
RESEARCH ARTICLE

Combined laser and ozone therapy for

onychomycosis in an in vitro and ex vivo model

Javier Fernández1,2,3, Iván del Valle Fernández4, Claudio J. Villar1,2,3, Felipe LombóID
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Abstract

In order to develop a fast combined method for onychomycosis treatment using an in vitro

and an ex vivo models, a combination of two dual-diode lasers at 405 nm and 639 nm wave-

lengths, in a continuous manner, together with different ozone concentrations (until 80

ppm), was used for performing the experiments on fungal strains growing on PDA agar

medium or on pig’s hooves samples. In the in vitro model experiments, with 30 min com-

bined treatment, all species are inhibited at 40 ppm ozone concentration, except S. brevi-

caulis, which didn’t show an inhibition in comparison with only ozone treatment. In the ex

vivo model experiments, with the same duration and ozone concentration, A. chrysogenum

and E. floccosum showed total inhibition; T. mentagrophytes and T. rubrum showed a 75%

growth inhibition; M. canis showed a delay in sporulation; and S. brevicaulis and A. terreus

did not show growth inhibition. This combined laser and ozone treatment may be developed

as a fast therapy for human onychomycosis, as a potential alternative to the use of antifun-

gal drugs with potential side effects and long duration treatments.

Introduction

Onychomycosis is a nail infection caused by fungus or yeast [1]. The clinical symptoms of this

disease are discoloration of the nails, painless detachment of the nail bed (onycolysis), and

hyperkeratosis. These symptoms can reduce the patient’s quality of life with pain, paresthesia,

stress or making social relationships difficult [2,3].

Onychomycosis is the most common nail disease, with a prevalence of 5.5% worldwide.

Diverse risk factors increase the probability of suffering this disease, such as age, trauma, dis-

ease (diabetes, obesity, etc.), immunosuppression, psoriasis (56% increased risk), tinea pedis
infection, genetics (associated to genes such as mhc or hla-dr8), direct transmission from an

infected person or lifestyle habits (sports, smoking or the type of shoes) [4–7].

The main fungi causing onychomycosis are dermathophytes (60%–70%), especially 3 spe-

cies: Trichophyton rubrum (>50%), T. mentagrophytes (20%) and Epidermophyton floccosum.
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Dermathophytes are responsible for 90% of toenail and 75% of fingernail onychomycosis.

Non-dermathophyte molds cause 20%-30% of nail infections, mainly in toenails, and usually

after previous nail traumas. These pathogens belong to genera such as Fusarium, Aspergillus,
Acremonium, Scytalidium and Scopulariopsis [3,8,9]. Finally, yeasts cause 10% to 20% of all

onychomycosis, with main species being Candida albicans (accounting for 70% of all yeast

onychomycosis), C. tropicalis and C. parapsilosis, mainly in immunosuppressed patients or

those ones with vascular problems [10–13].

Diagnosis is important for selecting the right treatment. A common diagnosis uses potas-

sium hydroxide to dissolve nail keratin and to observe the sample under the microscope. This

test allows us to discriminate between dermatophytes and saprophytes, although it is only 60%

sensitive. Another more sensitive diagnostic test is the nail biopsy embedded in acid-Schiff

plus Grocott’s methenamine silver stain. It is often necessary to culture the fungus in order to

know the specific causal agent, although this process is also not very sensitive (60%) [14,15].

Another method is the PCR technique, which can determine the causal agent by amplification

of 18S rRNA. All of these techniques are not 100% effective, so a combined use allows a better

identification, decreasing false negatives [16–18].

Main treatments for onychomycosis are oral or topical. Oral treatments (fluconazole, terbi-

nafine, etc.) are used in moderate or severe onychomycosis, but these treatments may cause

liver side effects, drugs interference and other health problems such as heart failure, protein-

uria, photosensitivity, and intestinal disorders. Topical treatments (such as K101 solution,

efinaconazole, etc.) are used in milder cases or in those cases where oral treatments are not rec-

ommended. These topical treatments often show low penetration through the nail. Also, they

may cause local disorders, such as dermatitis. Both types of treatments are usually long term

(over 3 to 9 months) and ineffective in some cases of onychomycosis [19–22].

