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Background
The teamwork of proteins, in terms of temporary or permanent interactions, is criti-
cal for any biological process. There have been numerous protein–protein interaction 
(PPI) or signaling pathways databases developed based on the experimental approaches 
or computational predictions. Some of the databases assign different confidence levels 
to the interactions, e.g. higher confidences for the experimentally validated interactions, 
and lower values for the computationally predicted ones. So, the identification of the 
cascades of interactions from the receptors to the transcriptional regulatory factors is 
a major challenge in systems biology. To make this process easier, Cytoscape [1, 2] was 
developed to help with molecular and network profiling analysis and also visualizing 
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molecular interaction networks. Other Plugins and Apps can be integrated into this flex-
ible platform for complex network analysis and visualisations. PesCa [3], PathExplorer 
(http://​apps.​cytos​cape.​org/​apps/​pathe​xplor​er) and PathLinker [4, 5], are examples of 
such apps that can compute paths in biological networks.

We developed StrongestPath, a Cytoscape 3.0 App, to address three key challenges 
during analysis of PPI or signaling networks. The first challenge is identifying a cascade 
of interactions, as a regulatory or signaling pathway, in a large PPI or signaling network. 
In many experimental studies perturbation of a protein A is observed to influence a 
protein B, but the cascade of interactions between A and B is unidentified. The second 
challenge addressed by StrongestPath is growing the sub-network of the input proteins, 
either by extracting their pairwise interactions from a list of PPI or signaling databases, 
or adding further proteins that are more likely to create protein complexes or dense 
interactions with the input proteins. To address this challenge, StrongestPath looks at 
the whole PPI or signaling network and identifies proteins with maximum total confi-
dence of interactions with the given set of proteins. This feature can be used to identify 
unknown elements of a protein complex, biological process or core regulatory circuitry. 
The third challenge is identifying any activating or inhibitory regulatory path between 
two distinct groups of proteins. For example, when a list of genes is identified in a study 
of a phenomenon, researchers seek to answer whether there is a regulatory pathway 
between the transcription factors associated with the phenomenon and the identified 
genes regarding the experimentally validated data reported in the public databases [6].

StrongestPath comes with two types of built-in databases: (I) some PPI and signaling 
networks of human and mouse, containing interactions recorded in public databases, 
(II) protein nomenclature database, containing 11 different symbols and accession IDs of 
genes and proteins in different databases. In addition, users can provide their own net-
works and nomenclature datasets. This allows StrongestPath to be used for any organ-
ism, PPI, gene regulatory networks, and signal transduction networks.

Our results on 12 signaling pathways from the NetPath database indicate that identify-
ing the strongest path is helpful for pathway reconstruction. Moreover, since the stored 
interactions in different databases may vary, simultaneous search of multiple databases 
is necessary. Among the available Cytoscape apps, the most similar app to ours in terms 
of functionality is PathLinker, which is the state-of-the-art algorithm in pathway recon-
struction [4, 5]. Therefore, we only compare our application with PathLinker. In sum-
mary, our contribution is an application (StrongestPath) that provides easy access to 
multiple public large databases, generating output in a short time, and addressing three 
key challenges, all in one platform with a user-friendly graphical interface.

Implementation
We designed StrongestPath with four main panels including Select Databases, Strongest 
Path, Expand and Regulatory Path. In the following, we describe each panel separately.

Select databases

We developed StrongestPath in Java, along with R scripts to preprocess the required 
databases. We used the NCBI [7] and the UniProt [8] databases to build the built-in pro-
tein-coding genes nomenclature databases, which allows us to use any of 11 different 

http://apps.cytoscape.org/apps/pathexplorer
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gene or protein accession numbers including Entrez Gene ID, Official gene symbol, 
Aliases, Uniprot Gene ID, Ensembl (gene, transcript and peptide), RefSeq (peptide and 
mRNA), Reactome ID, and STRING ID. We also supplied the application with some PPI, 
signaling, and regulatory networks from public databases including STRING [9], Hit-
Predict [10], HIPPIE [11] (only for human), KEGG [12], Reactome [13] and TRRUST [6]. 
Currently, both human and mouse species are supported in the application.

