Stegherr et al. Trials (2021) 22:420
https://doi.org/10.1186/513063-021-05354-x Tria |S

METHODOLOGY Open Access

Survival analysis for AdVerse events ®
with VarYing follow-up times
(SAVVY)—estimation of adverse event risks

Regina StegherrT , Claudia Schmoor?, Jan Beyersmann], Kaspar Rufibach?, Valentine Jehl#,
Andreas Briickner?, Lewin Eisele®, Thomas Kiinzel?, Katrin Kupas®, Frank Langer’, Friedhelm Leverkus®,
Anja Loos?, Christiane Norenberg'?, Florian Voss'" and Tim Friede'?"

Check for
updates

Abstract

Background: The SAVVY project aims to improve the analyses of adverse events (AEs), whether prespecified or
emerging, in clinical trials through the use of survival techniques appropriately dealing with varying follow-up times
and competing events (CEs). Although statistical methodologies have advanced, in AE analyses, often the incidence
proportion, the incidence density, or a non-parametric Kaplan-Meier estimator are used, which ignore either censoring
or CEs. In an empirical study including randomized clinical trials from several sponsor organizations, these potential
sources of bias are investigated. The main purpose is to compare the estimators that are typically used to quantify AE
risk within trial arms to the non-parametric Aalen-Johansen estimator as the gold-standard for estimating cumulative
AE probabilities. A follow-up paper will consider consequences when comparing safety between treatment groups.

Methods: Estimators are compared with descriptive statistics, graphical displays, and a more formal assessment
using a random effects meta-analysis. The influence of different factors on the size of deviations from the
gold-standard is investigated in a meta-regression. Comparisons are conducted at the maximum follow-up time and
at earlier evaluation times. CEs definition does not only include death before AE but also end of follow-up for AEs due
to events related to the disease course or safety of the treatment.

Results: Ten sponsor organizations provided 17 clinical trials including 186 types of investigated AEs. The one minus
Kaplan-Meier estimator was on average about 1.2-fold larger than the Aalen-Johansen estimator and the probability
transform of the incidence density ignoring CEs was even 2-fold larger. The average bias using the incidence
proportion was less than 5%. Assuming constant hazards using incidence densities was hardly an issue provided that
CEs were accounted for. The meta-regression showed that the bias depended mainly on the amount of censoring
and on the amount of CEs.

Conclusions: The choice of the estimator of the cumulative AE probability and the definition of CEs are crucial. We
recommend using the Aalen-Johansen estimator with an appropriate definition of CEs whenever the risk for AEs is to
be quantified and to change the guidelines accordingly.
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Background

Time-to-event or survival endpoints are common in clin-
ical trials comparing different treatments in patients with
a specific disease [1, 2], e.g., overall survival in oncologi-
cal trials. The observation of the event times, such as the
time to death, is typically incomplete, since not all patients
experience the event of interest until the time of trial read-
out. For some patients, it is only known that the event has
not yet occurred during follow-up, and their time from
trial entry to trial closure is called a censored observation.
For the statistical analysis of this type of data, estab-
lished survival analysis techniques are required, such as
the well-known Kaplan-Meier estimator of the probabil-
ity of being event-free over time. Sometimes, competing
events (CE) have to be considered in addition. These are
events that preclude the occurrence of the event of inter-
est. As an example, in the ALEX trial investigators were
interested in the secondary endpoint of “time to central
nervous system (CNS) progression” [3]. A patient who
experiences a non-CNS progression event cannot expe-
rience a CNS progression event later anymore, even if
all patients would be followed up until their deaths. A
patient who dies before progression cannot experience a
later CNS progression event, either. So, the events “non-
CNS progression” and “death” are CEs when considering
the endpoint “time to CNS progression”. Standard sur-
vival analyses assume that in the long run every patient
will experience the event of interest and will therefore give
biased estimates in general. In the presence of CEs, ded-
icated statistical methods are required to give unbiased
estimates, such as the Aalen-Johansen estimator (AJE) of
the cumulative probability of the interesting event over
time [4]. For the analysis of efficacy in clinical trials based
on time-to-event endpoints in the presence of CEs, ade-
quate statistical methods are well established, and a large
amount of substantial literature exists on their adequate
use [5, 6].

For the analysis of safety, the situation is different.
In clinical trials, an essential part of the safety assess-
ment of treatments is based on the analysis of adverse
events (AEs). An AE is any unfavorable and unintended
sign including an abnormal laboratory finding, symp-
tom, or disease temporarily associated with the exposure
to an investigational product, whether or not consid-
ered related to the product [7, 8]. AEs are documented
by the clinical investigator and coded with the Medical
Dictionary for Regulatory Activities (MedDRA), which
provides clinically validated medical terminology (https://
www.meddra.org/). In the analysis, interest focuses often
on the risk of experiencing at least one AE of a spe-
cific type defined by severity or by MedDRA codes,
as e.g., MedDRA preferred term or MedDRA system
organ class or AEs of special interest in the indication
under study. According to the European Commission’s
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guideline on summary of product characteristics (SmPC)
[9, 10], the AE risk is classified into frequency cate-
gories which are defined by “very rare,” “ rare,” “uncom-
mon,” “common,” and “very common” when the risk is
<0.01%,<0.1%,<1%,<10%, and > 10%, respectively. AEs
can occur at any point in time during patients’ follow-up
in a clinical trial. The follow-up times can be incomplete,
leading to censoring, and can vary between patients and
between treatment groups. Additionally to censoring, CEs
can occur. The most obvious one is death without prior
AE of the interesting type. So, the situation is not different
from time-to-event endpoints for efficacy analyses in clin-
ical trials. But statistical methods properly accounting for
all these features of AE data are very rarely used in clini-
cal trials. The analysis is usually much more simplistic and
often ignores the time dynamic structure of AEs [8].