There are new treatments using physical methods, such as lasers, photodynamic therapy or

iontophoresis that are beginning to be used in these last years, although many of them are still

in research phase [23–25]. One of the advantages of laser therapies is their ability to concen-

trate the energy beam on the affected tissue, thus reducing possible side effects, such as those

that exist with oral treatments. All lasers currently approved by the FDA for the treatment of

onychomycosis are based on neodymium-itrium-aluminum (Nd:YAG 1064 nm), CO2, and

femtosecond infrared titanium-sapphire [26,27]. These photodynamic therapies are based on

the specific absorption of the laser energy by fungal chromophores which are not present in

the human tissues, therefore causing a photothermic and photochemical effect, destroying the

fungal hyphae, depending in main parameters such as wavelength, pulse duration, frequency,

irradiation area, and the number and timing of the treatments. This absorption thus causes

photothermal and photochemical effects that destroy the hyphae of the fungus, without caus-

ing systemic effects [28,29]. Specifically, the violet 405 nm wavelength has been described as

causing oxidative stress in fungal cells, targeting nicotinamide adenine dinucleotide phos-

phate-oxidase (NADPH-oxidase) and cytochrome C oxidase, increasing its production of the

highly volatile reactive oxygen species (ROS), which have antimicrobial effects. On the other

hand, the red wavelength (639 nm) is used to activate immune cells and increase microcircula-

tion at the nail bed tissue, reinforcing the recruitment of immune cells (neutrophils) to this

infected area. Parameters such as laser wavelength, duration of the light pulse, frequency, area

of irradiation, and the number and time spacing between treatments affect the effectiveness of

these therapies. Another alternative is the combination of laser treatment together with photo-

sensitizers, such as porphyrins, in order to enhance the generation of free radicals in the nail

substrate [30–33].

Ozone (O3) is a potent oxidizing gas, widely used as antimicrobial agent. This gas has been

also recently used as a promising onychomycosis treatment option, used at several medical
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skin treatments at concentrations over 100 parts per million (ppm) [34–36]. Its antimicrobial

activity is widely demonstrated, based on its pro-oxidant effect on microbial cells, sometimes

as ozonated oil treatments [37].

The widespread use of laser therapy still needs in vitro and ex vivo tissue studies such as

those proposed in this research project, where its treatment alone or in combination with

ozone will be compared with the effectiveness of conventional drugs.

In our study, it was performed an in vitro and ex vivo assay against the eight most frequent

species of fungi in human onychomycosis. This study has been carried out with a prototype

equipment that combines the use of low-level laser therapy (LLLT) and ozone. The purpose of

this equipment is to carry out a universal fast treatment for the main fungi species that cause

onychomycosis.

Materials and methods

Equipment

The equipment is composed of a 8.9 cm x 12.4 cm chamber (110.36 cm2) which receives dual-

diode laser power (1.8 W/110.36 cm2, which equals 16.3 mW/cm2) at 405 nm (min. 400 nm,

typ. 405 nm, max. 410 nm) and 639 nm (min. 635 nm, typ. 639 nm, max. 645 nm) wavelengths

in a continuous manner. No thermal effects are generated in this chamber (temperature always

below 30 ˚C in the presence of laser).

The equipment also contains an ozone generator able to produce up to 80 ppm ozone. This

gas is pumped via a tube into a closed transparent bag (transmittance of 94.9% at 405 nm laser

and 96.5% at 639 nm laser) placed around the foot or sample to be treated. This bag is placed

in the chamber, below the laser diodes (Fig 1).

Fungal strains collection

Eight pathogenic fungal species involved in human onychomycosis were obtained from the

American Type Culture Collection (ATCC), and were maintained on Potato Dextrose Agar

(PDA) culture medium (potato starch: 4 g/L; dextrose: 20 g/L; agar: 15 g/L). The fungal species

are: Acremonium chrysogenum ATCC 14615, Aspergillus terreus ATCC 1012, Epidermophyton
floccosum ATCC 26072, Fusarium solani ATCC 46939, Microsporum canis ATCC 10214, Sco-
pulariopsis brevicaulis ATCC 7123, Trichophyton mentagrophytes ATCC 28185, Trichophyton
rubrum ATCC 22402.

Dense spores’ suspensions were obtained from each fungal species using filtration through

steril cotton, and they were maintained at 4˚C in distilled water. These suspensions were quan-

tified on PDA medium in order to use 105 CFUs for the in vitro and ex vivo experiments. Incu-

bation temperature was 24˚C for all species, except for A. chrysogenum (26˚C).

