin, ulti-

mately leading to upregulation of adipogenic transcripts such as

PPARγ, FAPB4, and C/EBPα.57

A specific subclass of lncRNAs, defined as “antisense RNAs,”
can modulate the expression of their respective sense gene altering

processes in which they are involved. For example, PU.1AS can

form a RNA-duplex with PU1, a molecule that inhibits

adipogenesis, hindering its expression and subsequent protein

expression with a decreased expression of PPARγ, fatty acid

synthase, and adiponectin in mouse.58,59 Similarly, adiponectin anti-

sense RNA (AdipoQ AS) can modulate adiponectin expression and

inhibit murine adipogenesis.60 Although not its antisense, lnc-leptin

is directly correlated with leptin, as it is transcribed from an

enhancer region upstream of leptin and their expression directly

correlates.61

The lncRNA's correlation with adipogenesis can also be negative,

as some lncRNAs have been found to be decreased in adipogenesis,

such as lnc-U90926 in murine 3T3-L1 pre-adipocytes,62 miR-221 host

gene (MIR221HG) in bovine adipocytes, and lncRNA H19 in human

bone marrow mesenchymal stem cells.63,64

Further studies might be needed to clarify specific lncRNA's func-

tions in this process, as controversial evidences are also present. This

is the case of maternally expressed gene 3 (Meg3), a novel lncRNA

which has been defined as both able to inhibit and promote

adipogenesis.65,66 Indeed, a first study reported that silencing of

Meg3 promoted adipogenesis through the overexpression of the

adipogenesis-related miR-140-5p, PPARγ, and C/EBPα, suggesting

that when Meg3 is absent, adipogenesis is induced.65 On the contrary,

another work described Meg3's role in upregulating Dickkpof-3

through interaction with miR-217, ultimately leading to an

upregulation of adipogenesis via the induction of expression of

adipogenesis-related genes such as FABP4.66 This might be due to a

time-specific effect of the lncRNA's action, or the different cellular

context as the first study was performed in human cells whereas the

second in murine 3T3-L1 pre-adipocytes.

F IGURE 1 LncRNAs can influence PPARγ's transcription and activity at multiple levels. Specifically, lncRNAs can modulate directly PPARγ by
inhibiting DNA methylation. They can also selectively induce a different PPARγ mRNA splicing or sponge-specific miRNAs which would sequester
and lead to degradation of PPARγ's mRNA. They directly bind to the PPARγ protein being able to inhibit its activity through upregulation of the
PPARγ repressor complex. Lastly, PPARγ itself can induce the expression of specific lncRNAs. Made in ©BioRender—biorender.com
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3.3 | Identification of lncRNAs specifically
associated with obesity

Specific studies correlate lncRNAs with the obese phenotype and

obesogenic models. Among them, SRA has been demonstrated to

be strictly associated with obesity, as it has been shown that

SRA−/− mice have a phenotype of resistance to HFD-induced obe-

sity with decreased fat mass, reduced fatty liver, and improved glu-

cose tolerance.67 High-throughput techniques such as RNA

sequencing allowed the screening of the whole transcriptome in

adipose tissue of patients with obesity versus lean individuals, lead-

ing to the identification of novel lncRNAs involved in the disease.

In one study, two lncRNAs termed adipocyte-specific metabolic-

related lncRNAs (ASMER-1 and ASMER-2) were identified and

found to regulate adipogenesis, lipid mobilization, and adiponectin

secretion.68 Screenings were also performed in gluteal subcutane-

ous adipose tissue on healthy subjects, in which 120 adipose-

derived lncRNAs were identified69 and in children with obesity,

with the identification of 1268 lncRNAs, and a specific relevance

for RP11-20G13.3 has been found.31 The same has been done in

mice, where brown and white adipocytes, pre-adipocytes, and cul-

tured adipocytes were screened leading to the identification of

175 different lncRNAs that are specifically regulated during

adipogenesis in one study70 and 735 upregulated and 877 down-

regulated lncRNAs in murine brown versus white adipocytes.71

Similarly, inguinal white adipose tissue has been screened in obese

mice compared to wild type ones, identifying 46 differentially

expressed lncRNAs.41 Moreover, lncRNAs such as PVT1 and Plnc1

were found to be upregulated in obese mice.48,50

From an anatomical point of view, lncRNAs expression can differ

in different fat depots, as it is for HOX transcript antisense RNA

(HOTAIR) which has been demonstrated to be highly expressed in

gluteal-femoral fat, and mechanical stimulation of this area in human

subjects induces exosomal secretion of HOTAIR, which then circu-

lates in the bloodstream resulting in higher serum expression in sub-

jects with obesity and a sedentary lifestyle.72

4 | LNCRNAS IN OBESITY-ASSOCIATED
DISEASES

Given the strong implications of lncRNAs in adipogenesis and adipo-

cytes differentiation, it was a natural evolution to study the role of

these molecular modulators in obesity and in the related most com-

mon complications.73–75 The obesity-associated diseases are

numerous,1–3 and the initiating events start early in childhood.76

Indeed, very recently numerous lncRNAs have been found to corre-

late with obesity-associated inflammatory diseases.77 The following

sections summarize recent advances in identifying lncRNAs implicated

in cardiovascular complications (such as myocardial infarction, coro-

nary heart diseases (CHD), cardiac hypertrophy, heart failure, atrial

fibrillation (AF), and atherosclerotic thrombosis), endocrine/metabolic

complications (such as T2D and nephropathy), and even

immune-related complications (such as OA) which are obesity-

associated and/or regulated.

