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Abstract

Radiomics is an emerging field of medical image analysis research where quantitative 

measurements are obtained from radiological images that can be utilized to predict patient 

outcomes and inform treatment decisions. Cancer patients routinely undergo radiological 

evaluations when images of various modalities including computed tomography, positron emission 

tomography, and magnetic resonance images are collected for diagnosis and for evaluation of 

disease progression. Tumor characteristics, often referred to as measures of tumor heterogeneity, 

can be computed using these clinical images and used as predictors of disease progression and 

patient survival. Several approaches for quantifying tumor heterogeneity have been proposed, 

including intensity histogram-based measures, shape and volume-based features, and texture 

analysis. Taking into account the topology of the tumors we propose a statistical framework for 

estimating tumor heterogeneity using clustering based on Markov Random Field theory. We model 

the voxel intensities using a Gaussian mixture model using a Gibbs prior to incorporate voxel 

neighborhood information. We propose a novel approach to choosing the number of mixture 

components. Subsequently, we show that the proposed procedure outperforms the existing 

approaches when predicting lung cancer survival.
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1 Introduction

Quantitative features of medical images are used routinely by clinicians for disease 

diagnosis, assessment of response to treatment, and for prediction of clinical outcomes such 

as survival time and disability scores. While in the past a small number of image features 

(such as tumor size in cancer) were obtained and recorded by radiologists by manually 

viewing the images, in recent years there is interest in estimating a large number of 

radiological image features automatically. Aerts et al. (2014) hypothesize that radiological 

image features obtained from medical imaging data using advanced computational 

techniques can describe cancerous tissues. The newly emerging field concerned with the 

estimation of numerous imaging features and subsequent implementation of algorithms to 

predict clinical outcomes and response to treatment is referred to as radiomics.
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In cancer imaging, quantitative features of tumors calculated from images of various 

modalities such as computed tomography (CT), magnetic resonance images (MRI), and 

positron emission tomography (PET) are often used for diagnosis and prognosis of cancer. 

Cancer tumors are heterogeneous objects due to their structure, vasculature, cell types within 

the tumor, and functional characteristics. Herein, the term “tumor heterogeneity” refers to 

intratumor heterogeneity, i.e. heterogeneity of structures within a single tumor observable on 

a radiological image. Depending on the imaging modality used in a particular setting, 

various types of tumor heterogeneity can be observed on the radiological image of a patient. 

For example, since PET imaging is used to observe metabolic processes in the tumor, 

features related to tumor metabolism are used as measures of tumor heterogeneity computed 

from PET scans. On the other hand, since structural MRI captures the structure of the tumor, 

MRI scans are used to estimate tumor heterogeneity features related to tumor anatomy and 

shape.

Quantifying tumor heterogeneity is imperative as heterogeneity measures can be used to 

compare tumors with one another, develop novel targeted therapies, identify longitudinal 

trends in disease development, determine patient’s response to a particular treatment, and 

predict clinical outcomes. In addition, medical imaging is performed using noninvasive in-

vivo imaging technology, which is routinely performed as part of clinical care. Hence, the 

analysis of tumor heterogeneity based on medical imaging can potentially be performed 

using routinely collected images without the need for further data collection.

One common approach to estimating tumor heterogeneity is by using the histogram, in 

particular the radiomic features based on the histogram of intensities of image voxels [three 

dimensional (3D) pixel]. A comprehensive review of the literature on histogram measures 

for quantifying tumor heterogeneity is given by Just (2014). In this approach, a histogram of 

tumor voxel intensities is calculated and features of the histogram are used as measures of 

heterogeneity. For example, Figure 1 presents CT scans of patients with lung cancer along 

with the corresponding intensity histograms. Common features in the literature include 

skewness, kurtosis, entropy, and percentiles of the tumor intensity histogram. For example, 

the histogram of tumor intensities of patient 1 in Figure 1 is more left skewed than that of 

patient 2 with skewness values of −2.47 and −2.13 correspondingly, while the kurtoses of 

intensities are 6.156 and 3.48 suggesting that the intensities of the tumor of patient 1 have a 

sharper peak than those of patient 2. Finally, the means (standard deviations) of the two 

histograms are 961.09 (sd = 201.73) and −49.12 (sd = 234.43) suggesting that the intensities 

of the first histogram are centered higher than those of the second histogram with similar 

spread. These mean, standard deviation, skewness, and kurtosis values are then used as 

measures of tumor heterogeneity to compare tumors. Studies evaluated the relationship of 

the histogram metrics with response to radiotherapy (Peng et al., 2013), as well as 

classification of tumor types (Gutierrez et al., 2014). A major shortcoming of these intensity 

histogram-based approaches is the elimination of information on spatial structure of the 

tumor. This is potentially a serious limitation as differences in spatial distributions of voxels 

with similar intensities will be missed by this approach.

We provide a brief (and by no means exhaustive) overview of a few methods for tumor 

heterogeneity estimation for structural images, data from other imaging modalities, and 
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genomics in this paragraph. Brooks and Grigsby (2013) considered another intensity-based 

measure of heterogeneity using a pixel-level approach. The proposed measure is based on a 

distance-dependent mean deviation from a linear intensity gradation. Roberts et al. (2017) 

proposed the use of wavelet-based scaling indices for prediction of breast cancer diagnosis 

using mammography imaging. O’Sullivan et al. (2005) discussed the incorporation of tumor 

shape assessments into estimation of spatial heterogeneity of tumors using fluoro-

deoxyglucose-PET data. As discussed above, there are differences in data obtained from 

PET imaging and mammography and those obtained using the MRI or CT technologies, 

hence, the methods proposed by Roberts et al. (2017) and O’Sullivan et al. (2005) may not 

be directly applicable to analyzing tumor heterogeneity using CT imaging as in the 

motivating dataset in this article. Nevo et al. (2016) discussed issues related to measurement 

error in biomarker data and approaches for taking into account such errors to reduce 

misclassification of cancer subtypes. The term “tumor heterogeneity” is widely used in 

statistical genomics literature to refer to variability in tumor cells. For example, Xu et al. 

(2015) proposed the MAD Bayes approached for inference on tumor heterogeneity using 

next-generation sequencing data. Ni et al. (2019) used Bayesian hierarchical varying-

sparsity regression models for estimating biomarkers of tumors from proteogenomics.

Aerts et al. (2014) proposed a general approach for using descriptors of tumor heterogeneity 

for cancer prognosis and tumor classification by building on histogram and shape features. 

Four types of image features were used to quantify tumor heterogeneity: histogram 

summaries, shape, texture, and transformation-based features. The prognostic ability of the 

radiomic features was presented and validated in a large dataset of medical images from 

patients with lung and head-and-neck cancers. Specifically, cancer survival was considered 

as an outcome. Textural features were obtained using grey-level co-occurrence and grey-

level run-length matrix-based approaches. Once the radiomic features were extracted Aerts 

et al. (2014) used the Kaplan-Meier product-limit estimator (Kaplan and Meier, 1958) to 

obtain associations of radiomic features with survival. One radiomic feature from each of the 

four types of image features was selected based on feature stability analysis to form the 

radiomic signature consisting of the resulting four representative features. This radiomic 

signature was then used in a Cox Proportional Hazards model for prediction of survival. 

Limitations of this approach include the choice of only four features for prediction.