Once the user starts the application, if the internet connection is available, the list of 
supporting species by the application will be updated and the user can easily and quickly 
access all available databases for the selected species by only clicking on the Download/
Update Databases button. Since the network data in public databases are often very 
large, we removed any non-essential information from the network data, and then con-
verted the gene accession identifiers in the network data to their line numbers in the 
built-in annotation file and produced a network data with a smaller size compared to the 
original one. Currently, the downloaded data can be stored on a hard disk drive with less 
than 1GB free space and the application can be used later without any dependence on 
internet connection.

Furthermore, users can use the application with their own data including the annota-
tion file and the network file. The annotation file is a tab-separated file containing dif-
ferent types of identifiers for the network nodes. In this file, each row refers to a specific 
node of the network and each column represents a list of different identifier types that 
must be separated by comma. Only the first column of the annotation file, which is used 
to label nodes, is required. Any additional column is optional. The network file is a tab-
separated file containing three columns, in which each interaction is reported in one row 
and the columns refer to the source node, the target node, and the confidence score (i.e. 
a probability value between 0 and 1) respectively. For calling each node in the network 
file, all different accession identifiers given in the annotation file can be used.

As mentioned earlier, StrongestPath implements different scenarios in three distinct 
panels of Strongest Path, Expand, and Regulatory Path. In each run of the application, 
the built-in databases of the selected species or the user provided data should be loaded 
by pressing the Loading Databases button in the Select Databases panel (See Fig.1).

Strongest path

We used interaction confidence scores for assigning weights between 0 and 1 to each 
edge of the PPI or signaling network. Given two sets of source and target proteins, the 
goal is to identify the strongest path connecting at least one source protein to at least 
one target protein. The number of possible pathways of any length between sources and 
targets can be extremely high, and finding a short pathway with highly confident interac-
tions is not straightforward. Assuming confidence scores as the probability of interac-
tions, we define the strongest path as the most probable chain of interactions, i.e. the 
path with the maximum edge weights product. In different networks, the strongest path 
could have different interpretations. While the strongest path can represent the most 
likely chain of interactions between two groups of proteins, it also represents a linear 
signaling pathway while the given graph is a signaling network [14, 15].

It is easy to show that identifying the path between two nodes of a general graph 
with maximum edge weights product is NP-Complete. This can be done by reducing 
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the Hamiltonian Path problem, which is an NP-Complete problem, to it. By assigning 
a constant weight 2 to every edge, the problem would be equivalent to the Hamilto-
nian Path, which is also NP-Complete. However, we made a “dual” graph with the 
same set of edges as the original one but with modified weights, using it the exact 
solution can be found in polynomial time. The only requirement is that all original 
weights should be real numbers between 0 and 1. This requirement is met when the 
original weights are interaction probabilities.

Consider a weighted directed or undirected graph G with all edge weights as posi-
tive real numbers not greater than 1, that we call the “primal” graph. Two disjoint 
subsets of nodes A and B are also given from the nodes of G as source and target 
nodes, respectively. The goal is to a path y(A,B) from the set of all possible paths S 
from any node in A to any node in B with the maximum path weight:

where the weight w(π(a, b)) of a path π(a, b) between nodes a and b to is the product 
of the weights of the path edgesh. If there are two paths with the same path weight, the 
path with less number of edges is considered the strongest path. In our method we use 
a constant penalty factor D to penalize long paths. D is a hyperparameter of our method 

y(A,B) = argmaxπ∈Sw(π)

Fig. 1  A view of StrongestPath with four panels: a Select Databases, b Strongest Path, c Expand and d 
Regulatory Path
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that controls the importance of length of the strongest path. We create the dual graph 
by changing the weight of each interaction (edge) e to W (e) = −(logD + logP(e)) . For 
all 0 < P(e) ≤ 1 , where e is any edge in the graph, and D=0.95, the −(logD + logP(e)) 
is always a positive bounded real number. Hence, we can apply a normal shortest-paths 
algorithm (i.e. Dijkstra’s algorithm) on the dual graph to find the strongest path y(A,B) . 
In order to find the strongest path between two groups of nodes, we add one super-
source and one super-sink to the network, connect one group to the super-source and 
the other group to the super-sink. This way we reduce the problem of multiple-source 
multiple-sink shortest path to a single-source single-sink shortest path problem.