4.1 | Cardiovascular diseases

Cardiovascular diseases (CVD) include myocardial infarction, CHD,

cardiac hypertrophy, heart failure, AF, and atherosclerotic

thrombosis.73,78–80 Childhood and adolescent obesities play a crucial

role in developing CVD risk factors and are linked to higher risk of car-

diovascular morbidity and mortality in adulthood.81 Numerous

lncRNAs are implicated in CVD, and among them cardiac autophagy

inhibitory factor (CAIF) is downregulated in end-stage cardiomyopa-

thy and usually could represent a good biomarker of a disease state in

humans.82 CAIF seems to have a protective role through suppression

of cardiac autophagy while directly blocking p53. P53 is known to tar-

get and upregulate myocardin in myocardial ischemia and reperfusion,

and CAIF thus indirectly inhibited myocardin's expression.83 It has

been reported that antisense ncRNA in the INK4 Locus (ANRIL) can

sponge miR-99a and miR-449 during autophagy processes, subse-

quently upregulating thrombomodulin and promoting angiogenesis in

human umbilical vein endothelial cells.84 The lncRNA autophagy pro-

moting factor (APF) can also influence autophagic cell death in murine

myocardial infarction targeting miR-188-3p and autophagy-related

protein 7.85 A third lncRNA which can modulate murine autophagy

through miRNA sponging is AK088388, regulating Beclin-1 and

LC3-II's expression through miR-30a.86

LncRNAs can also target the apoptotic process in cardiomyocytes,

which can lead to myocardial infarction. P53 is also implicated in apo-

ptosis modulation, and the lncRNA Meg3 can target p53 and subse-

quently modulate NF-κB- and ERS-associated apoptosis in murine

ventricular myocytes.87 Cardiac apoptosis-related lncRNA (CARL) is

able to sponge miR-539 in mice and thus indirectly upregulate its tar-

get PHB2, which modulates apoptosis and mitochondrial fission.88

Mitochondrial fission and fusion are indeed strictly associated with

cardiomyocyte apoptosis. The lncRNA AK009271, named mitochon-

drial dynamic-related lncRNA (MDRL), has been proved to be involved

in mitochondrial fission and fusion under stress conditions. MDRL can

interact with miR-361 and suppress it, thus reducing mitochondrial

fission and apoptosis upon anoxia/reoxygenation treatment in murine

cardiomyocytes.89,90 A specific analysis of lncRNAs involved in myo-

cardial infarction has been performed by Chen and colleagues, which

reports numerous studies aimed at performing high-throughput

screening of lncRNAs which are differentially expressed in various

heart diseases.91 They also report an implication for the lncRNAs

ZFAS1,92,93 HOTAIR,94 MALAT1,95,96 GAS5,97 FAF,98 TTTY15,99

ECRAR,100 AK080084,101 NR_045363,102 TUG1,103 and Meg3.91,104

Myocardial infarction can indeed influence a differential lncRNAs

expression. Specifically, acute myocardial infarction in mice was asso-

ciated with the upregulation of two lncRNAs named myocardial

infarction-associated transcript 1 (MIRT1) and 2 (MIRT2), which nega-

tively correlated with infarct size and positively correlated with ejec-

tion fraction. MIRT1 and MIRT2 modulate the expression of multiple
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genes known to be involved in processes affecting left ventricular