Fig 1. Equipment designed for the combined ozone and laser therapy of onychomycosis, showing the central

irradiated chamber (left) where the bag receiving the ozone gas is placed (right).

https://doi.org/10.1371/journal.pone.0253979.g001
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In vitro treatments

For the different ozone concentrations to be tested directly on the fungi cultivated on Petri

dishes (PDA medium), these plates were individually placed inside the sealed transparent bag

(without the plastic lids). Laser treatments were carried out using only 405 nm, only 639 nm

and both lasers combined (Fig 2). Also, ozone (alone) concentrations of 20 ppm, 40 ppm,

60 ppm and 80 ppm, at 10 min, 20 min or 30 min were used (Fig 3). All experiments were car-

ried out in triplicates.

Each Petri dish contained a spores’ inoculum of 105 CFUs just before the corresponding

ozone treatment or for each control, and the effect of each treatment was monitored after 7

days incubation at the corresponding fungus optimal growth temperature.

Fig 2. Percentage of viability for each of the eight fungal species with laser treatments using only 405 nm, only 639

nm and both lasers combined at three different times (10 min, 20 min and 30 min). Statistical significant results are

shown in comparison with the absolute control and indicated with asterisk.

https://doi.org/10.1371/journal.pone.0253979.g002

Fig 3. Percentage of viability for each of the eight fungal species with ozone treatments (20 ppm, 40 ppm, 60 ppm

and 80 ppm) at three different times (10 min, 20 min and 30 min). Statistical significant results are shown in

comparison with the absolute control and indicated with asterisk.

https://doi.org/10.1371/journal.pone.0253979.g003
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Similar in vitro experiments were performed, using 40 ppm or 60 ppm ozone, at 10 min, 20

min or 30 min, but adding during these treatment times a laser irradiation step at 405 nm and

639 nm simultaneously (Figs 4 and 5).

Ex vivo treatments

As a more similar infection model for human onychomycosis, an ex vivo model was developed.

In this model, pig’s hooves samples of about 1 cm2 size and 1 mm thickness were used, which

were obtained with permission from the slaughterhouse Matadero Central de Asturias
(Noreña, Spain) for using them in this research project. This ex vivo model, which uses

tissue waste that usually will be discharged, is a perfect alternative avoiding the use of animal

Fig 4. Percentage of viability for each of the eight fungal species with ozone treatment 40 ppm, in combination

with both laser treatments simultaneously at three different times (10 min, 20 min and 30 min). Statistical

significant results of the combined ozone and laser treatments are shown in comparison with only ozone, only laser

treatments or absolute control at each time point, and indicated with asterisk. Asterisks without a comparison line

indicate the same statistical significant results between all conditions at the same time.

https://doi.org/10.1371/journal.pone.0253979.g004

Fig 5. Percentage of viability for each of the eight fungal species with ozone treatment 60 ppm in combination

with both laser treatments simultaneously at three different times (10 min, 20 min and 30 min). Statistical

significant results of the combined ozone and laser treatments are shown in comparison with only ozone, only laser

treatments or absolute control at each time point, and indicated with asterisk. Asterisks without a comparison line

indicate the same statistical significant results between all conditions at the same time.

https://doi.org/10.1371/journal.pone.0253979.g005

PLOS ONE Onychomycosis ex vivo model

PLOS ONE | https://doi.org/10.1371/journal.pone.0253979 June 30, 2021 5 / 13

https://doi.org/10.1371/journal.pone.0253979.g004
https://doi.org/10.1371/journal.pone.0253979.g005
https://doi.org/10.1371/journal.pone.0253979


experimentation models, and therefore saves an application to the Ethics Committee of the

University of Oviedo, as this was not needed. These hooves were autoclaved and then inocu-

lated with 105 CFUs of the corresponding spore inoculum and were incubated during two

weeks in a water-saturated atmosphere (in the middle of a Petri dish) at the corresponding

temperature of each fungal strain (Fig 6).

After these two weeks of incubation time, a homogeneous mycelial growth was clearly

observed on the surface of each inoculated hoof sample. Then, the combined ozone (40 ppm

or 60 ppm) and laser treatment (405 nm and 639 nm simultaneously) was carried out during

30 min. After the corresponding treatment, the hoof sample was embedded in the center of a

PDA plate, and incubated for 7 days at the corresponding temperature, in order to test the

eventual inhibition of the mycelial growth in the Petri dish after the treatment.