We also modified the algorithm to be able to find sub-optimal strongest paths (i.e. 
paths with slightly less probability product than the maximum). For a given positive 
real value ǫ , we define ǫ-strongest path between A and B as follows:

where w(y(A,B)) is the length of the optimum shortest path in the dual graph. Since 
there are graphs where the number of A-to-B paths can be exponential in (1+ ǫ) , find-
ing all paths of Xǫ would be time consuming. However, finding the intermediate proteins 
that play an important role in the chain of interactions between A and B is suitable for 
most applications. Hence, we define Vǫ as the set of nodes which are seen in at least one ǫ
-strongest path. To find Vǫ , we use the dual graph and for every node v, we define a(v) as 
the weight of the shortest path from any node of A to v, and similarly b(v) is the weight of 
the shortest path from v to any node in B. Only nodes with a(v)+ b(v) ≤ w(y(a, b))+ ǫ 
are inserted into the set Vǫ , and the induced sub-graph of Vǫ will be displayed in the out-
put graph. For better visualization of the result, the Breadth First Search (BFS) algorithm 
is employed to compute the distance of each node from A. The color and position of the 
nodes are then assigned accordingly.

Using the Strongest Path panel in the application, the user can find the strongest 
path connecting at least one source protein to one target protein, as described above. 
A comma-separated list of source genes and target genes can be given as input to the 
application by entering any accession gene identifier supported in the application. As 
seen in Fig. 1, a list of genes can also be given to the application via a text file contain-
ing one line per gene. By choosing a network type from one of the default types, a 
list of networks of that type, supported in the application, is displayed for selection. 
The Show Strongest Path button searches for the strongest path between the source 
and target nodes in the selected networks, and visualizes the output of each selected 
network in Cytoscape as a separate network. Before any search, at least one source 
gene, one target gene and one network must be selected by the user. As seen in Fig. 1, 
a slider is provided at the bottom of the panel. The user can find the sub-optimal 
strongest paths between source and target nodes, as defined above, by increasing the 
threshold value determined by the slider. When increasing the threshold parameter, 
the number of strongest paths increases exponentially and the output graph will be 
dense. By selecting the sparse option, all the proteins which are seen in at least one 
strongest path are identified, and the corresponding paths will be displayed. This fea-
ture saves run time and makes the output network sparse.

Xǫ(A,B) = {x|x ∈ S,w(x) ≤ w(y(A,B))+ ǫ}
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Expand

In this panel, a list of input proteins is given to the application and the application 
returns a network containing input proteins and their connections in the selected back-
ground network at the first step. When giving a positive integer n is given as input, the 
network is expanded by adding n proteins whose total weight of interactions with the 
proteins in the network has the highest value. A list of input genes can be entered into 
the application directly or by providing a text file. The input format in the whole appli-
cation is similar to what was mentioned earlier. After choosing the network type, a list 
of loaded networks in the application is given for selection as indicated in Fig.  1. The 
Show Network button searches for a network of interactions among input genes based 
on the interactions reported in the selected databases. If the user selects more than one 
database, the network associated with each database is shown in Cytoscape separately. 
Each of these networks can be expanded by a number of close neighbours by clicking the 
Expand Network button.