Estimation of the probability of an AE of a specific type
within a specific time interval is often done by the sim-
ple incidence proportion, i.e., the number of patients with
at least one observed AE of the specific type divided by
group size. The worry is that the incidence proportion
underestimates the cumulative AE probability because it
does not account for censoring [4, 8, 11, 12]. Other pro-
posals exist which account for censoring. One proposal is
the (exposure adjusted) incidence density which divides
the number of patients with at least one observed AE
the by cumulative patient-time at risk. This does account
for censoring but does not estimate a probability. It esti-
mates the AE hazard assuming it to be constant over time.
Under this rather strong assumption [13, 14] it may be
transformed onto the probability scale [15].

A detailed methodological investigation of these con-
cerns can be found for instance in [4]. The practical
question for trialists is how to empirically quantify adverse
event risk, which, in turn, also informs the AE frequency
categories mentioned above. The Kaplan-Meier estima-
tor has traditionally been used to quantify the empirical
survival probability for the outcome all-causes death, tak-
ing into account patients for whom due to censoring at,
e.g., trial closure, only a minimum survival time is known.
Patients censored following trial closure are still alive and
their time of death will remain unobserved. One minus
Kaplan-Meier therefore is an approximation of the cumu-
lative death proportions, and given sufficient follow-up
data, it eventually approaches 100%.

The Kaplan-Meier method has also been used [16] or
recommended (in the European Medicine’s Agency, EMA,
anticancer guideline [17] or the extension of the CON-
SORT statement on reporting harms [18]) for outcomes
such as AEs, now additionally censoring observed deaths
without prior AE under consideration. The rationale is
that prior death also prevents observation of the outcome
of interest, but the approach ignores that, given suffi-
cient follow-up data, the cumulative AE proportion will
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not approach 100% in the presence of such competing
mortality. This is the conceptual reason why one minus
the Kaplan-Meier estimator for AE outcomes is bound to
overestimate the AE risk.

The incidence density operates on a different scale,
taking patient-time rather than the number of patients
as denominator, but a simple transformation (see the
“Methods” section below) finds that it presents nothing
but a parametric counterpart to the Kaplan-Meier estima-
tor under a very restrictive parametric assumption [15]. In
contrast, the incidence proportion operates on the same
scale as Kaplan-Meier, but runs the risk of underestima-
tion for the following reason. The incidence proportion
could also be calculated for the outcome “observed all-
causes death,” but—unlike Kaplan-Meier—would not be
a proper approximation of the cumulative death propor-
tions, because it is not able to include death events after
censoring into the calculation. An analogous argument
holds for AE outcomes.

The methodological literature therefore advocates the
AJE as a generalization of the Kaplan-Meier estimator
to multiple outcome types, because it is the correspond-
ing nonparametric estimator that provides unbiased esti-
mates in presence of varying follow-up times, censoring,
and CEs. These multiple outcomes or CEs require defin-
ing what a CE is, including but not limited to death before
AE. A detailed operationalization in the AE context is
provided below. The AJE equals the AE incidence propor-
tion in the absence of censoring and it equals one minus
Kaplan-Meier in the absence of CEs. For all these substan-
tive reasons, the AJE is the non-parametric gold-standard.
There also is a parametric counterpart including a second
incidence density for events such as death before AE [19].

The concerns above are qualitative. However, the
amount of bias, comparing, e.g., the incidence proportion
or one minus Kaplan-Meier with the non-parametric gold
standard, the AJE [4] accounting for both CEs and censor-
ing will depend on the specific trial setting. In particular,
the relative frequencies of observed AEs, observed CEs
and observed censorings add up to 100% at any point in
time. The latter two are leading forces influencing bias,
and, e.g., the presence of many CEs in a time-to-first-event
analysis will impact the amount of censoring.

Here and for the trial data reported below, we are using
the term “bias” with reference to the AJE, because AJE is
an (asymptotically) unbiased estimator both in the pres-
ence of CEs and censoring, while at the same time not
requiring a parametric assumption [20]. Hence, we are
investigating an approximate bias with respect to the
underlying true effect which remains unknown in real
data analyses.

The SAVVY project group (Survival analysis for
AdVerse events with Varying follow-up times) is a collab-
orative effort from academia and pharmaceutical industry
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with the aim to improve the analyses of AE data in clinical
trials through the use of survival techniques that account
for varying follow-up times, censoring, and CEs. Here, we
report one-sample results from an empirical study of an
opportunistic sample of randomized clinical trials from
several sponsor companies. Our investigations are moti-
vated by a typical trial setting and the (primary) safety
patient set containing, in particular, the timing of adverse
events. The data structure is characterized by varying
follow-up times, CEs, and censoring as discussed above.
This must be acknowledged in any analysis of AEs, be
it for emerging AEs or prespecified AEs of interest. In
addition, estimated AE risk also informs AE frequency
categories. To illustrate, one reviewer pointed out that
incidence proportions and incidence densities are typi-
cally seen for the analysis of unspecified emerging events,
while Kaplan-Meier is more common for prespecified
events of interest. However, above we have explained
their connection and demonstrated the inappropriateness
of incidence proportion, incidence density, and Kaplan-
Meier methods in the presence of varying follow-up times,
CEs, and censoring.

Hence, our aim is to illustrate the amount of empirical
bias when quantifying absolute AE risk in single samples
including categorization into AE frequency categories.
Results when comparing safety between treatment groups
will be communicated in a follow-up paper [21], building
on the insights obtained in the present investigation.