The novel approach for tumor heterogeneity estimation presented in this article builds on the 

existing estimation methods while accounting for spatial distribution of voxels. On a high 

level, our proposed approach consists of 2 steps: 1) we propose a new approach for 

indentification of clusters of voxels with similar intensity profiles (using a methods similar 

to those for brain tissue segmentation Zhang et al. (2001)), 2) computation of features of the 

voxel intensities in these estimated clusters as measures of tumor heterogeneity. To model 

the voxel intensities accounting for their spatial distribution we use Markov Random Fields 

(MRF) (Li, 2009). We then compute within and between cluster summary measures of 

voxels with similar intensity profiles that describe tumor heterogeneity. We present the 

performance of our proposed MRF-based clustering approach in simulation studies. In 

addition, we show that the proposed tumor heterogeneity estimation approach performs as 

well as or better than other approaches in ranking images by their heterogeneity using 

simulated data. We then present the performance of regularized regression when predicting 
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lung cancer patient survival using the novel estimator of tumor heterogeneity and compare 

the performance of this method to existing approaches using time-dependent receiver 

operating characteristic (ROC) curves. Specifically, we consider the Cox Proportional 

Hazards model (Andersen and Gill, 1982) and generalized linear models with Ridge, Lasso, 

and Elastic-Net penalization. We illustrate that our proposed estimation procedure 

outperforms other approaches when judged based on maximization of cross-validation area 

under the curve (AUC) as a criterion of predictive performance of the model. We show that 

many existing approaches to tumor heterogeneity estimation are special cases of our 

proposed framework.

The article is organized as follows. Section 2 presents our proposed method, where Section 

2.1 provides an overview of the data, Section 2.2 describes notations used throughout the 

Section. Next, Section 2.3 introduces our proposed novel estimator for tumor heterogeneity, 

where Section 2.3.1 provides details of our proposed estimation algorithm, Section 2.3.2 

shows our proposed procedure for selecting the number of Gaussian mixture components, 

and Section 2.3.3 presents the summary measures for evaluating tumor heterogeneity. 

Section 3 presents simulation results on comparison of our proposed methods with other 

approaches. Section 4 shows the results of the prediction of lung cancer survival using our 

proposed tumor heterogeneity estimation approach and existing methods. Finally, Section 5 

presents concluding remarks.

2 Data and Methods

2.1 Data

In this paper, we examine cancer survival as the clinical outcome of interest. We consider 

data from patients with non-small cell lung cancer (NSCLC) collected at the MAASTRO 

Clinic (Maastricht, The Netherlands) and publicly available from The Cancer Imaging 

Archive (TCIA) located at http://www.cancerimagingarchive.net (Clark et al., 2013). 

NSCLC is the most common type of lung cancer accounting for about 85 − 90% of lung 

cancer diagnoses according to the American Cancer Society. The database we obtained from 

TCIA includes CT scans from 422 patients with inoperable, histologic, or cytologic 

confirmed NSCLC along with their demographic and clinical information including age, 

sex, histology of tumors, stage of cancer, and the clinical N and T stages for each 

participant. The clinical N stage corresponds to the density and spread of lymph nodes and 

the clinical T stage corresponds to the size and extent of the tumor. Figure 2 presents the 

distribution of patients in this study by their tumor histology and cancer stage. The average 

age of the participants in this sample is 68 years with standard deviation of 10.1. There are 

290 males and 132 females. A spiral CT with a 3 mm slice thickness is performed for each 

participant including the complete thoracic region. Further details on data collection 

parameters and scanning information can be found at Aerts et al. (2015) and hence are not 

repeated here. Our aim is to develop a tool for prediction of cancer survival, using a novel 

tumor heterogeneity measure that we define herein.

A few details on preprocessing of medical imaging data deserve a special note. A radiologist 

reviewed each CT scan and manually delineated the tumor volume by marking voxels 

visually identified as locations on the tumor surface. In the example illustrated in Figure 3, 
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this delineation starts by marking four of the vertices on the tumor surface. The delineation 

then continues until enough surface points are obtained to delineate the full tumor surface 

(as shown in Figure 3 bottom left). For each participant, the coordinates of these tumor 

surface vertices are saved in a matrix and provided on TCIA in the RTSTRUCT format 

along with other scan-specific information such as the thickness of the slices, etc. Since in 

most cases not all vertices are marked manually, there is a need to interpolate the vertices 

automatically. We pre-processed these files to obtain all tumor voxels by connecting the 

vertices using linear interpolation in the R software (R Core Team, 2016). As a result, for 

each participant we obtain a Vi × 3 matrix of coordinates of all tumor voxels as presented in 

Figure 3 bottom right, where Vi defines the total number of tumor voxels for subject i. We 

can now use these coordinate matrices to extract the intensities of tumor voxels for each 

participant. All patients received standard of care treatments for their corresponding cancer 

stage, however, treatment information was not available in the database.

2.2 Notations and Existing Approaches for Tumor Heterogeneity Estimation

Let Iiv define the intensity of the CT image at voxel v = 1, …, Vi for subject i = 1, …, N, 

where Vi is the number of tumor voxels and N is the total number of patients. While the 

number of tumor voxels Vi may vary from subject to subject, for simplicity of notation we 

drop the subscript i and use V = Vi. Let S = {1, …, V } define the set of all tumor voxels. 

The coordinates of each voxel v are defined by xv, yv, zv. Tumor heterogeneity for subject i 
is defined as a vector of functions of voxel intensities Hi = [Hi1(Iiv), …, Hin(Iiv)], where n is 

the total number of functions, where each function corresponds to a radiomic feature. The 

estimation of tumor heterogeneity can be based on intensity values at voxel level or 

descriptive statistics at tumor level. We first briefly review and introduce notation for some 

of the commonly used approaches to estimate Hi. Histogram approaches treat the vector of 

intensities of a tumor Ii1, …, IiV as an independent and identically distributed set of 

observations from a density fi(x). The standardized moments of fi(x), where the jth moment 

is denoted by Mij, for j = 1, …, m, are estimated and used as approximations of tumor 

heterogeneity. For example, if a study uses mean, variance, skewness, and kurtosis as in 

Figure 1 then Hi = [Mi1,Mi2,Mi3,Mi4]. As tumor shape- and volume-based features are 

commonly used to describe tumor heterogeneity, we define by Si1, …, Sis, s shape- and 

volume-based measures. Examples of shape measures include estimates of tumor 

smoothness and sphericity, while the number of voxels on the tumor surface and the number 

of voxels within the tumor are examples of volume measures. Finally, let Wi1, …, Wiw 

denote the collection of features quantifying the texture of the tumor image as defined by 

Aerts et al. (2014). These measures estimate patterns of spatial distributions of intensities 

using grey level co-occurrence matrices (Haralick et al., 1973) or wavelet-based approaches 

(see the Supplementary Materials of Aerts et al. (2014) for more details).

2.3 Neighborhood-Based Tumor Heterogeneity

We propose a novel Neighborhood-Based Tumor Heterogeneity (NBTH) estimation method 

for measuring tumor heterogeneity. This approach is motivated by the intuition that: 1) a 

tumor is a collection of k locally homogeneous regions within the image labeled as Λ = {1, 

…, k}, where k may be known or estimated; 2) the descriptive characteristics of these 

locally homogeneous regions are related to cancer outcomes such as survival. Note, a 
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“region” within a tumor can be thought of as a collection (or cluster) of voxels. In addition, 

the term “locally homogeneous region” indicates that the voxels within this region have 

similar intensities. After estimating locally homogeneous regions within the tumor, i.e. 

estimating the cluster membership label λv ∈ Λ for each voxel v ∈ S, we use summary 

characteristics of those regions to define our novel measure of tumor heterogeneity. Hence, 

identifying locally homogeneous clusters of voxels with similar intensity profiles and 

computing the characteristics of the resulting clusters is used to measure tumor 

heterogeneity.