remodeling, such as extracellular matrix turnover, inflammation, fibro-

sis, and apoptosis.105 The lncRNA metastasis-associated lung adeno-

carcinoma transcript 1 (MALAT1) has been seen expressed in

cardiomyocytes subjected to hypoxia, high glucose, cytokine, and oxi-

dative stress which are all risk factors of CVD in human and murine

models, and thus has been suggested to represent a new possible

therapeutic target in the disease.106 The lncRNA myosin heavy chain

associated RNA transcripts (MHRT) was upregulated in blood of

patients with myocardial infarction and seems to be upregulated in

cardiac myocytes in the presence of high levels of reactive oxygen

species to exert protective effect on these cells.107 The lncRNA

Wisp2 super-enhancer-associated RNA (Wisper) was induced in car-

diac fibrosis in both human patients and murine models, where it

could be protective through regulation of cardiac fibroblast prolifera-

tion, migration, and survival.108 MIAT has been found to be

upregulated in serum of patients with coronary atherosclerotic heart

disease.109 MIAT can also sponge and thus inhibit miR-133a-3p, pro-

tective in multiple heart diseases for its role in improving cardiac func-

tion and decreasing fibrosis in rat models.110

LncRNAs can also influence cardiac hypertrophy and thus aggra-

vate CVD, as cardiac hypertrophy is a crucial hallmark of heart fail-

ure.111 Indeed, the heart-enriched lncRNA cardiac-hypertrophy-

associated epigenetic regulator (Chaer), can epigenetically interact

with the Polycomb Repressor Complex 2 (PRC2) and inhibit histone

H3 lysine 27 methylation at the promoter regions of genes involved in

cardiac hypertrophy, thus inducing the expression of genes involved

in cardiac hypertrophy, with studies performed in rat, murine, and

human cells.112 Cardiac hypertrophy can also be induced by the

lncRNA cardiac hypertrophy-related factor (CHRF) in mouse, although

in this case the underlying mechanisms involves sponging of miR-489

and subsequent upregulation of the miRNA's target Myd88, a regula-

tor of cardiomyocyte hypertrophy.113 The lncR-UCA1 is upregulated

in mice hypertrophic cardiomyocytes, and it can sponge miR-184,

enhancing the expression of HOXA9.114 A detailed report on lncRNAs

in cardiac hypertrophy is reported in the work by Liu and

colleagues,115 which also implicates the lncRNAs MHRT,116 Meg3,117

DACH1,118 H19,119 Plscr4,120 SNHG1,121 TINCR,122 Uc.323,123 and

Ahit.124 Other lncRNAs have also been implicated in heart failure,111

as does the heart-related circRNA (HRCR), which in mice was found

to acts as endogenous sponge to mir-223, protecting them from

hypertrophic stimuli.125 Moreover, the lncRNA HypERlnc was signifi-

cantly reduced in human cardiac tissue from patients with heart fail-

ure compared with controls.126 Moreover, the lncRNAs profile was

analyzed in plasma of patients with ischemic cardiomyopathy and

dilated cardiomyopathy, two major problems which lead to heart fail-

ure.127 This microarray analysis identified 3222 differentially

expressed lncRNAs, highlighting also a co-expression between

lncRNAs and mRNAs.127 Other high-throughput screening for

lncRNAs in heart failure were performed in rat models of ischemic

heart failure,128 in murine models of post-myocardial infarction,129 in

explanted human heart failure hearts versus control donated ones,130

and in left ventricle biopsies of patients affected by non-end-stage

dilated ischemic cardiomyopathy and matched controls131 highlighting

a substantial number of lncRNAs implicated in the pathophysiology of

this process.91,132,133

Another form of CVD is AF, which is the most common type of

arrhythmia.134 Numerous studies were performed on the role of

lncRNAs in this disease, and also in this case high-throughput screen-

ing has allowed the identification of mounting evidences on lncRNAs

in this disease.135 Specifically, a study conducted in right atrium tissue

of patients with rheumatic heart diseases and AF or normal sinus

rhythm highlighted 182 differentially expressed lncRNAs.134 Another

work identified the transcriptome profile of left and right atrial

appendages of patients with AF versus controls and identified NPPA

and its antisense as potential regulators of muscle contraction in AF