Methods

A detailed statistical analysis plan is available elsewhere
[22]. Individual trial data analyses were run within the
sponsor organizations using SAS and R software provided
by the academic project group members. Only aggregated
data necessary for meta-analyses were shared and meta-
analyses were run centrally at the academic institutions.
The meta-analysis is used for the methodological compar-
ison. Its is a formal assessment of the bias including the
variances of the estimates.

Here, we briefly summarize one-sample estimators and
methods of meta-analysis. Properties and estimands of the
estimators are discussed elsewhere [8, 22]. However, the
conceptual rationale of the statistical analysis plan in con-
junction with properties and estimands of the methods
at hand have been presented in the “Background” section
above. We describe in more detail the definition of CEs
which has an immediate consequence on the estimation
procedures.

AE probability estimators will be compared based on
ratios taking the gold-standard AJE as denominator. The
rationale for taking AJE as the gold-standard is explained
below. Impact on frequency categorizations will be tab-
ulated and the ratios of the estimators will be meta-
analyzed.
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One-sample estimators

We will consider the following estimators of the cumu-
lative AE probability or “AE risk” in a time-to-first-event
analysis. Since both probabilities and the amount of cen-
soring [23] are time-dependent, we will allow for different
evaluation times called t. These evaluation times either
imposed no restriction, i.e., evaluated the estimators until
the maximum follow-up time, or considered the mini-
mum of quantiles of observed times in the two treatment
groups; the quantiles were 100%, 90%, 60%, and 30%.
We will report results from “Arm E;” denoting the exper-
imental treatment groups. The incidence proportion is

no. of patients w. observed AE on [0, ] in E
IPp(t) = )

ng
(1)

where ng denotes sample size in group E. This estimator
will be called incidence proportion in the following.
The AE incidence density is

no. of patients w. observed AE on [0, 7] in E
IDE(T) =

patient-time at risk in E restricted by t
2)

Incidence densities are not directly comparable to, e.g.,
incidence proportions. A common transformation of the
AE incidence density onto the probability scale is

1 — exp (—IDg(1) - 7), (3)

called probability transform incidence density ignoring CE
in the following. The one minus Kaplan-Meier estimator
only codes observed AEs as an event and censors anything
else on [0, 7]. It is defined by formula (4) in [22].

An incidence densities” analysis accounting for CEs uses
the competing incidence density

— no. of patients w. observed CE on [0, 7] in E
IDg(7) =

patient-time at risk in E restricted by t
(4)
such that we get the following AE-probability estimator

IDg(7) B
Do 2 oo (L~ ePe De) + D)),

(5)

called probability transform incidence density accounting
for CE in the following. Finally, the AJE generalizes (5)
to a fully non-parametric procedure and decomposes the
usual one minus Kaplan-Meier estimator of the time-to-
any-first-event (AE or competing) into estimators of the
cumulative AE probability plus the cumulative CE proba-
bility [4]. It is defined by formula (8) in [22]. The AJE will
serve as “gold-standard,” because it is asymptotically unbi-
ased both in the presence of CEs and censoring, without
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the need to make a parametric assumption. As explained
earlier and, in more detail, below, “bias” will be with
respect to AJE and is the approximate bias as a conse-
quence of the real trial data setting and the approximate
unbiasedness of the gold-standard.

Definition of competing events

The definition of events as “competing” is essential to
both the AJE and the competing incidence density. CEs (or
“competing risks”) are events that preclude the occurrence
or recording of the AE under consideration in a time-to-
first-event analysis. One important CE is death before AE.
In addition, any event that would both be viewed from a
patient perspective as an event of his/her course of disease
or treatment and would stop the recording of the inter-
esting AE will be viewed as a CE. To illustrate, premature
discontinuation of study treatment which leads to end of
AE recording will be handled as a CE [24]. Consequently,
possibly disease- or safety-related loss to follow-up, with-
drawal of consent and discontinuation is handled as a CE
as this is typically related to an event associated with the
disease course or therapy.

In order to investigate the impact of the definition of
CEs, we also investigated a “death only” scenario, which
only treated death before AE as competing, but not the
other CEs. This estimator will be called AJE (death only)
in the following.

Aalen-Johansen as gold-standard

The data generation mechanism underlying the clinical
trials is based on the hazard of the AE, the hazard of the
CE, and the distribution of the censoring times, where
the hazards are not restricted to be constant [22]. But not
all estimators suggested for analyzing AEs can adequately
deal with all three processes. Table 1 gives an overview
whether the estimators account for the three sources of
bias, i.e., censoring, no constant hazards, and CEs. The
incidence proportion ignores CEs and censoring in the
analysis in the same way as the respective patients are
counted in the denominator as if they had been followed
for the entire study period. This is a proper handling of
the CEs as it correctly takes into account that an AE can-
not occur after the patient had experienced a CE. It is an
improper handling of censoring as it incorrectly implies
that an AE could have been observed over the entire
follow-up period, which is not true due to censoring.

The AJE is the only estimator that is able to deal with all
three potential sources of bias and is therefore considered
the gold standard estimator and will serve as a benchmark
for comparison of results. In the following, we will use
the term bias for deviations of the estimators from this
benchmark estimator and not for the difference to the true
value. This is considered appropriate as the differences
of the estimators to the AJE converge in probability to
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Table 1 Overview whether the estimators deal with the possible sources of bias

Accounts for Makes no constant Accounts for
censoring hazard assumption CEs
Incidence proportion No Yes Yes
Probability transform incidence density ignoring CEs Yes No (AE Hazard) No
1-Kaplan-Meier Yes Yes No
Probability transform incidence density accounting for CEs Yes No (AE and CE Hazard) Yes
Death only AJE Yes Yes Yes (Death only)
Gold-standard AJE Yes Yes Yes

the asymptotic bias. Stegherr et al. [20] have more closely
investigated this question, finding that investigating the
“empirical” bias with respect to AJE well approximates the
true bias with respect to the true quantity only known in
simulations.