In image analysis, it is common to assume that voxels in a close vicinity of each other are 

likely to have similar intensities. MRFs are undirected graphical models widely used in 

image analysis (i.e. for segmentation of different tissues in the brain Zhang et al. (2001), 

Wang (2012), Zhang and Ji (2009) in computer vision problems), as they provide a modeling 

framework for correlated entities in space such as the intensities of voxels in images. Let 

N = N(v), v ∈ S define a neighborhood system, where N(v) is a neighborhood of a tumor 

voxel v such that v ∉ N(v) and v ∈ N v1 v1 ∈ N(v), i.e. voxel v does not belong in its 

neighborhood and for any other voxel v1, v belongs in the neighborhood of v1 if and only if 

v1 belongs in the neighborhood of v. Each voxel v ∈ S is assigned a true and unknown label 

λv ∈ Λ that determines the cluster membership of voxel v. The goal is to estimate the 

unknown labels λv. Let P(λ) denote a probability measure on the set of all possible labels 

Λ. We assume that the labeling field Λ is an MRF on S with respect to the neighborhood 

system N, in other words

∀λ ∈ Λ, P(λ) > 0 and P λv ∣ λS\ v = P λv ∣ λN(v) .

where λS\ v  denotes the set of cluster labels of all voxels in S excluding v and λN(v) denotes 

the set of cluster labels of all voxels in the neighborhood of v defined as N(v). In other 

words, we assume that the probability of assigning the label λv to voxel v depends on the 

labeling of the voxels in its neighborhood N only. A probabilistic model commonly 

implemented in image segmentation problems is the Finite Gaussian Mixture Model (GMM) 

Wang (2012), Zhu et al. (2003). FGMM models assume that the voxel intensities are 

independent and Gaussian mixture densities are used to model the distribution of voxel 

intensities. This is a convenient model to implement in our context as the voxel labels can be 

easily estimated, e.g. by using the expectation-maximization (EM) algorithm (Dempster et 

al., 1977).

In what follows, we will describe a GMM-based MRF modeling framework, and show how 

the cluster labels will be determined as a result. We will also introduce a method for finding 

an appropriate number of mixture components in GMM. The clusters emerging from this 

MRF-GMM modeling will be subsequently used in the definition of the novel measure of 

tumor heterogeneity.

2.3.1 Estimation of Mixture Component Weights in MRF—In this section, we 

propose a novel approach for modeling the voxel labels using the GMM framework while 

incorporating neighborhood voxel intensity information within the MRF framework. 
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Without loss of generality and for clarity of notation, we drop the index for study subjects 

denoted herein by i. In GMM, the density function at the observation Iv at voxel v = 1, …, V 
is modeled using a Gaussian mixture distribution as follows.

f Iv ∣ Π, μK, σK = ∑
j = 1

K
πj, v

1
σK

ϕ Iv − μj, K
σK

(1)

where ϕ(·) is the probability density function of a normally distributed random variable with 

mean 0 and variance 1, μK = (μ1,K, …, μK,K)T is the vector of the mixture component means, 

and σK is the common standard deviation. In this section, we assume that the number of 

mixture components, defined by K, is known. Finally, πj,v, j = 1, …, K and v = 1, …, V is 

the probability that voxel v has label j and Π is the V × K matrix of voxel specific 

probabilities πj,v, such that ∑j = 1
K πj, v = 1, for all v ∈ 1...,V. Let Zv denote the latent label of 

vth voxel, then P(Zv = j) = πj,v. Following the approach proposed by Eloyan and Ghosh 

(2011) and extended to high dimensional settings by Meng and Eloyan (2017) for estimation 

of Gaussian mixture based approximations of density functions, we assume the means and 

variance of the mixture elements defined by μ1,K, …, μK,K and σK are fixed. Eloyan and 

Ghosh (2011) propose fixing the values of μ1,K, …, μK,K at equidistant points on the support 

of the empirical distribution of the observed data points, while Meng and Eloyan (2017) 

propose using the k-means algorithm for selecting the means of the Gaussian mixture 

components using the observed data. The mixture standard deviation σK is set as a small 

value relative to the differences between the mixture element means μK. This approach 

results in a computationally efficient estimation of the mixture weights and the resulting 

density estimate approximates the true underlying density of the observed data in terms of 

minimizing the Kullback-Leibler Divergence (KLD) between the true and estimated 

densities. In addition, as shown by Eloyan and Ghosh (2011) and Meng and Eloyan (2017) a 

hypothesis testing procedure can be implemented to estimate the number of mixture 

components, K, within this framework. Both of these models assume that the observed voxel 

intensities are statistically independent. This assumption may not hold in image analysis as 

intensities of neighboring voxels are often close to each other due to smoothness of the 

image. To take into account the spatial information using the Markov random field theory, 

we extend the model and incorporate the spatial smoothness of the image by modeling the 

prior distribution of the probabilities πj,v for individual voxels using a Gibbs function as 

follows.

p(Π) = 1
T e−U(Π)

where U(Π) = β∑v = 1
V V N(v)(Π) is the smoothing prior with regularization parameter β, T is 

the normalizing constant of the density function, V N(v)(Π) is the clique potential function 

(Li, 2009). Blekas et al. (2005) and Nguyen and Wu (2012) discuss various forms of the 

smoothing prior U(Π) and the effect of the choice of U(Π) on parameter estimation. In this 

paper, we implement the smoothing prior proposed by Nguyen and Wu (2012) as it provides 

a computationally feasible approach for parameter estimation in our setting, where tumors 

are observed in 3D space and the number of voxels in some tumors observed in the NSCLC 
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dataset analysed in this manuscript is larger than 80,000. The proposed algorithm is based on 

an implementation of the EM-algorithm to obtain a posteriory MAP estimates of the 

parameters of interest. In the kth step of the iterative EM-algorithm estimation procedure we 

implement the following two steps.

E-step:  We compute the expectation of the log-likelihood given the observed values and the 

values of the coefficients from the previous iteration. We define fj, K(x) = ϕ
Iv − μj, K

σK
 and I 

= (I1, …, IV )T. By Bayes rule we obtain.

P Zv = j ∣ x, Π(k) =
πj, v

(k)fj, K Iv
∑j = 1

K πj, v
(k)fj, K Iv

= wj, v Π(k), I .

The expectation of the log-likelihood of the complete data can be derived as follows.

Q Π ∣ Π(k) = ∑
v = 1

V
∑
j = 1

K
wj, v Π(k), I log fj, K Iv + log πj, v + log[p(Π)] . (2)

The smoothing prior (Nguyen and Wu, 2012) is defined as follows.

U(Π) = − ∑
v = 1

V
∑

j = 1

K
Gj, v

(k)logπj, v where Gj, v
(k) = exp β

2 N(v) ∑
v′ ∈ N(v)

wj, v′ Π(k), I + πj, v′
(k)

where |N(v)| denotes the number of elements in the neighborhood set N(v).

M-step:  We maximize the function Q in (2) under constraints ∑j = 1
K πj, v = 1. To obtain 

probabilities that satisfy these conditions Blekas et al. (2005) propose a projection of the 

estimated probabilities to the corresponding space. In our implementation we use the 

Lagrange Multiplier method to incorporate these constraints directly in the M-step of the 

EM-algorithm. Using the constants λv as coefficients for the constraints on probabilities we 

build the Lagrangian function to be maximized as follows.

Qλ Π, Π(k) = Q Π ∣ Π(k) + ∑
v = 1

V
λv 1 − ∑

j = 1

K
πj, v .

By taking the derivatives with respect to πj,v for j = 1, …, K, and λv we obtain the following 

system of equations.
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∂Qλ Π, Π(k)

∂πj, v
=

wj, v Π(k), I
πj, v

+
Gj, v

(k)

πj, v
− λv = 0

∂Qλ Π, Π(k)

∂λv
= 1 − ∑

j = 1

K
πj, v = 0

(3)

We first derive πj,v from equation (3) and substitute the expression in the next V equations 

to obtain λv = 1 + ∑j = 1
K Gj, v

(k). Then by substituting these values in the expression for πj, v
(k + 1)

we obtain.