Statistical analysis

Data were expressed as the mean value ± S.E.M. Statistical analyses were conducted using

ANOVA test (Tukey’s multiple comparisons test or Dunnett’s multiple comparisons test).

Normality was analysed using Shapiro-Wilk. The graphical representation of all these data

was generated using GraphPad Prism software (version 9.1.0., GraphPad Software, San Diego,

CA, USA). In all cases, a p value < 0.05 was considered statistically significant (�p< 0.05;
�� p< 0.005; ��� p< 0.0005; ���� p< 0.0001).

Results

Effect of laser treatments on fungal growth in vitro
The two different laser wavelengths, 405 nm and 639 nm, were tested individually and simulta-

neously, on solid medium (triplicates) inoculated with the different fungal species. Three dif-

ferent treatment times were tested (10 min, 20 min and 30 min). No statistically significant

differences, regarding the percentage of viability, were observed in the case of T. rubrum,

Fig 6. Porcine hoof samples (1 cm2) inoculated with 105 CFUs of one of the fungal strains, after 2 weeks

incubation period under water-saturated atmosphere. The white mycelium can be observed on the hoof surface.

https://doi.org/10.1371/journal.pone.0253979.g006
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F. solani, E. floccosum, S. brevicaulis nor A. terreus (Fig 2 and S1 Rawdata). However, in the

case of M. canis, a statistically significant viability reduction (in comparison with control

experiment) was observed at 20 min (16.2% reduction) and 30 min (8.9% reduction) treatment

with both lasers together (Fig 2). In the case of T. mentagrophytes, the only significant reduc-

tion in viability was observed in the case of 30 min treatment with both lasers separately, and

in both cases this viability reduction was 5% (Fig 2). Finally, in the case of A. chrysogenum, a

18% increase in fungal growth was observed in the case of 20 min treatment with the 639 nm

laser, and also an increase was observed with both lasers applied simultaneously during 10 min

(26% increase) and 20 min (20% increase) (Fig 2).

Effect of ozone treatments on fungal growth in vitro
Four different ozone concentrations (together with a control one at 0 ppm) were used for

treating inoculated Petri dishes with the corresponding fungal strains: 20 ppm, 40 ppm,

60 ppm and 80 ppm. Treatment durations were 10 min, 20 min or 30 min.

T. rubrum, A. chrysogenum and T. mentagrophytes show a statistically significant viability

reduction only with 40 ppm ozone during at least 30 min (36% reduction in the case of T.

rubrum, 32.9% reduction in A. chrysogenum, 32.1% reduction in T. mentagrophytes) (Fig 3).

In the case of F. solani and S. brevicaulis, 20 ppm ozone must be applied for at least 30 min

(46.5% and 47.2% reduction respectively) in order to cause a reduction in viability. In these

two species, 60 ppm during 20 min (F. solani) or 80 ppm during 30 min (S. brevicaulis) causes

total death (Fig 3).

A. terreus shows a statistically significant viability reduction (11.7%) with 20 ppm during 20

min and total inhibition with 40 ppm during 30 min (Fig 3). M. canis and E. floccosum are

more sensitive, as their viability (32.4% and %, 33.9% respectively) is quite reduced already at

20 ppm during only 10 min (Fig 3).

Effect of combined 40 ppm or 60 ppm ozone and laser treatments on

fungal growth in vitro
40 ppm ozone concentration was used for treating inoculated Petri dishes with the corre-

sponding fungal strains, together with both laser treatments simultaneously. This treatment

was compared with an absolute control (no treatment) and with 40 ppm treatment or both

laser wavelengths (405 nm and 639 nm) treatment alone. Treatment durations were 10 min,

20 min or 30 min. All these Petri dishes were treated just after inoculation with the corre-

sponding spores.