and moreover RP11-99E15.2 and RP3-523K23.2 which could modu-

late extracellular matrix binding and transcription of HSF2 targets,

respectively.136 The atrial tissue was also examined in another study

considering three AF patients, highlighting 219 differentially

expressed lncRNAs.137 RNA-seq performed in lymphocytes of

patients with permanent AF versus controls highlighted the differen-

tial expression profiles of lncRNAs, ultimately implicating two

lncRNAs, ETF1P2 and AP001053.11, in AF pathogenesis.138,139 Also

focusing on the relevance of lncRNAs as peripheral biomarkers,

another study performed a microarray study on blood from patients

with AF and matched controls, highlighting 177 deregulated lncRNAs,

with the two most deregulated being NONHSAT040387 and NON-

HSAT098586.140 Lastly, a study in atria from AF rabbit highlighted

99,843 putative new lncRNAs, of which TCONS_00075467 was

selected to be important for electrical remodeling, possibly through

sponging of miR-328 and subsequent regulation of CACNA1C.141

Other lncRNAs implicated in AF include TCONS_00202959,142

AK055347,143 MIAT,110 KCNQ1OT1,144 and others extensively

reviewed in previous publications.135,145–147 When focusing on the

adipose tissue implication in AF, the number of studies is more

restricted, but a very recent work performed a RNA-sequencing anal-

ysis in epicardial adipose tissue samples of patients with persistent

non-valvular AF and sinus rhythm, highlighting 57 differentially

expressed lncRNAs.148

Numerous lncRNAs have also been found deregulated in CHD, with

one recent work highlighting a network of 62 lncRNAs, 332 miRNAs,

and 366 mRNA differentially expressed in peripheral blood mononuclear

cells (PBMCs) of patients with CHD versus controls.149 The screening

led to the identification of two lncRNAs, CTA-384D8.35 and CTB-

114C7.4, as main players in the disease.149 Also in this case, an in-depth

classification of both miRNA and lncRNAs involved in CHD was per-

formed by Zhang and colleagues,150 which specifically report the impli-

cated lncRNAs to be ANRIL,151 H19,152 HIF1A-AS1,153 linc-p21,154

RNCR3,155 TGFB2-OT1,156 lnc-Ang362,157 HAS2-AS1,158 SMILR,159

SENCR,160 Meg3,161 and lnc-MKI67IP-3.162

Lastly, lncRNAs are also being investigated for their role in ath-

erosclerotic thrombosis, with multiple recent works focusing espe-

cially on this topic.163–165 These include ANRIL,166 LeXis,167

RP5-833A20.1,168 MeXis,169 and several more, able to act through

numerous processes such as vascular remodeling, endothelial
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dysfunction, leukocyte recruitment, macrophage apoptosis, and cho-

lesterol metabolism.165

In conclusion, recent evidence indicates the important roles of

lncRNAs in the complex regulatory network of CVD, and many of

them could be used as novel therapeutic targets and/or biomarkers

for early diagnosis or prognosis for CVD. Indeed, current therapies for

CVD such as cardiac hypertrophy currently alleviates symptoms, but

new genetic analyses could provide new therapeutic targets.115

Modulation of lncRNAs such as Meg3, Plscr4, H19, SNHG1,

uc.323, or Ahit could attenuate the increasing size of

cardiomyocytes.117,119–121,123,124 Moreover, a specific class of anti-

sense oligonucleotides, GapmeRs, shows great promise in pharmaco-

logical silencing of lncRNAs in vivo,170 and even if no clinical trial has

been performed, therapeutic GapmeR injections have been found to

modulate lncRNAs such as Chast171 and Meg3172 in animal models of

pressure overload or Wisper in myocardial infarction.108,173 More-

over, as lncRNAs have been detected in extracellular body fluids, they

could be used as biomarkers, and example of this is long intergenic

non-coding RNA predicting cardiac remodeling (LIPCAR), whose

plasma levels in humans are associated with left ventricular remo-

deling after myocardial infarction and with an increased risk of devel-

oping heart failure.174 Other identified predictors are MIAT,174

SENCR,174 H19,174 NFAT,175 MHRT,175 ANRIL,176 lncPPARδ,177and

CoroMarker.178 Remarkably, four clinical trials are investigating the

role of lncRNAs as biomarkers in patients with CVD,132 suggesting a

strong potentiality for these molecules as disease indicators.