πj, v
(k + 1) =

wj, v Π(k), I + Gj, v
(k)

λv
. (4)

The algorithm stops when the absolute norm difference of the updated probability matrix 

Π(k + 1) and that computed in the previous iteration Π(k) is smaller than a predefined small 

value ϵ > 0. Finally, if the algorithm stops at iteration k + 1, cluster labels λ1, …, λV  are 

assigned based on the estimated probabilities as follows λv = j, if πj, v
(k + 1) is highest among 

π1, v
(k + 1), ⋯, πK, v

(k + 1). The above determination of labels results in clusters that account for the 

spatial distribution of voxel intensities. Our novel measure of tumor heterogeneity is directly 

based on statistics of those clusters. An important question that still remains is the choice of 

the number of mixture components defined by K assumed to be fixed in the beginning of 

this Section. In the subsection that follows, we relax that assumption and propose an 

iterative procedure for selecting K given a starting value of K0 based on our goal of 

minimizing the distance between the true density of intensities f(I) and the estimated density 

using our proposed approach.

2.3.2 Selection of the Number of Mixture Components—We implement a 

hypothesis testing procedure for estimation of the number of Gaussian mixture components 

in the proposed MRF-GMM procedure with the goal to minimize the distance between the 

true probability density function f(Iv) of the image intensities and the estimated function 

defined as fK Iv ∣ Π, μK, σK . The sample estimate of KLD between true and estimated 

functions is 1
V ∑v = 1

V log
f Iv

fK Iv ∣ Π, μK, σK
. The intuition for our proposed procedure is that 

this sample estimate cannot be directly minimized in K since the true underlying density is 

unknown. However, we can compute the difference of sample estimates of KLD between 

true and estimated density functions of two consecutive values of K, i.e. 
1
V ∑v = 1

V log
f Iv

fK Iv ∣ Π, μK, σK
− 1

V ∑v = 1
V log

f Iv
fK + 1 Iv ∣ Π, μK + 1, σK + 1

= 1
V ∑v = 1

V log
fK + 1 Iv ∣ Π, μK + 1, σK + 1

fK Iv ∣ Π, μK, σK

. Hence, to estimate the 

number of components in the mixture defined by K, we consider an iterative approach 

where, starting from a predefined value K0, we compute the estimated function 
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fK0 Iv ∣ Π, μK0, σK0  using the steps of the EM-algorithm described in the previous 

subsection iteratively until convergence. Further, at each iteration K of the procedure we 

increase the number of components in the mixture by 1, estimate fK Iv ∣ Π, μK, σK , and test 

whether the expected value of the difference of KLD of estimated function at iteration K and 

true underlying probability function and KLD of estimated function at iteration K + 1 and 

true probability function is equal to zero as follows.

H0:E log
fK + 1 I ∣ Π, μK + 1, σK + 1

fK I ∣ Π, μK, σK
= 0, (5)

for each K ≥ K0, where K0 is a starting value of the number of components. As K increases 

by 1, we define the empirical estimate of the difference between KLD of fK Iv ∣ Π, μK, σK

from the true function f and that of fK + 1 Iv ∣ Π, μK + 1, σK + 1  as follows for voxel v.

ΔK, v = log
fK + 1 Iv ∣ Π, μK + 1, σK + 1

fK Iv ∣ Π, μK, σK
(6)

for v = 1, …, V. Under regularity conditions (presented by Eloyan and Ghosh (2011)) we 

can use the following rule for testing the hypothesis in (5) and choosing K.

ZK, v = V ΔK, v
SΔK, v

(7)

where ΔK, v is the sample mean and SΔK,v is the sample variance of ΔK, v. We reject the null 

hypothesis in (5) if zK,v > zα, where zα denotes the α% upper percentile of the standard 

normal density for a pre-specified value of α. The procedure stops when we fail to reject the 

the null hypothesis or if the number of cluster labels is greater than a pre-specified 

maximum value of number of mixture components defined as Km.

2.3.3 Summary Measures—After having outlined the process of voxel clustering that 

accounts for the spatial distribution of intensities, we are in a position to define our novel 

measure of tumor heterogeneity using various summary statistics emerging from those 

clusters. Our proposed estimator of tumor heterogeneity consists of three sets of summary 

measures derived from the clustering results. One set of measures relates to the mean and 

variability of cluster sizes, the second set relates to the summarized intensities, while the 

third set of features relates to cluster shapes. For example, the variability of estimated cluster 

sizes for a tumor with highly variable-sized clusters is expected to be large, while the 

variability of cluster sizes of a tumor with similarly sized intensity clusters is expected to be 

small. In addition to more commonly used summary measures to quantify tumor 

heterogeneity described below, we use the Rao’s diversity index to measure the diversity of 

intensities in each cluster. Rao’s Quadratic Entropy (Rao, 1982) is a statistical measure 

defined as the expected difference between two objects randomly selected from a given 

population. The difference between the objects can be quantified using any nonnegative 
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function, including distance functions. The index will be used herein to quantify the 

diversity of voxel intensities within clusters of a tumor.

Let the vector [Ki1, …, KiK]T define the cluster sizes, the vectors Ii1
mean, …, IiK

mean T
 and 

Ii1
sd, …, IiK

sd T
 define the means and standard deviations of intensities within each cluster, the 

vector Ii1
Rao, …, IiK

Rao T
 define the Rao’s index of the intensities in each cluster, and 

Ii1
ent, …, Iik

ent T
 define the within cluster entropy of intensities, i.e. 

Ki1 = ∑v = 1
V I λiv = 1 , …, KiK = ∑v = 1

V I λiv = K , 

Ii1
mean = 1

Ki1
∑v = 1

V Ii, v ⋅ I λiv = 1 , …, IiK
mean = 1

KiK
∑v = 1

V Iiv ⋅ I λiv = K , 

Ii1
sd = 1

Ki1 − 1 ∑v = 1
V Ii, v − Ii1

mean 2 ⋅ I λiv = 1 , …, IiK
sd

= 1
KiK − 1 ∑v = 1

V Ii, v − Ii1
mean 2 ⋅ I λiv = K

, 

Ii1
Rao = ∑v = 1

V ∑v′ = 1
V P1 Ii, v Di, v, v′P1 Ii, v′ I λiv = 1 I λiv′=1 , …,

IiK
Rao=∑v = 1

V ∑v′ = 1
V PK Ii, v Di, v, v′PK II, v′ I λiv=K I λiv′=K

 and 

Ii1
ent = ∑v = 1

V P1 Ii, v logP1 Ii, v ⋅ I λiv = 1 , …, IiK
ent = ∑v = 1

V PK Iiv logPK Ii, v ⋅ I λiv = K , 

where Pj(·) is the empirical distribution of the observed intensities in cluster j and Di, v, v′
denotes the Euclidean distance between the intensities Ii,v and Di, v, v′. For a given total 

number of clusters K, to obtain the first set of summary measures related to cluster size we 

compute the following measures.

Cimean = mean Ki1, …, Kik and Cisd = sd Ki1, …, Kik ,

where Ci
mean measures the average cluster size and Ci

sd measures the variation among the 

cluster sizes. We define the second set of measures related to average intensities of the 

clusters as follows.