AE frequency categories

According to the European Commission’s guideline on
summary of product characteristics (SmPC) [9] and based
on the recommendations of the CIOMS Working Groups
III and V [10], the frequency categories of AE risk in the
most representative exposure period are respectively clas-
sified as “very rare,” “rare,” “uncommon,” “common,” and
“very common” when found to be <0.01%, <0.1%, <1%,
<10%, and > 10%. Frequency categories obtained with
the different estimators will be compared to frequency

categories obtained with the gold-standard AJE.

Random effects meta-analysis and meta-regression

In the meta-analysis and meta-regression, the ratios of the
AE probability estimates obtained with the different esti-
mators divided by the AE probability obtained with the
gold-standard AJE are considered on the log-scale. The
standard errors of these log-ratios are calculated with a
bootstrap to account for within trial dependencies. Then,
a normal-normal hierarchical model is fitted and the
exponential of the resulting estimate can be interpreted as
the average ratio of the two estimators.

In a meta-regression, it is further investigated which
variables impact this average ratio. Therefore, the propor-
tion of censoring, the evaluation time point 7, i.e., the
maximal time to event in years (AE, CE or censoring)
observed under the given evaluation time, and the size of
the AE probability estimated by the gold-standard AJE are
included as covariates in a univariable and a multivari-
able meta-regression. The covariates are centered in the
meta-regression.

Results
Description of the data

Ten organizations provided 17 trials including 186 types
of AEs (median 8; interquartile range [3,9]). Twelve
(71.6% out of 17) trials were from oncology, nine (52.9%)
were actively controlled, and eight (47.1%) were placebo
controlled. The trials included between 200 and 7171
patients (median 443; interquartile range [411,1134]).
For the comparison of the AE probabilities, we focus
on the experimental treatment group. The corresponding
results of the control group will be reported in a follow-
up paper on group comparisons [21]. Median follow-up
of the treatment group was 927 days (interquartile range
[449,1380]). In the experimental treatment group, the
median of the calculated gold-standard AJE was 0.092
(minimum 0 and maximum 0.961). For one of the 17 tri-
als, details of the trial and the AE analysis by the different
methods investigated in this paper are presented in [20].

Figure 1 displays for the 186 types of AEs boxplots of the
observed relative frequencies, i.e., the number of patients
with a specific type of event divided by the total number of
patients, namely of “observed AE,” “observed death before
AE; “observed other CE,” and “observed censoring” for the
maximal follow-up time.

The figure illustrates a smaller amount of observed cen-
soring compared to observed other, i.e., non-death CEs.
That is, AE recording often ended due to death or other
CEs such as treatment discontinuation preventing censor-
ing of the time to AE. There are also much less death
events than other CEs.

Comparison of AE probability estimators

Panel A of Fig. 2 shows box plots of the ratio of the
one-sample estimators defined earlier divided by the gold-
standard AJE for the maximum follow-up time and one
earlier evaluation time chosen as to the 90% quantile. As
the incidence proportion implicitly accounts for CEs (but
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not for censoring) as explained above, the small amount of
censoring which is a consequence of the high amount of
other CEs explains why the incidence proportion and the
AJE are of similar size in many situations. But it has to be
emphasized that in extreme cases an underestimation of
up to 70% was present.

Both one minus Kaplan-Meier and the probability trans-
form incidence density ignoring CE overestimate the AE
probability, and this is also true for the AJE that only
considers death before AE as competing. Interestingly,
the probability transform incidence density ignoring CE
appears to be worst, while the probability transform inci-
dence density accounting for CE performs much better
than the other three procedures which are clearly biased
resulting in extreme overestimation in many situations, up
to a factor of five. These biases become less pronounced
when looking at earlier evaluation times which prevent
CEs and censoring after the respective end of evaluation
time to enter calculations.

Impact on frequency categories
The impact on frequency categories is illustrated in
Table 2, where we have exemplarily chosen the maximum
follow-up time as most representative exposure period.
Some switches to neighboring categories are detected.
The probability transform of the incidence density ignor-
ing CEs derives a higher AE frequency category for 38
types of AEs, and the one minus Kaplan-Meier estimator
for 16 types of AEs. The probability transform of the inci-
dence density accounting for CE obtains a higher category
for nine types of AEs but also a lower category for one type
of AE. Here, the definition of the CE is again of impor-
tance. The death only AJE categorizes 14 types of AEs to

a higher category than the gold-standard AJE. The inci-
dence proportion derives only two times a different AE
frequency category than the gold-standard AJE. The good
performance of the incidence proportion is closely con-
nected to the CE definition, i.e., the maturity of data at
the time of the analysis. If in the comparison to the inci-
dence proportion the AJE (death only) is used instead of
the gold-standard, the category common instead of very
common is obtained for 15 types of AEs and one type of
AE is categorized to uncommon using the incidence pro-
portion but to common using the AJE that only considers
death as a CE estimator (see last five rows of Table 2).