4.2 | Hypertension

Multiple lncRNAs have been found to be upregulated in the plasma of

patients with hypertension, such as AK125261, AK098656, and

TUG1.74 AK098656, upregulated in hypertensive patients, acts

through an increase in proliferation and migration of vascular smooth

muscle cells (VSMCs), as it has been shown that it can directly bind to

the VSMCs-specific contractile protein, myosin heavy chain-11, and

an essential component of extracellular matrix, fibronectin-1, promot-

ing their degradation.179 Moreover, AK098656-overexpressing trans-

genic rats spontaneously progress to hypertension, presenting

increased media thickness and reduced arterial lumen.180 The lncRNA

TUG1 can also modulate proliferation and migration of rats VSMCs

acting as a sponge for miR-145-5p and thus inducing the miRNA's tar-

get FGF10 and subsequently activating the Wnt/β-catenin path-

way.181 Proliferation and migration of VSMCs can also be increased in

rats by the lncRNAs XR-007793 and MRAK048635 P1.182,183 Down-

regulation of MRAK048635 P1 seems to induce VSMCs phenotypic

switching from a contractile to a secretory phenotype, representing a

potential therapeutic target in the disease.182 The lncRNA GAS5 can

also modulate PDGF-induced proliferation and migration of human

VSMCs through the sponging of miR-21, which is indeed able to tar-

get platelet-derived growth factor (PDGF).184

A second process that can be modulated by lncRNAs in hyperten-

sion is indeed muscular remodeling. Vascular remodeling is an active

process that involves changes in cellular growth, apoptosis, migration,

inflammation, and production of extracellular matrix proteins. The

lncRNA GAS5 can also regulate this process as it can remodel arteries

such as the caudal, carotid, renal, and thoracic ones. Indeed, GAS5's

knockdown regulate the function of endothelial cells and VSMCs

through β-catenin signaling.185 Another previously mentioned lncRNA

involved in this process is MALAT1, highly expressed in myocardial

and thoracic aortic vascular tissues of hypertensive rats, where it pro-

motes cardiac remodeling through transcriptional repression of

MyoD.186 The inflammatory process can also be of crucial relevance

in the hypertension process. TUG1 also act at this level, as it positively

correlates with the expression of inflammatory factors such as PAF,

ET-1, TNF-α, and hsCRP in the blood serum of hypertensive

patients.187 Moreover, a novel lncRNA has been named Giver

(Growth factor- and pro-Inflammatory cytokine-induced Vascular cell-

Expressed lncRNA), for its action in modulation of inflammation.188

Giver is induced by angiotensin II (AngII) through the recruitment of

Nr4a3 to Giver's promoter, and both Giver and NR4a3 were found

increased in AngII-treated human VSMC and in arteries from hyper-

tensive subjects but attenuated in hypertensive patients treated with

angiotensin-converting enzyme inhibitors or angiotensin receptor

blockers. It has been hypothesized that Nox1, a gene involved in oxi-

dative stress, may be one of the key effectors through which Giver

may promote cell proliferation and inflammation in VSMCs.188

Polymorphisms in specific lncRNAs can also induce disease

pathology. This is the case of cyclin-dependent kinase inhibitor 2B

antisense RNA 1 (CDKN2B-AS1), also termed ANRIL and previously

mentioned for its implication in CVD, where polymorphisms in its

sequence may contribute to higher systolic blood pressure in hyper-

tensive patients.189,190 Specifically, it has been found that the SNPs

rs10757274, rs2383207, rs10757278, and rs1333049, particularly

those within the CDKN2B-AS1 gene and related haplotypes, may

confer an increased susceptibility to hypertension development.189

4.3 | Type 2 Diabetes

At all ages, the risk of T2D rises with increasing body fat. The preva-

lence of T2D is 3 to 7 times higher in those who are affected by obe-

sity than in normal-weight adults. Specifically, T2D is an adult-onset,

non- insulin-dependent type of diabetes and is strictly linked to obe-

sity.75 In recent years, an increased incidence of T2D among youth is

also reported, with obesity and family history of T2D generally pre-

sent.191 Also, in this case, lncRNAs could be crucial players in disease

onset and its progression and as this review focuses specifically on

obesity-related metabolic diseases, the next paragraph will highlight

potential implications of lncRNAs in T2D.

Indeed, lncRNAs can be both upregulated and downregulated

during disease progression in different cell types (Figure 2). Expression

profiles of lncRNAs in PBMCs from patients with T2D highlighted

how several lncRNAs were significantly increased compared to

controls, and these included HOTAIR, Meg3, LET, MALAT1,

MIAT, CDKN2BAS1/ANRIL, XIST, PANDA, GAS5, Linc-p21,
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ENST00000550337.1, PLUTO, and NBR2.192 The lncRNAs ANRIL

and MALAT1 were found increased in the serum of patients with

T2D,193,194 and the same was true for NONRATT021972, which also

correlated with increased blood glucose and neuropathic pain.195

Interestingly, LncRNA-p3134 is highly expressed in serum's exosomes

of patients with T2D as studies found that it is secreted by islet

β-cell.196 Moreover, the lncRNA H19 was found upregulated in

plasma of patients with T2D,197 and the lncRNA KCNQ1OT1 was

upregulated in T2D islets.198 Evidences can also be obtained from

murine models of the disease, as is the case of E330013P06, which

was found upregulated firstly in macrophages of diet-induced insulin-

resistant T2D mice and subsequently also found upregulated in mono-

cytes from patients with T2D.199

Interestingly, many lncRNAs have also been reported to be down-

regulated in patients with T2D. When considering PBMCs screening

studies, results showed that multiple lncRNAs were found down-

regulated. These include LINC00523, LINC00994,200 LY86-AS1,

HCG27_201,201 THRIL, and SALRNA1.192 Moreover, studies showed

that levels of GAS5 lncRNA were decreased both in serum and in

plasma of patients with T2D.197,202 Lastly, the lncRNA HI-LNC45 was

found downregulated in human T2D islets.198

Indeed, lncRNAs can modulate the cellular activity of pancreatic β

cells. lncRNA-p3134, found deregulated in human patients and dia-

betic mice, seems to act as a new signaling molecule that maintains

β-cell mass and enhances insulin synthesis and secretion, and indeed

it has been seen that lncRNA-p3134 can contribute to reverse the

insufficient insulin secretion in T2D.196 Moreover, the lncRNA β-cell

long intergenic noncoding RNA (βlinc1) can coordinate the regulation

of neighboring islet-specific transcription factors, and in fact it is nec-

essary for the specification and function of insulin-producing β cells.

In particular, in adult mice it has been shown that deletion of βlinc1

leads to a defective islet development and disruption of glucose

homeostasis.203 In pediatric age, Liu et al. reported that several

lncRNAs involved in regulation of glucose metabolic process and insu-

lin resistance (IR), such as RP11-559N14.5, RP11-363E7.4, and

RP11-707P17.1, were significantly upregulated or downregulated in

children with obesity compared to controls, even in the absence of

diabetes.31 Considering that hyperglycemia and T2D develop when

the pancreas cannot match the increased insulin demands resulting

from IR, the lncRNAs could play a crucial role in the onset of the

disease.