Iimean1 = mean Ii1
mean, …, Iik

mean and Iimean2 = sd Ii1
mean, …, Iik

mean ,

Iisd1 = mean Ii1
sd, …, Iik

sd and Iisd2 = sd Ii1
sd, …, Iik

sd ,

IiRao1 = mean Ii1
Rao, …, Iik

Rao and IiRao2 = sd Ii1
Rao, …, Iik

Rao ,

Iient1 = mean Ii1
ent, …, Iik

ent and Iient2 = sd Ii1
ent, …, Iik

ent ,
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Finally, the third set of summary measures that will complete our definition of tumor 

heterogeneity is defined as Si1, …, Si8. These correspond to features commonly used to 

describe tumor shape and volume computed for each cluster and averaged across the tumor. 

The formulae for computing the shape features are described in (Aerts et al., 2014) and 

repeated here for completeness. The tumor volume is defined as S1, and computed by 

counting the number of tumor voxels and multiplying by the volume of each voxel. The 

tumor surface area S2 is computed by triangulation. The rest of the shape and size features 

are functions of S1 and S2. Surface to volume ratio S3 =
S2
S1

. Sphericity of the tumor 

S4 =
π1/3 6S1 2/3

S2
. Spherical disproportion S5 =

S2
4πR2 , where R is the radius of a tumor sized 

sphere. Maximum 3D diameter of the tumor is defined as S6. Compactness S7 = 36π
S1

2

S2
3  and 

S8 =
S1

πS2
2/3 .

As a result of our proposed procedure, we obtain the following vector as an estimator of 

tumor heterogeneity, for subject i = 1, 2, …, N.

Hi, NBTH = Cimean, Cisd, Iimean1, Iimean2, Iisd1, Iisd2, IiRao1, IiRao2, Iient1, Iient2, Si1…, Si8
T ∈ R18 × 1

When implementing the proposed algorithm, we choose the initial set of means of for the 

EM-algorithm described in Section 2.3.1 using the k-means algorithm Friedman et al. 

(2001). We select the maximum number of means defined by Km by choosing the value of K 
corresponding to 80% of variance explained in the k-means procedure. Starting from a given 

initial value of K0 = 2, we use our proposed selection procedure described in Section 2.3.2 to 

find the number of mixture components. Our proposed procedure for computing Hi, NBTH
is computationally efficient in relatively low dimensions and computationally feasible in 

high-dimensional settings. It took about 5 minutes to compute Hi, NBTH for a subject with a 

large tumor (over 80,000 tumor voxels) in our dataset using the R software on a 1.7GHz 

Dual-Core Intel Core i7 processor. Next, we show simulation studies to illustrate the 

superior performance of the proposed method as compared with Gaussian Mixture Models 

and k-means clustering.

3 Simulations

We evaluate the performance of our proposed algorithm in two simulation studies: 1) we 

evaluate the accuracy of the proposed MRF-GMM algorithm in terms of estimation of voxel 

labels in an image, i.e. image segmentation, 2) we evaluate the performance of our proposed 

NBTH algorithm for the estimation of tumor heterogeneity in terms of ranking two images 

by their heterogeneity. In the first simulation study we compare the performance of our 

proposed MRF-GMM procedure in terms of its accuracy of labeling voxels to two existing 

methods - k-means and GMM (Friedman et al., 2001). K-means clustering (implemented 
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using the kmeans function in the R software), is a distance based approach which, among 

numerous other applications, is used in image segmentation Dhanachandra et al. (2015) for 

identifying voxel labels to avoid the assumption of Gaussianity of image voxel intensities in 

the GMM model. Let c = (c1, …, cK) denote the vector of cluster centers for a given K 
indicating the number of clusters for the subject’s image. The k-means procedure is based on 

the intuition that a cluster should contain voxels with similar intensity profiles. The loss 

function L(c) = 1
V ∑v = 1

V min1 ≤ j ≤ K Iv − cj
2 can be considered for minimization, and 

based on L(c) the algorithm identifies the set of cluster centers c1, …, cK. The voxel labels 

are then assigned based on the estimated centers. We select the number of clusters in the k-

means algorithm by choosing the value of K corresponding to 80% of variance explained. 

The GMM approach (implemented using the ClusterR package in the R software) is based 

on the model given in (1), while the voxel intensities are assumed to be statistically 

independent. We select the optimal number of clusters when implementing GMM using the 

Akaike information criterion (AIC), specifically, the optimal number of clusters, K, is the 

value of number of clusters such that an increase in K by 1 results in a change in AIC of less 

than 1%.

To compare the three methods in terms of clustering accuracy, we use two images used to 

evaluate image segmentation algorithms by Blekas et al. (2005) and Nguyen and Wu (2012) 

and reproduced in Figure 4. The goal of the analysis is segmentation of the three clusters in 

true image 1 and the four clusters in true image 2, where a cluster consists of intensities of 

the same color in the corresponding image. In the context of tumor imaging, the cluster 

would correspond to a specific tissue consisting of voxels with similar intensities. For each 

image, we run 100 simulations where in each simulation we add random noise to the images. 

To investigate the effect of the magnitude of noise on the performance of the three 

competitor methods we include two settings of noise for each image as follows: we add 

normally distributed random noise with standard deviation of σ = 1 in the first setting and 

standard deviation of σ = 2 in the second setting to true image 1 and normally distributed 

random noise with standard deviation of σ = 2 in the first setting and standard deviation of σ 
= 3 in the second setting to true image 2. After adding the random noise, in order to obtain 

relatively smooth images resembling real images, we apply a blur to the resulting noisy 

images where the blurring kernel is the isotropic Gaussian kernel with standard deviation of 

1.

For each simulation study, after estimating the cluster labels with each of the three methods, 

GMM, k-means, and our proposed MRF-GMM approach, we compute four measures to 

evaluate the accuracy of the estimated image, compared to the true image: 1) cluster overlap 

corresponding to the proportion of overlapping cluster voxels between the true and estimated 

images, 2) Jaccard Index that measures similarity between two images by computing the 

intersection of the voxel sets and dividing by their union, 3) Mutual Information (MI) 

between the clustering partitions, i.e. let ΛM denote the set of cluster labels obtained using 

our proposed procedure and ΛT denote that of the true image then the MI between the two 

sets is computed as ∑j = 1
K ∑l = 1

K p(j, l)log p(j, l)
pM(j)pT(l) , where p(j, l) is the probability that the 

label of a point is in both the cluster labeled by j in ΛM and the cluster labeled by l in ΛT, 
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pM(j) is the probability that the label of a point belongs to the cluster indexed by j in ΛM, pT 

(l) is the probably that the label of a point belongs to the cluster indexed by l in ΛT, and 4) 

Adjusted Rand index (Wagner and Wagner, 2007). Higher values indicate better 

performance of the algorithm in terms of labeling accuracy. The mean and standard 

deviation of each of the clustering comparison measures are presented in Table 1 while the 

boxplots are shown in Figure 4. As shown by all approaches, our proposed MRF-GMM 

method outperforms the competitors significantly in clustering performance except for 

image 2 with low level added noise. Nguyen and Wu (2012) recommends setting the 

smoothing regularization parameter β to 12. We selected values of β at 4, 6, and 12 in our 

simulations and did not find a significant difference in the results in most cases.

Our second simulation study evaluates the performance of our proposed NBTH method in 

terms of ranking images according to tumor heterogeneity. The studies based on histogram 

measures commonly used in the literature postulate that a lower value of uniformity of the 

intensities, a higher entropy, higher standard deviation of intensities, higher kurtosis values, 

and positive skewness all represent increased heterogeneity and are related to poorer 

prognosis (Davnall et al., 2012). When comparing the heterogeneity of two images using our 

proposed NBTH method we rank the two images by using each of the 18 Hi, NBTH features. 

The final ranking of the images is assigned based on the ranking of the majority of NBTH 

features. Figure 5 presents the images we used for comparisons for the following two cases. 

We use very simplistic images in our simulations to ensure that the ranking of images by 

their heterogeneity is clearly visible.