Regulatory path

To answer whether there is any activating or inhibitory path between source genes, 
encoding transcription factors, and target genes, the user can use the Regulatory Path 
panel (Fig. 1). In this panel, the application searches the TRRUST database [6], an exper-
imentally validated database containing human TF-target links with mode of regula-
tion information, to identify regulatory paths. We use the BFS algorithm to compute the 
shortest path between any pair of source and target genes. In this case, we define the 
shortest path as a path connecting source and target genes with the minimum number of 
links. If the path is available, weights of + 1 and − 1 are assigned to activating and inhib-
itory links of the path, respectively, based on the information about mode of regulation 
in TRRUST [6]. In the simplest case, there are two situations for each regulatory path, 
when a change of level of source gene causes the change of level of target gene. If the 
presence of source gene implies the presence of target gene and conversely the absence 
of source gene implies the absence of target gene, the path is called activating path. The 
opposite situation corresponds to the inhibitory path. Accordingly, if the edge weights 
product is + 1, the shortest path is defined as an activating path, otherwise the path is 
defined as an inhibitory path.

In this panel, source and target genes can be given to the application as input, similar 
to the other panels. Currently, only TRRUST database is available in the application for 
finding regulatory paths. After pressing the Show Regulatory Path button, the applica-
tion computes the regulatory paths with the selected mode of regulation between source 
and target genes, as defined above, based on the reported information in the TRRUST 
database.

Results
Strongest path

To demonstrate the effectiveness of StrongestPath, we used 12 signaling pathways 
provided in the NetPath [16] database. The signaling receptors and transcription fac-
tors of each pathway were identified using the NetSlim [17] and the MSigDB [18] data-
bases respectively. For each pathway, the receptors and TFs were given as source and 
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target genes to the application, respectively, and then we used the application to find 
the strongest path(s) between sources and targets in a background network. Since two 
types of networks including signaling networks and protein interaction networks can be 
selected in the application as a background network, we selected KEGG and STRING 
networks in separate runs. The current version of KEGG network for human species, 
derived from the aggregation of all KEGG signaling pathways, includes 6326 proteins 
and 61980 interactions. Since KEGG is a curated database, the probability score of all 
network interactions were considered equal to 1. The STRING network for the human 
species is a very large protein interaction network consisting of 18725 proteins and more 
than 5 million interactions, and all links were weighted by a confidence score between 
0 and 1. Although the background networks, specially the STRING network, are very 
large, the application is able to find the strongest path(s) between multiple source and 
target genes in a few seconds. In addition to the strongest path(s), we also identified sub-
optimal strongest path(s) between source and target genes in the STRING network by 
increasing the threshold parameter three times. Since all links of the KEGG have the 
same probability score, the number of links in the path determines the weight of the 
path and increasing the threshold parameter. In most cases, it leads to the addition of a 
large number of genes to the detected sub-network. Therefore, we used the application 
to identify only the strongest path(s) between source and target genes in the KEGG net-
work containing at least one gene in the middle of the path. To assess the performance 
of the application, for each pathway, we investigated how many of the genes found by the 
application in each run were already known as pathway genes in the NetPath database. 
The obtained results are given in Tables 1 and 2.

For all pathways, as seen in Table  1, where we used the KEGG network to find the 
strongest path(s) between receptors and TFs of each pathway, more than 50% of genes 
found by the application were already known as pathway genes in the NetPath database. 
Also when the STRING network was used, as reported in the first column of Table 2 (i.e. 
Iteration 1), approximately 80% of genes in the identified strongest path(s) (and 100% for 
some pathways) were reported to be pathway genes in the NetPath database. As seen 
in the next columns of Table  2 (i.e. Iterations 2, 3 and 4), by increasing the threshold 
parameter and identifying sub-optimal strongest path(s), this amount will decrease.

Our results demonstrate that the application can be used to identify which genes can 
play a role in the middle of the pathway by finding the strongest path(s) in the signaling 
network like KEGG, or in the protein interaction network such as STRING. Since the 
networks are available in the application for both human and mouse species, Strong-
estPath can be used more easily compared to similar Cytoscape apps like PathLinker. 
More species can be added to the application in the future without any new installation, 
meanwhile, the application can be used for other species by giving the annotation and 
the network files to the app manually.