4.4 | Nephropathy

Obesity is a major risk factor for the development of chronic kidney

disease, through the direct development of nephropathy.204–206

Indeed, obesity can cause both a specific renal nephropathy and con-

tribute to renal complications in metabolic syndrome.206 LncRNAs

have also been found to associate with this process.207–209 Specifi-

cally, the role of lncRNAs in diabetic nephropathy (DN), which

accounts for approximately 40% of diagnosed end-stage kidney fail-

ure, has been extensively reviewed by Li and collaborators.207 Specifi-

cally, TUG1,210–212 MIAT,213 CASC2,214 ENSMUST00000147869,215

1700020I14Rik,216 CYP4B1-PS1–001,217 Gm15645,218 and

LINC01619219 were downregulated in DN, whereas PVT1,

MALAT1,220 Gm4419,221 Gm15645,218 NR_033515,222 Erbb4-IR,223

ASncmtRNA-2,224 and lnc-MCG225 were upregulated in DN.207

Among the other lncRNAs implicated, Rpph1 was found

upregulated in mice with DN, regulating also cell proliferation and

inflammatory cytokines production in mesangial cells, through a direct

interaction with galectin-3.226 LncRNAs can indeed play a role in epi-

genetic regulation of DN, along with canonical modulators such as his-

tone modifiers and DNA methylation.227 Indeed, they can act

synergistically with miRNAs in the disease pathology, as does RP23,

which is induced by TGF-β1 in mesangial cells along with its

F IGURE 2 Summary of lncRNAs upregulated
or downregulated in specific cell types of patients
with T2D. Made in ©BioRender—biorender.com
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containing miRNAs, miR-216a, and miR-217.228 Moreover, in mouse

miR-192 is also co-regulated by TGF-β1 in mesangial cells along with

its host ncRNA CJ241444, through promoter Smad binding elements

and epigenetic regulation via protein C-ets-1 and histone acetyla-

tion.227,229 Lastly, another study found 21 lncRNAs upregulated in

two models of renal fibrosis, subsequently downregulated in

Smad3-knockout mice, suggesting they were induced by this

factor.230

4.5 | Osteoarthritis

Obesity can impact tissue types other than the adipose tissue, and

indeed it can significantly impact both the musculoskeletal and

immune systems, leading to the development of OA.77,231 OA is a

debilitative degenerative joint disorder which is characterized by

pain, decreased mobility, and an overall negative impact on the qual-

ity of life.231 In recent years, lncRNAs have been found to also be

strongly deregulated in this disease, although most studies concern

OA development and do not specifically focus on the obesogenic

co-morbidity.77 These lncRNAs have been extensively reviewed in

other works,77,232 specifically classifying them for their role in dis-

ease progression, immune response, and even potential therapeutic

targets.77,232 It is indeed clear that the main implication of lncRNAs

in OA relates to the immune response, and to this end in recent

years mounting studies are reporting this correlation, with the impli-

cation of, but not limited to, CASC2,233 SNHG1,234 DANCR,235

HOTAIR,236 H19,237 SNHG7,238 MFI2-AS1,239 PACER, CILinc01,

CILinc02,240 PVT1,241 XIST,242 and FOXD2-AS1.243 A high-

throughput screening also reported 3007 upregulated lncRNAs and

1707 downregulated lncRNAs in OA human cartilage compared with

normal samples, indicating their significant implication in the dis-

eases.244 Moreover, another work investigated the role of exosomal

lncRNAs from plasma and from synovial fluid in patients at different

stages of OA, highlighting a role for PCGEM1 in disease

progression.245

Even so, future works will need to specifically focus on the link

between OA, lncRNAs, and obesity. Nanus and co-authors reported

19 differentially expressed lncRNAs in normal-weight OA versus

non-OA patient fibroblasts, and these are MALAT1, MIR155HG,

SMILR, LINC01426, RP11-863P13.3, CARMN, RP11-79H23.3,

RP11-362F19.1, RP11-290 M5.4, VLDLR-AS1, RP11-536 K7.3,

HAGLR, LINC01915, RP11-367F23.2, RP11-392O17.1, LINC01705,

LINC01021, DNAJC27-AS1, and AF131217.1.246 Specifically,

MALAT1 was rapidly induced upon stimulation of OA synovial fibro-

blasts with proinflammatory cytokines, and its ablation leads to a

reduced expression of IL-6 and IL-8.77,246 Moreover, the lncRNA

Nespas was found upregulated in human OA chondrocytes, sponging

numerous miRNAs which target Acyl-CoA synthetase 6 (ACSL6), lead-

ing to an overall increase in ACSL6.247 ACSL6 encodes a key enzyme

that activates polyunsaturated long-chain fatty acids, suggesting that

this process could modulate lipid metabolism in OA.247 Overall, these

evidences suggest a clear implication for lncRNAs in mediating

epigenetic dysregulation in OA, but the specific link with obesity will

need further clarification.