Case 1: we generate four 50 × 50 matrices shown in Figure 5 row (a) as follows: A1 is a 

matrix of zeros (column 1), A2 is a matrix of zeros, with a diamond of 1s containing 145 

pixels (column 2), A3 is a matrix of 0s with a diamond of 1s and additional smaller overlaid 

layers of 2s and 3s, A4 is a matrix of 0s with a diamond of 1s and additional layers up to 6. 

In summary, the images are generated such that they are ordered in terms of their 

heterogeneity, i.e. A4 is more heterogeneous than the rest, A3 is more heterogeneous than A2 

and A1, finally, A2 is more heterogeneous than A1. We run 500 simulations. In each 

simulation, we add random Gaussian noise with mean 0 and variance 1 to the images. We 

compare our proposed method to histogram measures including skewness, kurtosis, and 

entropy in terms of ranking these images in their heterogeneity. We found that all four 

methods (skewness, kurtosis, entrophy, and NBTH) correctly ranked images when 

comparing A4 to A1 and when comparing A3 to A1 as having higher heterogeneity than 

those based on A1 in 100% of simulations. When comparing A2 based images to those based 

on A1 skewness and kurtosis ranked them correctly in terms of heterogeneity in 99% of 

simulations, entropy in 89%, and our proposed NBTH method in 95% simulations. In 

summary, our proposed method performs as well as the competitor methods in terms of 

ordering images in terms of heterogeneity in this simulation study.

Case 2: we use 2 images to compare the effect of higher noise on the estimation of tumor 

heterogeneity shown in rows (b) and (c) in Figure 5. We again run 500 simulations. The true 

images are shown in column 1, the images are identical except for the additional white 

colored collection of voxels in the image in row (c) of column 1 referred to as image 2 
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which implies that the image in row (c) is more heterogeneous than that in row (b) referred 

to as image 1. When the added random Gaussian noise has standard deviation of 1 (column 

2) skewness correctly classifies image 2 as having higher heterogeneity than image 1 in 

3.6% of simulations, kurtosis in 8.2%, entropy in 17% and our proposed method in 77.4%. 

Further, when the added noise has standard deviation 1.5 (column 3) skewness correctly 

ranks the images by their heterogeneity in 22% of simulations, kurtosis in 48.4%, entropy in 

34.8%, and our proposed method in 89% of simulations. Finally, when the added noise has 

standard deviation 2 (column 4) then skewness classifies the second image as more 

heterogeneous than image 1 in 45.2% of the simulations, kurtosis in 68.9%, entropy in 

44.2%, and our proposed NBTH method in 78% of the simulations. This simulation study 

shows that our proposed method performs better than the competitor methods in terms of 

ranking images by their heterogeneity. The R code for reproducing all results in our 

simulation studies is available at https://github.com/anieloyan1/NBTH.

4 Prediction of Cancer Survival

In this section we present results on the comparison of tools for prediction of cancer survival 

using CT scans from 422 patients with NSCLC publicly available on TCIA. We compare the 

performance of the proposed tumor heterogeneity estimation approach to five existing 

methods: two commonly used histogram based measures (skewness and kurtosis); a method 

for estimating texture features using grey level co-occurrence and grey level run-length 

features (Haralick et al., 1973); and the method described by Aerts et al. (2014) that 

combines many existing estimation approaches. Let Ti denote the random variable 

corresponding to time to the event of death for the ith participant, i.e. the survival time, and 

Ci denote the time to censoring, i.e. participant leaving the study, or end of study, for i = 1, 

…, N. Then the death status δi = I(Ti ≤ Ci). For participant i, we observe the outcome pair 

T i = min Ti, Ci  and δi. In the dataset, the average observed survival time T i (including the 

participants where death was not observed) was 538.6 days (with sd = 417.1, and range = 

[10, 2165]), the censoring rate was 42%. We are interested in modeling the hazard function 

hi(t) defined as the instantaneous risk of occurrence of death, based on, among other 

features, the novel measure of tumor heterogeneity.

ℎi(t) = lim
Δt 0

P t ≤ T i ≤ t + Δt ∣ T i ≥ t
Δt (8)

To compare our tumor heterogeneity estimation approach to the method proposed by Aerts 

et al. (2014), we generated 431 radiomic features per patient following Aerts et al. (2014). 

We describe these procedures here briefly and refer the reader to Aerts et al. (2014) for more 

details. These radiomic features comprise 14 histogram features related to the first order 

statistics defined as Mi1, …, Mim, for m = 14 in Section 2.3. In addition, 8 features are 

computed related to tumor shape and size defined as Si1, …, Sis, for s = 8. Thirty three 

features are related to tumor texture computed to quantify intratumor texture differences that 

can be observed on the CT image and defined as Ti1, …, Tit, for t = 33. The remaining 376 

are based on wavelet decompositions of the CT image. We applied the Daubechies 

orthonormal compactly supported wavelet of length 8 least asymmetric family on the 
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original CT images, resulting in 8 decompositions (Daubechies, 1988). For each of the 

decompositions, the histogram and texture features were computed (47 features in total for 

each decomposition), leading to a total of 376 wavelet features denoted as Wi1, …, Wiw, 

where w = 376. When computing radiomic features that require discretization of the voxel 

intensities within the CT image, we used 64 intensity levels. The corresponding vector of 

tumor heterogeneity features computed following the procedures proposed by Aerts et al. 

(2014) is denoted as Hi, a = Mi1, …, Mim, Si1, …, Sis, Ti1, …, Tit, W i1, …, W iw , where 

Hi, a ∈ R431.

Let Xi
1, …, Xi

6 define the clinical variables age, sex, overall cancer stage, clinical N stage, 

clinical T stage, and histology for patient i. We consider three sets of variables for prediction 

of cancer survival as follows: Set 1 - clinical variables Xi
1, …, Xi

6; Set 2 - clinical variables 

Xi
1, …, Xi

6, and the subject specific intensity histogram skewness defined by Mi3; Set 3 - 

clinical variables Xi
1, …, Xi

6, and the subject specific intensity histogram kurtosis defined by 

Mi4; Set 4 - clinical variables Xi
1, …, Xi

6, and the sequence of grey level feature vector that 

we define by Hi, gl; Set 5 - clinical variables Xi
1, …, Xi

6, and the competitor set of radiomic 

features Hi, a used to estimate tumor heterogeneity in an earlier study Aerts et al. (2014); Set 

6 - clinical variables Xi
1, …, Xi

6 and our proposed NBTH estimate of tumor heterogeneity 

Hi, NBTH. As our first model for association of tumor heterogeneity and hazard function we 

first consider the Cox Proportional Hazards model.

Set 1: ℎi(t) = ℎ0(t)eXiTβ

Set2:ℎi(t) = ℎ0(t)eXiTβ + Mi3β2

Set3:ℎi(t) = ℎ0(t)eXiTβ + Mi4β3

Set4:ℎi(t) = ℎ0(t)eXiTβ + Hi, gl
T β4

Set5:ℎi(t) = ℎ0(t)eXiTβ + Hi, a
T β5

Set6:ℎi(t) = ℎ0(t)eXiTβ + Hi, NBTH
T β6
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where hi(t) is the hazard function for patient i defined in (8) and h0(t) is the baseline hazard. 

We tested whether the proportional hazard assumption of a Cox Proportional Hazards model 

was justified in all models using a weighted residual-based method proposed by (Grambsch 

and Therneau, 1994) and found that the assumption was justified based on the global test in 

all models.