Random effects meta-analysis

In a meta-analysis of the log-ratio of the incidence propor-
tion divided by the AJE evaluated at the maximum follow-
up time, the average ratio was found to be 0.972 with a 95%
confidence interval of [ 0.965, 0.980]. The respective result
for the probability transform incidence density ignoring
CE was 2.097 [1.994,2.205] and for one minus Kaplan-
Meier was 1.214 [ 1.184, 1.245]. Accounting for competing
risks in an incidence densities-analysis (probability trans-
form incidence density accounting for CE) gave a result
of 1.130 [ 1.112, 1.150], while the AJE (death only) estima-
tor lead to an average of 1.170 [ 1.145, 1.195]. These results
confirm the visual impression gathered from the boxplots
in panel A of Fig. 2, but we note that panel A of Fig. 2 also
displays biases in individual trials which are much larger
than the meta-analytical averages.

Random effects meta-regression
The influence of different factors on the size of the
bias was investigated in univariable and multivariable



Stegherr et al. Trials (2021) 22:420 Page 7 of 13
A 90% quantile maximum follow—up time
¢ °
4.04 \ L
° °
2.0 ?
.01 °
g $ ; y !
g !
g .l : $
T ! i :
s °
054 ® .
°
°
IiD probltrans 1—kM prob Itrans A\IJE IiD probltrans 1—kM prob Itrans A.IJE
incid dens incid  death only incid dens incid  death only
ignoring CE dens acc ignoring CE dens acc
for CE for CE
B 90% quantile maximum follow—up time
7.5
2
‘@ 5.0
c
3 :
2.5 \
[ -~
qJJ.L"\-'\ > -~
0.0 R — M-V -V AT (Y VY.V A N~ == AT
0.25 0.50 1.00 2.00 4.00 0.25 0.50 1.00 2.00 4.00
Ratio
probability ﬁ[gg:gm’
: transform SO
___ Incidence _ _ . °. _ Mei incidence _ . Aalen-Johasen
proportion ggﬁiﬁ;ce 1-Kaplan-Meier density' death only
ignoring CE %crcgléntlng
Fig. 2 Ratios of one-sample estimators divided by gold-standard AJE. A Accepting the all event definition of CEs as gold-standard, the ratios of
one-sample estimator divided by gold-standard AJE are displayed. Two different evaluation times are displayed. The left boxplots are the results for
the estimators being evaluated at the 90% quantile and the right boxplots are the results of the evaluation time with no restriction, i.e, at the end of
follow-up. The following abbreviations are used for the estimators: incidence proportion (IP), probability transform of the incidence density ignoring
CE (prob trans incid dens ignoring CE), one minus Kaplan-Meier (1-KM), probability transform of the incidence density accounting for CE (prob trans
incid dens acc for CE), death only AJE (AJE death only). B Plots of the kernel density estimates of the ratios of the AE probability of the estimators
divided by the gold-standard AJE

meta-regression. The percentage of censoring, the size
of the AE probability estimated by the gold-standard
AJE, and the evaluation time point were considered and
included as covariates in the meta-regression models. In
Table 3, results are exemplarily displayed when evaluating
estimators using the maximum follow-up time as evalua-
tion time.

Covariates were centered, i.e., the row “average risk
ratio” contains the average ratio of the estimator of
interest and the AJE if the covariate takes its mean.
Those means were 31.5% censoring, 52.6% CEs, 971
days maximum follow-up time, and a size of the
AE probability estimated by the AJE of 0.165. For
example, for the comparison of the incidence propor-
tion and the AJE, the estimated average ratio of the
two estimators in a trial with 31.5% censoring is

0.974. Furthermore, in a trial with 10% more censor-
ing the estimated average ratio is increased by the
factor 0.999 but the unit value is contained in the
corresponding confidence interval. So, the amount of
underestimation by the incidence proportion which does
not account for censoring slightly increases with an
increasing amount of censoring. Considering the esti-
mators that either do not (probability transform inci-
dence density ignoring CE, one minus Kaplan-Meier)
or only partially (AJE (death only)) account for CE,
one finds that both a higher amount of censoring
and a higher AE probability decrease the amount of
overestimation. The explanation goes hand in hand
with the increased average ratios for higher amounts
of CEs as these estimators do account for censor-
ing, and increased censoring will, in general, lead to a
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Table 2 The impact of the choice of one-sample estimator on AE frequency categories for the maximal follow-up time

Very rare Rare Uncommon Common Very common
(a) Gold-standard AJE
Incidence Very rare 6
proportion Rare 0
Uncommon 6
Common 86 2
Very common 86
Probability Very rare 6
transform Rare 0
incidence Uncommon 3
density Common 3 51
ignoring CE Very common 35 88
1-Kaplan- Very rare 6
Meier Rare 0
Uncommon
Common 2 72
Very common 14 88
Probability Very rare 6
transform Rare 0
incidence Uncommon 4
density Common 2 79 1
accounting Very common 7 87
for CE
Aalen- Very rare 6
Johansen Rare 0
death only Uncommon 5
Common 1 73
Very common 13 88
(b) AJE death only
Incidence Very rare 6
proportion Rare 0
Uncommon 5 1
Common 73 15
Very common 86

Deviations from the AJE are the non-diagonal entries. The first rows consider the gold-standard AJE and the last five rows the comparison of the incidence proportion and
the AJE (death only) estimator. Diagonal entries are set in bold face. Non-diagonal zeros are omitted from the display

smaller amount of observed CEs. Likewise, a higher AE
probability will, in general, lead to a smaller probability of
CEs.

These results are confirmed by the multivariable meta-
regression. The amount of CEs is not included in
the multivariable meta-regression as there is a strong
dependence with the amount of censoring and the size
of the AE probability estimated by the gold-standard
AJE.