In both Tables 1 and 2, the number of found genes refers to the number of genes that 
were found by the application in the middle of the strongest paths. Also, the number 
of pathway genes is the number of genes from the set of found genes that were known 
to belong to a specific pathway. For each pathway, the p-value was calculated by hyper-
geometric distribution to quantitatively assess the significance of the overlap between 
the application output and the pathway genes. We used the “phyper” function in R to 
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calculate the P values, and the false-discovery rate (FDR) was used to account for multi-
ple testing. When the FDR-corrected p-value is close to zero, it means that most of the 
genes in the strongest path(s) have already been identified as genes of a given pathway, 
and it is unlikely that this happens by chance.

According to the obtained results on the above signaling pathways, analyzing the 
strongest path(s) between source and target genes by considering different PPI or signal-
ing networks as a background network can detect different sets of proteins in the middle 
of the path, with little in common. Therefore, researchers can easily use StrongestPath 
with multiple PPI or signaling networks provided in the application to find the proteins 
that can play a significant role in the middle of the pathway between source and target 
proteins.

Expand

As mentioned earlier, the Expand panel can be used to identify unknown elements of 
a protein complex, biological process or core regulatory circuitry. To demonstrate the 
functionality of the application in the Expand panel, four different protein complexes 
associated with the proteasome, respiratory electron transport, aminoacyl-tRNA bio-
synthesis and peroxisome pathways have been selected and one protein from each com-
plex, respectively PSMA1, NDUFA9, RARS and PEX5, have been given to the application 
in separate runs. At each run, we expanded the network twice, and each time, five pro-
teins which have the strongest interactions with the existing proteins were identified 

Table 1  Details of identified strongest path(s) by the application using the KEGG background 
network

Pathway # found genes # 
pathway 
genes

FDR-corrected p value List of found pathway genes

BDNF 4 2 3.54× 10
−3 RAC1, TRAF1

EGFR 11 10 7.99× 10
−10 CBL, CBLB, CBLC, ERBB2, HRAS, JAK1, KRAS, 

MAPK1, MAPK3, SRC

Hedgehog 10 5 1.20× 10
−8 ARBB2, PRKACA, SMO, STK36, SUFU

IL-1 4 3 1.35× 10
−5 MYD88, TAB1, TRAF6

IL-2 5 3 5.05× 10
−5 JAK1, JAK2, JAK3

IL-3 4 3 2.88× 10
−5 JAK1, JAK2, TYK2

IL-6 5 4 6.37× 10
−7 JAK1, JAK2, TYK2, SOCS3

IL-7 5 2 3.06× 10
−4 JAK1, JAK3

TCR​ 26 15 5.28× 10
−12 CHUK, FYN, IKBKB, IKBKG, MAP3K14, MAP3K7, 

MAPK1, MAPK11, MAPK12, MAPK13, 
MAPK14, MAPK3, MAPK9, MAP3K1, MAPK8

TGFB 31 15 1.74× 10
−11 MAPK1, MAPK3, PPP2CA, PPP2CB, PPP2R1A, 

PPP2R1B, RHOA, RPCK1, ROCK2, SMAD1, 
AKT1, MAPK8, RAF1, WWTR1, YAP1

TNF-alpha 10 10 5.28× 10
−12 CASPB, IKBKB, MAP3K1, MAPK10, MAPK8, 

MAPK9, TAB1, TRADD, TRAF2, TRAF6

WNT 48 25 5.32× 10
−22 CREBBP, CSNK2A1, CSNK2A2, CSNK2B, DVL1, 

DVL2, DVL3, EP300, GSK3B, MAPK10, 
MAPK8, MAPK9, PLCB1, PLCB2, PLCB3, 
PLCB4, PPP3CA, PPP3CB, PPP3CC, PPP3R1, 
PPP3R2, AKT1, MAPK1, MAPK3, SRC
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from the STRING database and added to the network. As seen in Fig.  2, all proteins 
added to each network belong to the same protein complex and are involved in the simi-
lar signaling pathway.