A direct application of the Cox Proportional Hazards model can be problematic when using 

variables in Set 5 (i.e. the model using the features estimated according to the procedure by 

Aerts et al. (2014) along with clinical variables) as the number of radiomic features is large 

compared with the number of participants. Additionally, according to the analysis of the data 

performed in this study we found that some of the features are highly correlated. Hence, to 

reduce the dimension of the radiomic features we apply principal component analysis 

(PCA). We compute the PCA decomposition of the radiomic feature matrix and define the 

first p principal components describing 95% of variability in the data by Vi1, …, Vip. These 

principal components are used in addition to the clinical variables as inputs to the Cox 

Proportional Hazards model whenever we refer to using the features in Set 5 described 

above. This approach is commonly used in high dimensional data analysis and is referred to 

as Principal Components Regression Jolliffe (1982). This step is not necessary for the other 

competitor models as well as our proposed modeling approach (using features from Set 6), 

as the number of features is much smaller.

In addition to the Cox Proportional Hazards model, we consider several other approaches for 

modeling the association of tumor heterogeneity and the hazard function. In particular, we 

implement regularized regression approaches to relate the clinical and radiomic feature data 

with survival (using features from Sets 1–6) using the glmnet package in the R software. 

Ridge, Lasso, and Elastic-Net penalization within the Generalized linear models (GLM, 

Friedman et al. (2010)) are used for predictor Sets 1–6. Tuning parameter selection is 

performed using 10-fold cross-validation. The negative logarithm of the partial likelihood is 

penalized using the following penalization function.

λ (1 − α) β 2
2/2 + α β 1

where ‖ · ‖2 describes the L2 norm function and ‖ · ‖1 is the L1 norm. When α = 0 we obtain 

the ridge regression penalization, α = 1 gives the Lasso penalty, while other values of α 
result in Elastic-Net. All predictive models are trained on a subset of the data and predictions 

are computed on a hold out (test) set.

In addition to the Cox Proportional Hazards and regularized regression modeling, we 

implement machine learning algorithms for prediction of survival using each set of 

variables. Random survival forest (RSF), proposed by Ishwaran et al. (2008), was used to 

estimate cancer survival for each set of variables. RSF is an ensemble tree method that 

extends Breiman (2001) random forests for modeling right-censored survival data. In the 

first stage of the algorithm, a randomly drawn bootstrap sample of the training data is used 

to grow a binary tree. At the second stage, a randomly selected subset of the model variables 

is chosen as candidate variables for splitting each node of the tree. The tree is grown using a 
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combination of averaging over trees and randomization. The next method we implement is 

the support vector machines (SVM) for survival data (Van Belle et al. (2007), Van Belle et 

al. (2011)). In this approach, independently right censored and observed failure time data are 

modeled using a health index which is a proxy between the covariates observed for the 

subject and their observed failure times. The risk is defined using the concordance index 

measuring the discriminative power of the health index. Third, we use a k-nearest neighbors 

survival probability prediction method (BNN) (Lowsky et al., 2013), where the survival 

curve prediction is constructed using a weighted Kaplan-Meier estimator based on the K 

most similar training observations. Finally, we apply boosting for high-dimensional time-to-

event data for prediction of cancer survival (Binder et al. (2009), Binder et al. (2013)). In 

this approach, a boosting approach is implemented for fitting a proportional subdistribution 

hazards model, i.e. the instantaneous risk of having an event in the absence of competing 

events. This model can incorporate a large number of radiomic features (coded as optional 

variables), while also taking clinical covariates (coded as mandatory variables) into account.

Figure 6 presents time-dependent ROC (Heagerty et al., 2000) curves describing the results 

of predictive accuracy of survival based on the pairings of predictors used in the study as 

defined in this section. Each plot in Figure 6 corresponds to the predictive algorithm: a. Cox 

Proportional Hazards model with PCA, b. GLM with Lasso penalty, c. GLM with Ridge 

penalty, d. GLM with Elastic-Net penalty, e. Random Survival Forest, f. survival SVM, g. 

Boosting, h. BNN. The time-dependent ROC curves were computed for 3-year survival. The 

colors of the ROC curves correspond to the sets of variables used in each prediction method. 

Table 2 presents the area under the curve (AUC) values corresponding to each 3-year 

survival ROC curve in Figure 6. The implementation of survival SVM when using clinical 

variables and grey level features did not converge, hence the “NA” entry in Table 2. In this 

example, the method with the best performance in terms of maximizing the AUC is our 

proposed NBTH estimation procedure used in a GLM model with the Elastic-Net penalty.

Finally, note, that the above assessment of predictive accuracy was based on a holdout 

method, where model accuracy was assessed for only a single testing set. Thus, to obtain a 

well-rounded understanding we in addition perform a more rigorous assessment of 

predictive accuracy using 10-fold cross-validation. Specifically, we divide the dataset into 10 

subsets (folds). In each of the iterations of the cross-validation analysis we train the 

algorithm on 9 of the folds and apply the resulting predictive algorithm to obtain estimates 

of survival for the 10th fold, where each of the folds is used once as a test set. For each 

iteration we compute the AUCs based on time-dependent ROC curves. The average AUCs, 

along with their standard deviations, are presented in Table 3 and the boxplots comparing 

each model using cross-validation AUCs are shown in Figure 7. The results in Table 3 and 

Figure 7 indicate, that the incorporation of proposed NBTH features along with clinical 

information in a GLM model with the ridge penalty results in better predictive accuracy on 

average, as measured by AUC in this cross-validation analysis. In most cases, using clinical 

information alone results in a poor predictive performance compared with approaches 

incorporating texture features such as those in Set 4, 5, and 6. Similarly, when using 

skewness or kurtosis along with clinical variables the models perform poorly compared to 

the methods including texture based features. The models incorporating texture features 

estimated by grey level co-occurrence and grey level run-length variables in addition to 

Eloyan et al. Page 18

Stat Med. Author manuscript; available in PMC 2021 June 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



clinical information perform better than using the clinical information alone, or clinical 

variables combined with skewness or kurtosis.

5 Summary and Conclusions

As part of radiological assessment of cancer patients, images of different modalities such as 

CT, PET, or MRI are often collected and stored for use in disease diagnostics. The 

calculation of tumor heterogeneity has been based on these images and has been used for a 

wide spectrum of medical purposes including, but not limited to development of targeted 

therapies, studying disease progression, response to treatments, and in general the prediction 

of clinical outcomes such as survival. In this work, we investigated the estimation of tumor 

heterogeneity, based on medical imaging of patients with lung cancer. We discussed the 

existing approaches to estimation of tumor heterogeneity in radiological imaging of cancer, 

including histogram based approaches, and proposed a novel approach based on modeling 

the intensity profiles using MRFs to take into account the spatial structure of the image. Our 

proposed method is based on modeling the voxel intensities using a Gaussian mixture 

density with priors on the mixture weights to take into account the intensities of neighboring 

voxels. The mixture means and standard deviations are fixed, while the mixture weights are 

estimated using the EM-algorithm with Langrangian multipliers to model the constraints on 

the parameters. We compared the resulting parameter estimation to the k-means approach 

and GMM in simulation studies. We used the resulting MRF labeling to compute summary 

features describing tumor heterogeneity. Having defined the novel estimator of tumor 

heterogeneity, we modeled cancer survival as a function of the newly defined estimator. 

Further, we compared the predictive accuracy of the existing definitions to our proposed 

estimator when predicting cancer survival. The performance of the methods was evaluated 

using time-dependent ROC analysis for a cohort of lung cancer patients, followed by cross-

validation. Our newly proposed estimator outperformed existing approaches in terms of 

predictive accuracy.