Variability

Even though on average the incidence proportion does
well in this sample of selected AEs, the possible variability
must not be neglected.

Considering the plots of the kernel density estimates of
the ratios of the different estimators of the AE probability
in panel B of Fig. 2, the ratio of incidence proportion and
the gold standard is most often close to one. But there are
also peaks of the estimated kernel density at smaller ratios
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Table 3 Univariable and multivariable meta-regression
Probability transform Probability transform
Incidence incidence density 1-Kaplan-Meier  incidence density AJE
proportion ignoring CE accounting for CE death only
Univariable meta-regression
% censoring Average risk ratio 0.974[0.964; 0.983] 2.308 [2.217;2.403] 1.257[1.226;1.288] 1.101 [1.086; 1.116] 1.201 [1.175; 1.228]
10% increase 0.999 [0.996; 1.002] 0.916 [0.903; 0.929] 0.973[0.965;0.980] 1.026 [1.021; 1.031] 0.979[0.972; 0.986]
%CEs Average risk ratio 0.976 [0.969;0.984] 2.191 [2.141; 2.243] 1.240[1.214;1.267] 1.124[1.109; 1.140] 1.190 [1.168; 1.213]
10% increase 1.003 [1.000; 1.006] 1.127 [1.117;1.138] 1.036[1.028; 1.045] 0.977[0.971;0.982] 1.029[1.021; 1.036]
Size of AE Average risk ratio 0.973[0.966;0.980] 2.105 [2.005; 2.210] 1.215[1.185;1.246] 1.131[1.112;1.150] 1.171[1.146; 1.197]
probability  increase of 0.1 0.996 [0.992; 1.000] 0.954 [0.930; 0.980] 0.995[0.982;1.008]  0.993 [0.984; 1.003] 0.993 [0.982; 1.004]
Evaluation  Average risk ratio 0.972[0.964; 0.980] 2.094 [1.994; 2.199] 1.214[1.184; 1.244] 1.131[1.112;1.150] 1.170[1.145; 1.195]
time one additional year 0.993 [0.987; 1.000] 1.054 [1.021; 1.087] 1.015[0.999; 1.033] 0.996 [0.986; 1.007] 1.013 [0.998; 1.027]

Multivariable meta-regression

Average risk ratio

%censoring 10% increase

Size of AE probability increase of 0.1

Evaluation time one additional year

0.976 [0.966; 0.985]
0.997 [0.994; 1.000]
0.995[0.991; 0.999]
0.994 [0.988; 1.000]

2407 [2.348; 2.468]
0.890 [0.882;0.899]
0.893 [0.882;0.904]
1.036 [1.021;1.051]

1.277 [1.246;1.308]
0.965 [0.957;0.973]
0.97210.961;0.983]
1.014 [1.000; 1.027]

1.097 [1.082;1.113]
1.028 [1.023; 1.034]
1.008 [1.000; 1.016]
1.003 [0.995;1.011]

1.218[1.192; 1.245]
0.972 [0.965; 0.979]
0.975 [0.965; 0.985]
1.011[0.999; 1.024]

Average risk ratio and multiplicative change by 10% increase in censoring, 10% increase in CEs, one additional year of observation or a 0.1 greater AE probabiltiy. Thereby, the

size of the AE probability is estimated by the gold-standard AJE

indicating that the estimators are not always comparable.
For the ratio of the probability transform of the inci-
dence density accounting for CEs and the gold standard
most values are slightly larger than one at the maximum
follow-up time. At the earlier follow-up time according
to the 90% quantile, the peak is closer to one with less
variability present. The ratios of the one minus Kaplan-
Meier and death only AJE to the gold standard have few
values close to one. For the majority of AE types, these
two estimators largely overestimate the AE probability.
Both plots illustrate pronounced variability for probability
transform of the incidence density ignoring CE.

Exemplary results from single trials

A closer look is taken at single AE types in trials for
which extreme under- or overestimation is present, i.e.,
extreme values in the right panel boxplots in Fig. 2.
For example, the largest underestimation of the inci-
dence proportion is for an AE which is only observed
for three out of 274 patients. This corresponds to an
incidence proportion of 0.011. However, an AJE esti-
mate of 0.037 is obtained. This corresponds to a ratio
of 0.294 with a 95% confidence interval of [0.084;
1.025], where the confidence interval has been obtained
using the bootstrap. As 27.0% of the observations for
this type of AE are censored, the amount of censor-
ing is below the mean censoring rate of all types of
AEs. Moreover, for this type of AE, 17 deaths (6.2%)
and 180 other CEs (65.7%) are observed. This type of

AE does not only contribute the largest underestima-
tion of the incidence proportion but also of the prob-
ability density of the incidence density accounting for
CEs for which an estimate of 0.012 is obtained (ratio
of 0.329 with 95% CI [0.094; 1.148]). Furthermore, for
this type of AE, the largest overestimation of the one
minus Kaplan-Meier estimator (estimate of 0.208 and
ratio of 5.575 [1.813; 17.147]) and the AJE (death only)
(estimate of 0.190 and ratio of 5.090 [1.815; 14.276])
is calculated. These impressive ratios are partly due to
the small value of the gold-standard AJE estimate, but
we stress that also the difference between one minus
Kaplan-Meier and the gold standard is quite pronounced
(0.208 vs. 0.037).

In another extreme example with a higher AE prob-
ability, the obtained incidence proportion is 0.059 and
the AJE estimate is 0.109 (ratio 0.534 [0.529; 0.540]). For
this type of AE, many censored observations are present
(63.3% of 752 patients). Moreover, 44 AEs are observed,
137 deaths (18.2%), and 95 other CEs (12.6%). Here, due to
the high amount of censoring, one can expect in advance
the incidence proportion not doing well.