4.6 | Hepatic metabolic disease

Obesity is also linked with the development of hepatic metabolic dis-

ease, as nonalcoholic fatty liver disease (NAFLD) and especially its

most severe form (nonalcoholic steatohepatitis) present an increased

prevalence in patients with obesity (from 3% to 20–40%).248 LncRNAs

also appear to intervene in this process, with a tight link with obesity

development. Indeed, the lncRNA Blnc1, implicated in adipogenesis

and obesity, was found upregulated in obese and NAFLD mice, acti-

vating SREBP1c and hepatic lipogenesis, thus aggravating disease pro-

gression.249 Gm15622 was also found upregulated in the liver of

obese mice fed a HFD, exerting its mechanism of action sponging

miR-742-3p, subsequently upregulating SREBP1c.250 Moreover, its

inactivation abrogates HFD-induced hepatic steatosis, suggesting also

in this case a therapeutic window.249 Conversely, lncARSR was found

upregulated in high fatty acid-treated human HepG2 and NAFLD

mouse models, binding YAP1 and further increasing lipid accumula-

tion, a mechanism alleviated when lncARSR was silenced.251 The

lncRNA H19 was also upregulated in NAFLD murine models, and

again its silencing reduced lipid accumulation in hepatocytes.252 On

the contrary, overexpression of the lncRNA FLRL2 in vivo in murine

NAFLD models resolved steatosis, lipogenesis, and inflammation.253

Similarly, Meg3 was downregulated in HFD mice, and acting as ceRNA

for miR-21 it could help alleviate lipid over-deposition.254

Also in this case, RNA sequencing and microarrays allowed the

identification of numerous new putative candidates. Indeed,

numerous high-throughput studies were performed in both

murine models255–257 and human tissues,258 allowing the identifica-

tion of specific new candidates such as AK012226,256

NONMMUT010685,257 and MALAT1.258 Interestingly, starting from

pre-existing human transcriptome data on NAFLD and liver metabo-

lism, it was also possible to develop a pipeline which identified human

lncRNA metabolic regulators (hLMR), with a specific one being strictly

involved in cholesterol metabolism.259 Their potential as biomarkers

was investigated analyzing serum samples of patients with mild and

severe NAFLD; through microarray analysis several ncRNAs were

identified, and specifically the expression of TGFB2/TGFB2-OT1

allowed advanced fibrosis discrimination.260 Indeed, the amount of

data concerning the role of lncRNAs is becoming increasingly over-

whelming, with numerous new evidences each year, and for further

reading on the topic we refer the reader to other published review

reports.261–267

4.7 | Dyslipidemia

Obesity is probably the main cause for the development dyslipidemia,

which typically consists of increased triglycerides, free fatty acids,

apolipoprotein B, and LDL-C, and decreased HDL-C.268 The role of
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lncRNAs in adipogenesis and thus lipid metabolism has been previ-

ously discussed in Section 3, but limited evidence specifically refers to

the link between lncRNAs and patients with dyslipidemia.269 Among

all, Blnc1 activation in epididymal fat in HFD-induced obese mice

seems to have a slight impact on dyslipidemia, suggesting a specific

link with this pathogenesis.270 Moreover, a recent work screened the

lncRNAs expression in rat livers with hypertriglyceridemia and identi-

fied the upregulation of a novel lncRNA: lnc19959.2. The knockdown

of lnc19959.2 resulted in triglycerides lowering effects both in vitro

and in vivo, and mechanistic studies revealed that lnc19959.2

upregulated ApoA4 expression via ubiquitinated transcription inhibi-

tor factor Purb, while its specific interaction with hnRNPA2B1 was

able to downregulate the expression of Cpt1a, Tm7sf2, and Gpam.271

Indeed, lncRNAs can deeply influence lipid homeostasis, but fur-

ther studies are required in order to determine whether lncRNAs that

regulate lipogenesis, lipolysis, β-oxidation, adipogenesis, and thermo-

genesis could also become biomarkers for therapies that target

dyslipidemias.269,272

5 | CONCLUSIONS

Obesity is a complex disease representing a great burden on the

health care system, commonly leading to the development of co-

morbidities also in pediatrics. Epigenetics through RNA biology might

play a crucial role in elucidating new targetable pathways, and in this

context lncRNAs are emerging as interesting new candidate targets

and players. Indeed, obesity-associated lncRNAs play a crucial role in

adipose tissue modulation, but their action is not limited to this, as

they have been implicated in modulating obesogenic co-morbidities

influencing the cardiovascular system, the immune system, the liver,

and even the musculoskeletal system.73,246,265 Moreover, the number

of co-morbidities associated with obesity is extremely significant and

includes also diseases which do not strictly correlate with disruption

in metabolic pathways. Indeed, multiple numerous tumors are also

obesity-induced, and although no specific correlation between

lncRNAs present in patients with obesity and specific cancer has yet

been made, one review report summarizes the link between numerous

lncRNAs present both in obesity and cancer.273 Non-coding RNAs will

revolutionize modern medicine making it possible to understand in

detail unknown aspects of molecular biology over the coming years,

and indeed a deep understanding of lncRNAs' role in adipocytes biol-

ogy will provide multiple novel therapeutic strategies to better com-

bat obesity and prevent early obesity complications in the near future.