Regulatory path

As discussed earlier, the Regulatory panel can be used to identify both activat-
ing and inhibitory regulatory paths between source genes, encoding transcription 
factors, and target genes. Here, we provide an example to illustrate the biological 
utility of this panel. The TP53 gene encodes a TF which acts as a tumour suppres-
sor. Target genes of p53 function in multiple biological processes, including cell 
cycle arrest and DNA repair. Suppose we have a list of cell cycle genes, including 
CDK1, CCNB1, CDC25C, MYBL2, PLK1, PGF and TGFA, and a set of DNA repair 
genes, including RAD51, MSH2 and  MLH1, and we want to identify which of the 
genes are directly or indirectly targeted by the p53. Given the TP53 gene as source 

Table 2  Details of identified strongest path(s) and sub-optimal strongest path(s) by the application 
using the STRING background network in four separate runs

Pathway Iteration 1 Iteration 2 Iteration 3 Iteration 4

#pathway 
genes/#found 
genes

FDR-
corrected p 
value

List of found 
pathway 
genes

#pathway 
genes/#found 
genes

#pathway 
genes/#found 
genes

#pathway 
genes/#found 
genes

BDNF 3/4 2.31× 10
−6 GRB2, NGF, 

SHC1
7/12 12/21 14/28

EGFR 6/8 1.85× 10
−8 AKT1, CBL, 

GRB2, 
HRAS, JAK2, 
PIK3CA

9/22 12/49 19/85

Hedgehog 5/5 2.34× 10
−13 DHH, HHIP, 

SHH, SMO, 
SUFU

7/17 7/28 7/46

IL-1 4/5 3.36× 10
−9 IKBKB, 

MAP3K7, 
TAB2, 
TRAF6

7/10 7/19 9/38

IL-2 2/6 3.61× 10
−4 IL2, JAK2 6/15 8/25 8/31

IL-3 0/6 1 2/11 2/22 3/43

IL-6 4/8 7.17× 10
−8 AKT1, IL6, 

JAK1, JAK2
5/13 5/27 5/45

IL-7 1/5 8.12× 10
−3 JAK3 4/12 4/15 4/33

TCR​ 3/4 2.32× 10
−5 IKBKB, 

MAP3K7, 
TNF

4/7 4/9 5/20

TGFB 8/8 2.01× 10
−14 TGFB3, 

ZFYVE9, 
AKT1, 
AXIN1, 
FKBP1A, 
GSK3B, 
MTOR, 
NEDD4L

9/11 13/37 16/150

TNF-alpha 3/3 8.82× 10
−6 IKBKB, IKBKG, 

TNF
7/7 11/20 12/40

WNT 3/3 2.31× 10
−6 APC, AXIN1, 

WNT1
7/9 10/18 14/37
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gene and the cell cycle genes and the DNA repair genes as target genes, the Regula-
tory panel retrieves any inhibitory and activating path between the source TF and 
the target genes. Interestingly the results of the application, as provided in Fig. 3, are 
in accordance with the data reported in [19]. In Fig. 3, the target genes which col-
oured with green including PGF, TGFA and MLH1 were experimentally confirmed 
to be activated by the p53 gene in [19]. Moreover, it is confirmed that the p53 gene 
also inhibits cell cycle genes such as CDK1, CCNB1, CDC25C, MYBL2 and PLK1. 
Also, some DNA repair genes including MSH2 and RAD51 were reported to be indi-
rectly repressed by p53 gene [19].

Fig. 2  An example of using the Expand panel to identify proteins of four protein complexes: a proteasome, b 
respiratory electron transport, c aminoacyl-tRNA biosynthesis, and d peroxisome

Fig. 3  An example of using the Regulatory panel to find regulatory paths, a activating and b inhibitory, 
between TP53 and a set of cell cycle arrest and DNA repair genes. Green and red colours are used for 
colouring activating and inhibitory links in the output. Up-regulated and down-regulated target genes are 
also coloured with green and red respectively.