T. rubrum, M. canis, F. solani, and E. floccosum show a statistically significant viability

reduction when laser treatment is combined with 40 ppm ozone, in comparison with only

ozone treatment. This positive effect in viability reduction is already observed in the 10 min

treatment (Fig 4). T. rubrum shows a 38.5% reduction with 10 min combined treatment, with

respect to ozone treatment alone. Over 95% viability reduction is observed with the combined

treatment at 10 min, in the case of the last three species (Fig 4). In the case of T. mentagro-
phytes and A. terreus, 20 min of combined treatment are necessary in order to observed a sta-

tistically significant viability reduction (38.4% and 35.5% respectively) in comparison with

ozone treatment alone (Fig 4). Regarding A. chrysogenum, 30 min of combined laser and

ozone treatment is necessary for observing a significant reduction (total inhibition) in compar-

ison with only ozone treatment (Fig 4). Surprisingly, in S. brevicaulis, the inhibitory effect

caused by ozone is counteracted when laser is applied (Fig 4).
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Effect of combined 60 ppm ozone and laser treatments on fungal growth in
vitro
Also, 60 ppm ozone concentration was used for treating inoculated Petri dishes with the corre-

sponding fungal strains, together with both laser treatments simultaneously. As in the previous

case, this treatment was compared with the corresponding controls. In all these treatments,

In the case of M. canis, F. solani and E. floccosum, 10 min of combined treatment achieves a

growth inhibition greater than 90% (Fig 5). In the case of T. rubrum, the effect of combined

treatment causes a 77.6% viability reduction (almost double inhibition than with 40 ppm and

lasers combination). Regarding A. terreus and T. mentagrophytes, the significant effect of com-

bined treatment is achieved already with 10 min (instead of 20 min required with combined

40 ppm ozone and lasers combination) (Fig 5). A. chrysogenum requires 30 min for a signifi-

cant reduction in viability (combination of 60 ppm and lasers treatment), but this reduction

was already observed with the combined treatment using 40 ppm and lasers (Fig 5). Finally, in

the case of S. brevicaulis, again, the incorporation of lasers in the combined treatments shows

no differences with 60 ppm ozone treatment alone (Fig 5).

Effect of combined ozone and laser treatments on fungal growth ex vivo
The effect of a 30 min ozone (40 ppm or 60 ppm) and lasers combined treatment, was different

between the fungal strains. In the case of A. chrysogenum total inhibiton was already observed

at 40 ppm plus lasers. In the case of E. floccosum, the total inhibition was obtained at 60 ppm.

T. mentagrophytes and T. rubrum showed a 75% growth inhibition at 60 ppm. In the case of

M. canis, a delay in the sporulation is observed at 60 ppm, without growth inhibition. S. brevi-
caulis and A. terreus do not show growth inhibition in this ex vivo model, and F. solani was not

able to growth on the hooves samples even at 0 ppm ozone control conditions (Fig 7).

Discussion

Non-thermal laser strategies have been used for treating onychomycosis with variable results

[30]. In the case of 405 nm lasers, this wavelength targets NADPH-oxidase, an enzyme which

is involved, in generation of reactive oxygen species in eukaryotic cells, exerting antifungal

effects. After irradiation, fungal structures, such as lipid membranes, accumulate higher levels

of oxidation species, such as malondialdehyde, and at the same time, important antioxidant

enzymes, such as superoxide dismutase, are depleted in the treated hyphae. The deleterious

effects of laser treatment can be enhanced if photosensitizers, such as porphyrins, are incorpo-

rated [31,33].

The other laser used in this study, 639 nm red wavelength, activates immune cells and

increases blood circulation in the subungual bed, enhancing the immune response against

pathogens such as fungal cells. This enhancement seems to be due to activation of vascular

endothelial growth factor, VEGF. These antifungal effects have been already demonstrated

against a variety of fungal pathogens, such as the dermatophyte Trichophyton spp. [32,38,39].

In this study, these two laser wavelengths (405 nm and 639 nm) have been tested (separately

and together) in an in vitro onychomycosis model, against eight fungal pathogens. Three treat-

ment times were tested with these lasers, 10 min, 20 min and 30 min, but as a general rule, no

effect in the fungal viability was observed with these treatments. Only in two cases (M. canis
and T, mentagrophytes) a very small reduction (5% to 16%) in fungal growth was observed (Fig

2). The reason for this discrete effect on fungal growth may be the short duration of our treat-

ment (only one session, with a maximum of 30 min time frame), instead of a treatment with

PLOS ONE Onychomycosis ex vivo model

PLOS ONE | https://doi.org/10.1371/journal.pone.0253979 June 30, 2021 8 / 13

https://doi.org/10.1371/journal.pone.0253979


several sessions over several weeks), and also, because the low surface power density used (16

mW/cm2) in comparison with other studies (up to 45 mW/cm2) [32,38,39].