Role of censoring

To explicitly investigate the role of censoring without
the methodological complication of CEs, the composite
endpoint combining AEs and CEs is considered, which
results in a single endpoint survival setting. As a con-
sequence the gold standard in this setting is the one
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minus Kaplan-Meier estimator which is compared to the
incidence proportion (see Fig. 3).

In the composite endpoint analysis, the underestimation
of the incidence proportion is more pronounced than in
the analyses of the AE probability presented above. One
reason is that even in the presence of censoring for the one
minus Kaplan-Meier estimator the type of the last event
is most important. If the last event is an AE or CE, the
one minus Kaplan-Meier estimator is equal to one, even
though censoring has been observed at earlier follow-up
times. The incidence proportion is only equal to one if no
censoring is observed.

Discussion

The starting point of the present investigation was that
AE analyses in terms of AE probabilities, an impor-
tant aspect of drug safety evaluations, should account
for the time under observation and censoring if the lat-
ter is imposed by the data at hand. As an additional
complication, the occurrence of AE (of a certain type)
usually is subject to CEs such as death before AE. Sur-
vival analyses accounting for CEs is methodologically
well established, but practical use lacks behind [25, 26].
Failure to account for censoring (e.g., incidence propor-
tion) or CEs (e.g., one minus Kaplan-Meier) will gen-
erally lead to biased quantification of absolute AE risk.
As outlined earlier, we therefore recommend using AJE
as the non-parametric, unbiased estimator in the pres-
ence of both CEs and censoring. However, the amount of
empirical bias with respect to the gold-standard has been
unclear.

In this study, we confirmed that one minus Kaplan-
Meier should not be used to estimate the cumulative
AE probability, as it is bound to overestimate as a con-
sequence of ignoring CEs. Interestingly, we found that
the incidence proportion performed surprisingly well
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when compared to the gold-standard AJE. This does
not imply that we recommend using the simpler inci-
dence proportion as a reasonable alternative to the gold-
standard. One reason for the observed performance of
the incidence proportion may be a high amount of
CEs before possible censoring. But not only the pro-
portion of censoring but also the timing of the censor-
ing are relevant as the first example of the single trials
described in detail showed. This example led to the largest
bias although the proportion of censoring was below
average. The observed proportion and timing of censor-
ing in this project are a consequence of twelve out of
17 trials being from oncology in, which compared to
other therapeutic areas, AEs and CEs are often observed
early during follow-up and censoring occurs much later.
We also note that the observed constellation of CEs
and censoring results from a sample of completed trials
after the final analysis had been performed. The pro-
portion of censoring may be different at the time point
of a safety interim analysis of trials which are typically
presented to data safety monitoring boards. For this sit-
uation, the different estimators may behave differently
[27], and this reinforces our recommendation to use the
AJE.

Therefore, this finding must not be interpreted as a
carte blanche to use AE incidence proportions based on
censored data. In fact, comparable performance of inci-
dence proportion and AJE did not only rely on a high
amount of CEs, but in particular on a careful definition
of what kind of events constitute a CE as outlined earlier.
In other words, use of the incidence proportion implic-
itly assumes events to be competing as defined in the
“Methods” section. This aspect is somewhat subtle, but
nicely highlighted by the fact that an analysis account-
ing for both censoring and only death as CEs (AJE (death
only)) also led to overestimating AE risk, although the
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bias was not as pronounced as for one minus Kaplan-
Meier. We consequently recommend careful a priori con-
siderations of what events constitute CEs, guided by our
operationalization given earlier. This informs both what
the incidence proportion estimates (should there be no
additional censoring) and which events should be handled
as CEs using AJE.

We also found that previous worries about the con-
stant hazard assumption underlying incidence densities
were justified in that a simple transformation of the AE
incidence density onto probabilities (probability trans-
form incidence density ignoring CE) performed worst.
However, accounting for CEs in an analysis that para-
metrically mimicked the non-parametric AJE performed
better than both one minus Kaplan-Meier and AJE (death
only); in this sense, ignoring CEs appeared to be worse
than assuming constant hazards in our empirical study.
We do not recommend using incidence densities account-
ing for CEs, because the AJE readily presents itself as a
non-parametric alternative. However, if an analysis based
on incidence densities is considered, we strongly recom-
mend to incorporate incidence densities of CEs as detailed
above. We also prefer the latter analysis over the Kaplan-
Meier approach.

Most of the results were shown for the situation where
the maximum follow-up time was chosen as evaluation
time. When looking at earlier evaluation times defined by
quantiles of the observed times, the resulting bias was, in
general, less pronounced, due to a reduced relative fre-
quency of CEs and of censoring (see Fig. 1). We regarded
the situation of including all data up to the maximum
follow-up time as the most relevant as this is the usual
practice and also what is implicitly done by using the
incidence proportion.

Our empirical study does have shortcomings. Using an
opportunistic sample of randomized clinical trials from
several sponsor companies, we have been able to illus-
trate possible consequences when quantifying AE risk
in a manner that ignores censoring or CEs. However,
being opportunistic, the sample does not lend itself to
straightforward generalizations. More than two thirds of
the trials were from oncology. These came with a high
amount of CEs, which, in turn, led to comparable per-
formances of incidence proportion and AJE. The vast
majority of AEs were classified as “common” or “very
common,” and AEs were also heterogeneous, coming
from different therapeutic areas and were not neces-
sarily treatment-related. These shortcomings were to be
anticipated from an opportunistic sample, but it was our
aim in this “real-world” setting to investigate and demon-
strate which biases can occur in practice. These shortcom-
ings do also impact the comparison of AE risks between
treatment groups [21]. The observed results motivate
future empirical investigations on how to quantify AE
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risk with the aim of better generalizability. As a further
point, it was not the aim of this investigation to accurately
estimate AE probabilities, but to compare different esti-
mators. Our present study does not allow for a meaningful
comparison of results in different diseases. Follow-up
investigations concentrating on trials in specific disease
areas are planned.