Page 11 of 14Mousavian et al. BMC Bioinformatics          (2021) 22:352 	

Comparison with PathLinker

In this section, we only compare StrongestPath with PathLinker, which is a Cytoscape 
application with better accuracy compared to the others for pathway reconstruction, as 
stated in [4, 5]. The PathLinker uses A*-augmented Yen’s Algorithm to find the k-short-
est paths from A to B , as defined above. Given a network with n nodes and m links, Path-
Linker runs in O(nk(m+ nlogn)) , and the runtime of the algorithm linearly scales with 
the value of k . StrongestPath executes the Dijkstra’s algorithm only twice, once on the 
primal graph and once on the dual graph. So, regardless of the value of ǫ , Strongest-
Path runs in O(m+ nlogn) . Therefore, StrongestPath runs in O(nk) times faster than 
PathLinker.

To compare both applications in terms of precision and recall measures, the applica-
tions were used for the reconstruction of the three signaling pathways of WNT  , TGFβ , 
and TNFα . For each pathway, the sets of source and target nodes, similar to what was 
given in [5], were used in both applications as input sets and we used the PathLinker 
network as the background network. The PathLinker network is a weighted network, 
containing 12,046 nodes and 152,094 directed links, constructed by the authors of 
PathLinker application from many protein–protein interaction and signaling pathway 
databases [4]. We executed StrongestPath and Pathlinker with ten different values of ǫ 
and k , respectively. For each value of ǫ , the corresponding value for k was identified. As 
expected, since the same idea is used in both applications, the applications output is sim-
ilar in finding the strongest paths. However, each application uses a different algorithm 
with a different run-time complexity for finding the genes involved in the sub-optimal 
strongest paths, i.e. the ǫ-strongest paths. As mentioned earlier, a list of genes involved 
in each pathway was identified using the NetPath database. Precision is the fraction of 
genes involved in a pathway among the identified genes in the ǫ-strongest paths. Recall is 
the fraction of pathway genes that were retrieved in the ǫ-strongest paths. For each path-
way, we calculated precision and recall measures from the outputs of both applications 
using increasing values of k and ǫ . As seen in Fig. 4, StrongestPath performs better than 
PathLinker for the large values of the parameter k and ǫ.

In terms of run time, each run of StrongestPath took about one second, while Path-
Linker takes more time especially for large values of k , as reported in [5] (see Table 3). 
Moreover, if we select the Include tied paths parameter in PathLinker, there are 
a huge number of paths with the product of edge weights similar to the k-th strong-
est path. So, due to the time complexity of PathLinker, finding all of these paths is not 

Fig. 4  The precision-recall plots of StrongestPath and PathLinker for three signaling pathways including: a 
WNT  , b TGFβ , and c TNFα.
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computationally feasible. For example, using the TNFα pathway, when we changed the 
value of k to 10,000, PathLinker was unable to identify all paths with the product of edge 
weights similar to the k-th strongest path even after 30 minutes.

Furthermore, StrongestPath is more applicable than PathLinker for the reasons listed 
below:

1.	 Both PathLinker and StrongestPath allow users to use their own networks. In addi-
tion, StrongestPath allows the use of large networks from public databases such as 
KEGG and STRING. To achieve the same goal in PathLinker, one has to load this 
data manually, which for large networks such as STRING, it would be impossible.

2.	 The users can input a list of proteins into StrongestPath via a number of different 
nomenclatures. So the user doesn’t need to know one specific identifier of their input 
proteins and in most cases the ID mapping is not necessary to be done before using 
our application.

3.	 In the current version of StrongestPath, identifying regulatory paths (Activating/ 
Inhibitory) between transcription factors and target genes can also be done using the 
TRRUST database.

Conclusions
In summary, StrongestPath is a Cytoscape application for protein–protein interaction 
and signaling network analysis. It allows the user to search for strongest path(s) or sub-
optimal strongest path(s) in a PPI or signaling networks for pathway reconstruction, to 
create and expand network of interactions among a list of proteins, and to explore acti-
vating or inhibitory regulatory paths between TFs and target genes in a regulatory net-
work. Easy access to some public large databases of human and mouse species and a 
user-friendly graphical interface make this application more convenient for the users. 
Moreover, the application can be easily expanded for supporting more species and also 
networks from more public databases in the future without having to install another ver-
sion of the application only with an internet connection.
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