There is a need to summarize all the recent advances made in the dis-

covery of the role of lncRNAs in the pathogenesis and progression of

this disease, and it appears evident that in future years more and more

research efforts will focus on characterization of the specificity of

lncRNAs' mechanisms of action in obesity-related diseases (Table 1).

Indeed, further studies will need to analyze in depth the

TABLE 1 Summary of deregulated lncRNAs in obesity and associated diseases

Disease LncRNA

Obesity SRA,67 ASMER-1 and ASMER-2,68 RP11-20G13.3,31 PVT1,50 Plnc1,48 HOTAIR,72 lnc19959.2.271

Cardiovascular

diseases

CAIF,83 CDKN2BAS1/ANRIL,84,151,166,176 APF,85 AK088388,86 Meg3,87,161 CARL,88 MDRL,89,90 ZFAS1,92,93 HOTAIR,94

MALAT1,95,96 GAS5,97 FAF,98 TTTY15,99 ECRAR,100 AK080084,101 NR_045363,102 TUG1103 and Meg3,91,104,117 MIRT1

and MIRT2,105 MALAT1,106 MHRT,107,116,175 Wisper,108 MIAT,109,110,174 Chaer,112 CHRF,113 lncR-UCA1,114 DACH1,118

H19,119,152,174 Plscr4,120 SNHG1,121 TINCR,122 Uc.323,123 Ahit,124 HRCR,125 HypERlnc126 RP11-99E15.2 and

RP3-523 K23.2,136 ETF1P2 and AP001053.11,138,139 NONHSAT040387 and NONHSAT098586,140

TCONS_00075467,141 TCONS_00202959,142 AK055347,143 MIAT,110 KCNQ1OT1,144 CTA-384D8.35 and CTB-

114C7.4,149 HIF1A-AS1,153 linc-p21,154 RNCR3,155 TGFB2-OT1,156 lnc-Ang362,157 HAS2-AS1,158 SMILR,159

SENCR,160,174 lnc-MKI67IP-3,162 LeXis,167 RP5-833A20.1,168 MeXis,169 lncPPARδ177 and CoroMarker.178

Hypertension AK125261,74 AK098656,74,179,180 TUG1,74,181,187 XR-007793,183 MRAK048635 P1,182 GAS5,184,185 MALAT1,186 Giver,188

CDKN2BAS1/ANRIL.189,190

Type 2 diabetes HOTAIR,192 Meg3,192 LET,192 MIAT,192 XIST,192 PANDA,192 GAS5,192,197,202 LINC-p21,192 ENST00000550337.1,192

PLUTO,192 NBR2,192 MALAT1,192,194 CDKN2BAS1/ANRIL,192,193 NONRATT021972,195 LncRNA-p3134,196 H19,197

KCNQ1OT1,198 E330013P06,199 LINC00523,200 LINC00994,200 LY86-AS1,201 HCG27_201,201 THRIL,192 SALRNA1,192

HI-LNC45,198 lncRNA-p3134,196 βlinc1,203 RP11-559 N14.5,31 RP11-363E7.4,31 RP11-707P17.31

Nephropathy TUG1,210–212 MIAT,213 CASC2,214 ENSMUST00000147869,215 1700020I14Rik,216 CYP4B1-PS1–001,217 Gm15645,218

LINC01619,219 PVT1,274 MALAT1,220 Gm4419,221 Gm15645,218 NR_033515,222 Erbb4-IR,223 ASncmtRNA-2,224 lnc-

MCG,225 Rpph1,226 RP23,228 CJ241444.227,229

Osteoarthritis CASC2,233 SNHG1,234 DANCR235HOTAIR,236 H19,237 SNHG7,238 MFI2-AS1,239 PACER, CILinc01, CILinc02,240 PVT1,241

XIST,242 FOXD2-AS1,243 PCGEM1,245 MALAT1,246 MIR155HG,246 SMILR,246 LINC01426,246 RP11-863P13.3,246

CARMN,246 RP11-79H23.3,246 RP11-362F19.1,246 RP11-290 M5.4,246 VLDLR-AS1,246 RP11-536 K7.3,246 HAGLR,246

LINC01915,246 RP11-367F23.2,246 RP11-392O17.1,246 LINC01705,246 LINC01021,246 DNAJC27-AS1,246 AF131217.1,246

Nespas.247

Hepatic metabolic

disease

Blnc1,249 Gm15622,250 lncARSR,251 H19,252 FLRL2,253 Meg3,254 AK012226,256 NONMMUT010685,257 MALAT1,258

hLMR,259 TGFB2-OT1.260

Dyslipidemia Blnc1,270 lnc19959.2271
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transcriptional deregulation present at a tissue level in patients with

obesity and co-morbidities, in order to identify further deregulated

targets. A better understanding of these mechanisms, already from

pediatric age, will accompany us in filling the gap from basic research

to clinical care of patients with obesity. These molecules, in fact, could

act as biomarkers for the early diagnosis of obesity-linked complica-

tions and possibly representing new indicators of risk assessment.
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