A methodological restriction is that we have focused
our investigation on an analysis which mostly does not
consider AEs after treatment discontinuation due to, e.g.,
disease progression in oncology. This restriction is, in par-
ticular, due to trial design when treatment discontinuation
leads to stopping AE recording after a prespecified time
period. In addition, in oncology, it is not uncommon that
patients enter a different clinical trial after progression
which further complicates matters. However, follow-up
beyond treatment discontinuation is required to estimate
a treatment policy estimand. In some settings such as
health technology assessments, this is considered to be
the estimand of primary interest [8]. The results of our
investigation remain valid when including AE data after
treatment discontinuation. In this case, other disease-
related events leading to a stop of AE recording have to be
considered as CEs, as e.g., death without prior AE.

Another methodological restriction is that we did not
consider recurrent AEs, but only first events. It is desirable
to consider more complex event histories, also beyond
time-to-first-event. However, any such consideration will
need to account for CEs (and censoring), and our inves-
tigation therefore also informs methodological consider-
ations for analyzing such more complex event histories.
In other words, both AEs after treatment discontinuation
and recurrent AEs will still be subject to CEs.

In a forthcoming follow-up paper on comparing groups
[21], we will use the data of the same trials to compare the
same estimators as in this paper in terms of the relative
risk, quantified through the risk ratio at the shorter of the
follow-up times in the two groups. Furthermore, we will
look at hazard-based estimators as the ratio of incidence
densities and the hazard ratio from Cox regression. Again,
we will argue why the AJE is also the most suitable estima-
tor for group comparisons in terms of the relative risk and
why it is crucial to consider the hazard ratio.

As we find in these two papers, commonly used meth-
ods such as incidence proportions, incidence densities, or
Kaplan-Meier are all biased and therefore inappropriate
to quantify AE risk in the presence of varying follow-up
times, CEs and censoring. It is important to note that
this bias is a statistical property of any of these esti-
mators and independent of the purpose we use any of
these estimators for, ie., whether we quantify the risk
for a prespecified or emerging AE, or estimate AE risk
in a given therapeutic area, or want to detect a differ-
ent AE signal between two treatment arms. Replacing
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existing estimators, primarily the incidence proportion,
by the AJE would require definition of CEs upfront, but
that appears feasible as CEs can typically be defined on
a trial level and then equally be applied to any quantifi-
cation of AE risk in that specific trial. We thus invite
consideration whether existing guidelines should be
updated advocating AJE.

Key guidelines for development and reporting of RCTs
are those issued by the International Council for Harmo-
nization (ICH). Methods to analyze safety data is touched
upon in several of these, e.g., E2, E3, or E9. They are all
describing analysis methods, primarily incidence propor-
tion and incidence density.

ICH E2E [7] talks about “Identified risks that require
further evaluation” and requires reporting of “frequen-
cies” for these. We argue that in fact what is of interest
here is the AE risk as defined above and to properly quan-
tify these we recommend the AJE. Similarly, ICH E3 [28]
requires tabulating “rate of occurrence” or “event rates,’
again without being specific about what precisely is meant
by that. Furthermore, it is mentioned that “Under certain
circumstances, life table or similar analyses may be more
informative than reporting of crude adverse event rates”
We interpret this as estimates of survival functions in a
time-to-first-event analysis are to be provided, in order to
estimate AE risk. Then again, we would recommend AJE
for that purpose.

Also the key efficacy guideline, E9 [29], has a section
on safety. ICH E9 explicitly asks for “..appropriate use
of survival analysis methods to exploit the potential rela-
tionship of the incidence of adverse events to duration
of exposure and/or follow-up,” so accounting for vary-
ing follow-up. In addition, “The risks associated with
identified adverse effects should be appropriately quan-
tified to allow a proper assessment of the risk/benefit
relationship” We read this as need for proper quan-
tification of AE risk, and as we have shown, this is
only possible by properly accounting for CEs and using
AJE.

As discussed above, the EMA’s anticancer guideline [17]
states “..Kaplan-Meier analysis of selected AEs, which
considers censoring of events, may be useful” but without
being specific about which “events” to censor. This again
asks for proper quantification of AE risk but suggests a
potentially biased method.

Finally, an extension of the CONSORT statement
on reporting harms [18] also recommends “Kaplan—
Meier curves showing cumulative incidence of important
adverse events can be helpful,” but neither discusses cen-
soring nor CEs.

Conclusion
Our recommendation is to “play it safe” and to use the
AJE whenever the risk for AEs is to be quantified in a
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time-to-first-event analysis and neither hope for a small
amount nor a large amount of CEs nor a favorable inter-
play of the distributions of the times of AEs, CEs, and
censorings. In the former case, one minus Kaplan-Meier
might work well, while in the latter two cases the inci-
dence proportion might do so. We recommend using the
AJE which equals one minus Kaplan-Meier in the absence
of CEs and equals the incidence proportion in the absence
of censoring and does allow for presence of both CEs and
censoring. Future revisions of guidelines for reporting AEs
should, therefore, consider advocating the AJE instead of
incidence proportion, incidence density, and one minus
Kaplan-Meier.
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