In this work, we assumed that each patient has one tumor for simplicity of notation and since 

the participants in the motivating NSCLC data used in this article only had one tumor. If two 

or more cancer tumors are present in the CT scan, then the proposed methods can be directly 

applied to estimate tumor-specific heterogeneity measures for each tumor of each study 

participant. Further investigation is necessary to find how the association of the resulting 

tumor specific heterogeneity measures and survival should be modeled. Another limitation 

of the current study is its focus on a single kind of cancer (lung). Further research needs to 

be conducted based on data from patients with other types of cancer (e.g. glioblastoma), to 

investigate the applicability of the proposed tumor heterogeneity estimation approach. In this 

work, our goal was to estimate a small number of image features that described tumor 

heterogeneity. When predicting cancer survival, future work may consider using deep 

learning methods to estimate survival using the full 3-dimensional image. In addition, we 

evaluated the stability of the proposed MRF-GMM approach for voxel labeling and the 

tumor heterogeneity estimator in the presence of noise in simulation studies. Future work 

may examine the stability of the proposed survival prediction algorithms in other similar 

cancer imaging data, as well as generalizability of the proposed estimator for other imaging 

modalities (e.g. MRI, PET) and other types of cancer.
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An important advantage of our proposed definition is that it extends histogram based 

estimation techniques for tumor heterogeneity to include the spatial structure of the tumor. 

The variables entering the proposed estimator are based on an MRF labeling approach to 

find areas of the tumor with similar intensities. During clustering, rather than artificially 

fixing the number of clusters we choose the number of labels using a novel hypothesis 

testing-based approach and include the resulting cluster-based feature estimates along with 

clinical variables in machine learning for building the predictive model.

An intriguing area of future research is the use of the proposed estimator in targeted therapy 

development. For example, if location-specific genomic information is available from a 

tumor, we can identify associations of the estimated local moments and cluster features with 

genomic information and use these associations for targeted therapy. In particular, these 

associations can be used to develop predictions on what types of targeted therapies could be 

successfully used for treatment of a new patient based solely on their imaging. Although not 

considered in this article, this example shows the potential of the proposed methods in 

targeted therapy development.
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Figure 1: 
Left column: 2D slices of CT scans of two patients. The tumor is enclosed in a red box. 

Middle column: histograms showing the intensities of tumor voxels. Right column: 3D 

surface renditions of respective tumors.
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Figure 2: 
Barplots showing the distribution of clinical variables. Histology provides a description of 

the tumor based on the abnormality of tumor cells observed using a microscope. Overall 

stage of cancer indicated the size of the tumor and its spread by a number I, II, IIIa, and IIIb, 

where a higher number implies larger and more spread cancer. T1, T2, T3, and T4 refer to 

the size and extent of the tumor. The higher the number the larger or more extensive the 

tumor. N1, N2, and N3 refer to the number and location of lymph nodes that contain cancer 

(the higher the number the more lymph nodes), N0 indicates there are no nearby lymph 

nodes, NX implies that cancer in nearby lymph nodes is not measurable.
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Figure 3: 
Top left: An axial slice of the CT for one patient. Top right: Four of the tumor surface 

vertices (in red) marked by the radiologist. Bottom left: All tumor surface points marked by 

the radiologist. Bottom right: The full area of the tumor identified by interpolation of surface 

points and identification of tumor interior points.
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Figure 4: 
Results of clustering the voxel intensities using k-means, GMM, and our proposed MRF-

GMM. The true images as well as the estimated cluster segmentations by each of the three 

algorithms are shown on rows 1 and 3. Each of these rows are followed by a row of boxplots 

showing the results of the four cluster comparison measures (overlap, Jaccard index, mutual 

information (MI) and adjusted Rand index) for 100 runs of the simulations. Within each 

boxplot figure, the first three boxplots correspond to the first added noise setting (σ = 1 and 

σ = 2 for true images 1 and 2 correspondingly) while the second set of three boxplots 
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corresponds to the second added noise setting (σ = 2 and σ = 3 for true images 1 and 2 

correspondingly).
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Figure 5: 
True images used in the simulations to evaluate ranking of image heterogeneity.
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Figure 6: 
ROC curves comparing the six predictive methods using the proposed collections of tumor 

heterogeneity measures for 3-year survival.
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Figure 7: 
Boxplots of AUCs from 10-fold cross-validation for each model and the corresponding 

estimation method for 3-year survival.
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Table 1:

Summary of cluster comparison measures given as mean (SD*100) using several measures of cluster 

comparisons OL - overlap, J - Jaccard Index, MI - Mutual Information, ARI - Adjusted Rand Index.

σ = 1, image 1 σ = 2, image 1

GMM k-means MRF-GMM GMM k-means MRF-GMM

OL 0.97 0.77 0.98 0.97 0.75 0.98

(0.2) (0.04) (0.38) (0.09) (0.03) (0.43)

J 0.84 0.64 0.93 0.71 0.59 0.92

(1.39) (0.11) (2.08) (0.54) (0.06) (3.6)

MI 1.42 0.88 1.44 1.43 0.82 1.44

(0.66) (0.31) (1.19) (0.29) (0.29) (1.38)

ARI 0.87 0.63 0.95 0.76 0.54 0.94

(1.18) (0.13) (1.68) (0.49) (0.07) (2.94)

σ = 2, image 2 σ = 3, image 2

GMM k-means MRF-GMM GMM k-means MRF-GMM

OL 0.99 0.87 0.98 0.88 0.86 0.98

(0.13) (0.02) (0.07) (0.14) (0.03) (0.13)

J 0.92 0.50 0.84 0.65 0.21 0.80

(1.03) (0.13) (0.43) (0.65) (0.21) (0.8)

MI 1.68 0.81 1.60 1.21 0.76 1.61

(1.36) (0.53) (0.6) (0.74) (0.74) (1.0)

ARI 0.94 0.45 0.87 0.68 0.43 0.89

(0.08) (0.21) (0.36) (0.73) (0.36) (0.66)
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Table 2:

Area under the curve for each variable set and the corresponding estimation method for 3-year survival.

Cox Lasso Ridge El-Net RSF SVM Boost BNN

Set 1 0.72 0.50 0.66 0.76 0.70 0.55 0.72 0.34

Set 2 0.76 0.50 0.72 0.68 0.80 0.55 0.75 0.34

Set 3 0.73 0.50 0.69 0.76 0.64 0.54 0.73 0.34

Set 4 0.54 0.68 0.78 0.67 0.63 NA 0.79 0.34

Set 5 0.61 0.76 0.72 0.79 0.81 0.34 0.61 0.60

Set 6 0.71 0.78 0.82 0.85 0.70 0.32 0.76 0.50
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Table 3:

Average (standard deviation) AUCs from 10-fold cross-validation for each variable set and the corresponding 

estimation method for 3-year survival.

Cox Lasso Ridge El-Net RSF SVM Boost BNN

Set 1 0.57 0.49 0.57 0.48 0.54 0.57 0.57 0.42

(0.12) (0.13) (0.15) (0.14) (0.15) (0.02) (0.12) (0.09)

Set 2 0.57 0.51 0.57 0.50 0.58 0.57 0.57 0.42

(0.14) (0.14) (0.15) (0.15) (0.19) (0.02) (0.13) (0.09)

Set 3 0.57 0.48 0.59 0.46 0.56 0.56 0.57 0.42

(0.11) (0.13) (0.13) (0.16) (0.13) (0.02) (0.12) (0.09)

Set 4 0.55 0.63 0.62 0.61 0.66 NA 0.60 0.40

(0.12) (0.12) (0.13) (0.12) (0.12) NA (0.12) (0.09)

Set 5 0.56 0.67 0.67 0.67 0.67 0.36 0.62 0.46

(0.15) (0.11) (0.11) (0.08) (0.09) (0.01) (0.09) (0.08)

Set 6 0.65 0.66 0.71 0.68 0.66 0.32 0.68 0.32

(0.11) (0.11) (0.09) (0.10) (0.11) (0.02) (0.12) (0.07)
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