Ozone treatment alone was also tested in this work, against the same eight fungal patho-

gens. Its effectiveness depends mainly in the fungal species. E. floccosum and M. canis are very

sensitive, showing significant growth reduction to only 20 ppm ozone during a 10 min expo-

sure (Fig 3). However, other pathogens need longer times at this ozone concentration to show

similar leveles of inhibition (A. terreus 20 min, F.solani and S. brevicaulis 30 min). The other

three fungal species are even more resistant to ozone, beginning to show significant growth

reduction after 30 min of treatment with higher ozone concentration (40 ppm, Fig 3). Ozone,

as an oxidant agent, has been used in onychomycosis treatments, and also in other infectious

skin conditions [34,36]. Cellular targets for ozone include the membrane lipids, cytosolic

enzymes, phenolic and sulfhydryl moieties and double bonds, originating reactive oxygen spe-

cies (hydrogen peroxide, lipoperoxides, etc.). Fungal cell wall allows transfer of ozone towards

inner cell, inhibiting spore germination and biomass formation [35,40].

In this work, the simultaneous treatment with both lasers wavelengths has been combined

with the oxidative stress caused in fungal mycelium by the presence of an atmosphere with a

high concentration of ozone gas, but using non-toxic concentrations for human skin (40 and

60 ppm), avoiding higher doses (80 ppm) or longer ozone treatment pulses, which may cause

skin irritation [36,41,42].

First, 40 ppm ozone treatment was combined with both lasers wavelengths together. This

combination was most effective against T. rubrum, M. canis, F. solani and E. floccosum, where

growth inhibition after 10 min combined treatment was statistically significant in comparison

with ozone treatment alone, causing almost total inhibition (Fig 4). T. mentagrophytes (20 min

Fig 7. Growth of the eight fungal strains on porcine hooves samples placed on PDA medium, after ozone

treatments at 40 ppm or 60 ppm combined with both laser wavelengths, during 30 min.

https://doi.org/10.1371/journal.pone.0253979.g007
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of combined treatment), A. terreus (also 20 min) and A. chrysogenum (30 min required) are

slightly more resistant under this combined treatment conditions. Anyway, in all cases, the

combined therapy causes a synergistic effect on viability reduction, compared to only ozone

pulse alone, as 40 ppm ozone is able, in most of the cases, to cause total growth inhibition in

this pathogens (Fig 4).

In order to compare the effect of a different ozone concentration in combined therapy with

lasers pulses, 60 ppm was also used. This ozone concentration, combined with lasers pulses, is

able to reduce the time lapse required to achieve the same viability reduction that was obtained

with 40 ppm plus lasers treatments (Fig 5). However, S. brevicaulis under combined treatment

does not show a statistically significant growth reduction in comparison with only ozone (Fig 5).

For the ex vivo model experiments, 30 min treatment duration was selected, as this was the

most effective time in the combined (lasers plus ozone) in vitro experiments. In these condi-

tions (porcine hooves samples), the effectivity is not the same as in vitro experiments, and total

inhibition was only achieved in the case of A. chrysogenum and E. floccosum. Growth inhibi-

tion was achieved in the cases of T. ruburm and T. mentagrophytes (Fig 5). The reason of this

milder effect may be due to the presence of vegetative mycelium in these experiments, instead

of freshly inoculated spores.

In the case of eventual future clinical practice with this method, the patients could be

treated several times, on a weekly basis, in order to achieve total eradication of the correspond-

ing onychomycosis. In comparison with current treatments for onychomycosis, which require

topical or oral administration of the pharmaceutical drug during months or even years, this

method is promising as a fast therapy, lacking also the side effects of most antifungal drugs in

the market [21,43].

As a summary, the combined laser (405 nm and 639 nm) and ozone (40 ppm or 60 ppm,

which lack toxicity for human skin therapy) treatment developed in this work has demon-

strated its usefulness as a fast therapy for onychomycosis in vitro, as it is able to inhibit the

growth of main dermatophytes and other fungal species involved in this disease. The combina-

tion of lasers plus 40 ppm ozone already shows a synergistic effect in comparison with only

ozone, and it is very effective against 7 out of the 8 studied fungal pathogens (total inhibition).

These results shed light towards a fast and reliable method of clinical practice, without antifun-

gal drugs administration, which may produce side effects in the patient. This combined ther-

apy should be used probably more than once (i.e., on a weekly basis), in order to eradicate

totally the corresponding pathogenic fungus in the onychomycosis patient.
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